\documentclass[twoside]{article} \usepackage{amsfonts,amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil smoothness of solutions to the Navier-Stokes equations \hfil EJDE--2003/11} {EJDE--2003/11\hfil Milan Pokorn\'y \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2003}(2003), No. 11, pp. 1--8. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On the result of He concerning the smoothness of solutions to the Navier-Stokes equations % \thanks{ {\em Mathematics Subject Classifications:} 35Q35, 76D05. \hfil\break\indent {\em Key words:} Navier-Stokes equations, regularity of systems of PDE's, \hfil\break\indent anisotropic regularity criteria. \hfil\break\indent \copyright 2003 Southwest Texas State University. \hfil\break\indent Submitted November 6, 2002. Published February 6, 2003. \hfil\break\indent Partially supported by the Grant Agency of the Czech Republic (grants 201/00/0768 \hfil\break\indent and 201/02/P091) and by the Council of the Czech Government (project 113200007) } } \date{} % \author{Milan Pokorn\'y} \maketitle \begin{abstract} We improve the regularity criterion for the Navier-Stokes equations proved by He \cite{He}. We show that for the Cauchy problem the Leray-Hopf weak solution is smooth provided $\nabla u_3 \in L^t(0,T;L^s)$, $\frac 2t + \frac 3s \leq \frac 32$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \section{Introduction and Main Theorem} We consider the Cauchy problem for the Navier-Stokes equations in three space dimensions, i.e. the system of PDE's \begin{equation} \label{1} \begin{array}{cl} \left.\begin{array} {c} \displaystyle \varrho \frac{\partial \mathbf{u}}{\partial t} + \varrho (\mathbf{u} \cdot \nabla) \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p = \varrho \mathbf{f} \\[6pt] \nabla \cdot \mathbf{u} = 0 \end{array} \right\} &\mbox{ in } (0,T)\times {\mathbb{R}}^3 \\[6pt] \mathbf{u}(0,\mathbf{x}) = \mathbf{u}_0(\mathbf{x}) &\mbox{ in } {\mathbb{R}}^3\, . \end{array} \end{equation} Here, $\mathbf{u}: (0,T)\times \mathbb{R}^3 \mapsto \mathbb{R}^3$ is the velocity field, $p: (0,T) \times \mathbb{R}^3 \mapsto \mathbb{R}^3$ is the pressure, $\mathbf{f}: (0,T)\times \mathbb{R}^3 \mapsto \mathbb{R}^3$ denotes the volume force, $00} \Big\{\mbox{there exists a strong solution to (\ref{1}) on } (0,\tau)\Big\}\, . $$ It is well known that $\tau_0 >0$. As our weak solution from Theorem \ref{t1} satisfies the energy inequality, it coincides with the strong solution on its interval of existence (see e.g. \cite{Te}). We will show that the assumption $\tau_0 3$ we estimate $$ \int |\mathbf{u}|^2 |\nabla u_3|^2 \leq \|\nabla u_3\|_s^{2(1-\alpha)} \|\nabla u_3\|_2^{2\alpha} \|\mathbf{u}\|_{\frac{2s}{(s-2)(1-\alpha)}}^2\, , $$ where for our purpose the optimal choice of $\alpha$ is $\frac{2s-6}{5s-6}$ (for $s<\infty$) and $s=\frac 25$ (for $s=\infty$), respectively. Note that $0\leq \alpha \leq \frac 25$. Now, as $\frac {10}{3} \leq \frac{2s}{(s-2)(1-\alpha)}\leq 6$, we use the interpolation inequality $$ \|\mathbf{u}\|_{\frac 23 \frac{5s-6}{s-2}}^2 \leq C \|\mathbf{u}\|_2^{4\frac{s-3}{5s-6}} \|\nabla \mathbf{u}\|_2^{\frac {6s}{5s-6}} $$ and thus $$ \int |\mathbf{u}|^2 |\nabla u_3|^2 \leq C \|\nabla u_3\|_s^{\frac{6s}{5s-6}}\|\nabla \mathbf{u}\|_2^2 \|\mathbf{u}\|_2^{4\frac {s-3}{5s-6}}\, . $$ Taking (\ref{8a}) into account we end up with $$ I_{22} \leq \varepsilon \|\nabla^2 \mathbf{u}\|_2^2 + C(\varepsilon, \mathbf{u}_0) \|\nabla \mathbf{u}_3\|_s^{\frac {6s}{5s-6}} \|\nabla\mathbf{u}\|_2^2\,. %\tag{\ref{7}'} $$ Note that, even though $\frac{6s}{5s-6} \geq \frac{2s}{2s-3}$ for $s\geq 3$, we still have with $t= \frac{6s}{5s-6}$ that $\frac 2t + \frac 3s = \frac 53 + \frac 1s$ for $3\leq s \leq \infty$. Finally we consider $I_{23}$. Here we apply Lemma \ref{l1} and \begin{equation} \label{9} I_{23} \leq \|\nabla^2 \mathbf{u}\|_2 \|\omega_3\|_3 \|\mathbf{u}\|_6 \leq \varepsilon \|\nabla^2 \mathbf{u}\|_2^2 + \varepsilon \|\omega_3\|_3^4 + C(\varepsilon) \|\nabla \mathbf{u}\|_2^4\, . \end{equation} Inequalities (\ref{5a})--(\ref{9}), after integrating over $(0,\tau)$, $\tau < \tau_0$ read as follows \begin{equation} \label{10} \begin{array}{rl} &\displaystyle \frac 12 \|\nabla \mathbf{u}\|_2^2 (\tau) + \int_0^\tau \|\nabla^2 \mathbf{u}\|_2^2 \\[6pt] &\displaystyle \leq K\varepsilon \int_0^\tau \|\nabla^2 \mathbf{u}\|_2^2 + \varepsilon \int_0^\tau \|\omega_3\|_3^4 \\[6pt] &\quad +\displaystyle C(\varepsilon,\mathbf{u}_0)\int_0^\tau(\|\nabla u_3\|_s^ {\frac{2s}{2s-3}} + g(s)\|\nabla u_3\|_s^{\frac {6s}{5s-6}} + \|\nabla\mathbf{u}\|_2^2)\|\nabla \mathbf{u}\|_2^2\, , \end{array} \end{equation} where $g(s) = 0$ for $2\leq s\leq 3$ and $g(s) =1$ for $s>3$. Lemma \ref{l1} yields $$ \int_0^\tau \|\omega_3\|_3^4 \leq C_1(\mathbf{u}_0,\|\nabla u_3\|_{L^{t,s}}) + C_2(\mathbf{u}_0, \|\nabla u_3\|_{L^{t,s}}) \|\nabla \mathbf{u}\|_Y^2\, . $$ (Note that the larger $\|\nabla u_3\|_{L^{t,s}}$ is, the smaller $\varepsilon$ must be.) Thus from (\ref{10}), taking $\varepsilon$ sufficiently small, it follows that $$ \begin{array}{l} {\displaystyle \|\nabla \mathbf{u}\|_2^2 (\tau) + \int_0^\tau \|\nabla^2\mathbf{u}\|_2^2 }\\[6pt] \displaystyle \leq \sup_{\sigma \in (0,\tau)} \|\nabla \mathbf{u}\|_2^2 (\sigma) + \int_0^\tau \|\nabla^2 \mathbf{u}\|_2^2 \\[6pt] \displaystyle \leq C_1(\mathbf{u}_0,\|\nabla u_3\|_{L^{t,s}}) \\[6pt] \displaystyle \quad + C_2(\mathbf{u}_0, \|\nabla u_3\|_{L^{t,s}}) \int_0^\tau \big(\|\nabla u_3\|_s^{\frac{2s}{2s-3}} + g(s) \|\nabla u_3\|_s^{\frac{6s}{5s-6}} + \|\nabla \mathbf{u}\|_2^2\big) \|\nabla \mathbf{u}\|_2^2 \end{array} $$ and, applying the Gronwall inequality, we obtain $$ \|\nabla \mathbf{u}\|_{L^\infty(0,\tau;L^2)}^2 + \|\nabla^2 \mathbf{u}\|_{L^2(0,\tau;L^2)}^2 \leq C(\mathbf{u}_0,\|\nabla u_3\|_{L^{t,s}})\, , $$ where the constant $C$ is in particular independent of $\tau$ as $\tau \to \tau_0$. Theorem \ref{t1} is proved. \hfill$\Box$ \begin{remark} {\rm I would like to thank the referee who kindly informed me that a similar result as presented in Theorem \ref{t1} was recently obtained by Y. Zhou \cite{Zh}. The main idea of the proof (i.e. the estimate of $\omega_3$ in Lemma \ref{l1} and consequently of $\omega$ (proof of Theorem \ref{t1})) is basically the same. On the other hand, the too papers differ in the way how the quantities on the right-hand side are estimated as well as in the argument how the formally obtained a priori estimates are verified for only weak solutions to the Navier-Stokes equations. I was also kindly informed by the authors below that a similar problem, for $s=3$ and suitable weak solutions in bounded domains, was also considered by Z. Skal\'ak and P. Ku\v{c}era in \cite{SkKu}. } \end{remark} \begin{thebibliography}{99} \frenchspacing \bibitem{BV} Beir\~ao da Veiga, H.: {\it A new regularity class for the Navier-Stokes equations in $R^n$}, Chin. Ann. Math., Ser. B {bf 16}, No. 4 (1995) 407-412. \bibitem{BeGa} Berselli C.L., Galdi G.P.:{\it Regularity criterion involving the pressure for weak solutions to the Navier-Stokes equations}, Dipartimento di Matematica Applicata, Universit\`a di Pisa, Preprint No. 2001/10. \bibitem {ErSeSv} Escauriaza L., Seregin G., \v{S}ver\'ak, V.: {\it On backward uniqueness for parabolic equations}, Zap. Nauch. Seminarov POMI {\bf 288} (2002) 100-103. \bibitem {He} He, Ch.: {\it Regularity for solutions to the Navier-Stokes equations with one velocity component regular}, Electr. J. of Diff. Equat. (2002), No. 29 (1-13). \bibitem {KiLa} Kiselev K.K., Ladyzhenskaya O.A.: {\it On existence and uniqueness of the solutions to the Navier-Stokes equations}, Izv. Akad. Nauk SSSR {\bf 21} (1957) 655-680 (in Russian). \bibitem {La} Ladyzhenskaya O.A.: {\it Uniqueness and smoothness of generalized solutions of the Navier-Stokes equations}, Comm. on Pure Appl. Math. {\bf 12} (1959) 427-433. \bibitem {Le1} Leray J.: {\it Etude de diverses \'equations int\'egrales non lin\'eaires et de quelques probl\`emes que pose l'hydrodynamique}, J. Math. Pures Appl. IX. Ser. 12 (1933) 1--82. \bibitem {Le2} Leray J.: {\it Sur le mouvement d'un liquide visqueux emplissant l'espace}, Acta Math. {\bf 63} (1934) 193--248. \bibitem {NeNoPe} Neustupa J., Novotn\'y A., Penel P.: {\it An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity}, to appear in Topics in Mathematical Fluid Mechanics, a special issue of Quaderni di Matematica. \bibitem {NePe} Neustupa J., Penel P.: {\it Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes Equations}, In: Neustupa J., Penel P. (eds) {\bf Mathematical Fluid Mechanics (Recent Results and Open Problems)}, Birkh\"auser Verlag, (2001) 239--267. \bibitem {PePo} Penel, P., Pokorn\'y, M.: {\it Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity}, submitted. \bibitem {SeSv} Seregin G., \v{S}ver\'ak, V.: {\it Navier-Stokes and backward uniqueness for the heat equation}, IMA Preprint No. 1852 (2002). \bibitem {Se} Serrin J.: {\it The initial boundary value problem for the Navier-Stokes equations}, In: {\bf Nonlinear Problems}, ed. Langer R.E., University of Wisconsin Press (1963). \bibitem {SkKu} Skal\'ak, Z., Ku\v{c}era, P.: {\it A Note on Coupling of Velocity Components for the Navier-Stokes equations}, to appear in ZAMM. \bibitem {Te} Temam, R.: {\bf Navier-Stokes equations: theory and numerical analysis}, North-Holland (1977). \bibitem{Zh} Zhou, Y.: {\it A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component}, to appear in Methods and Applications in Analysis. \end{thebibliography} \noindent\textsc{Milan Pokorn\'{y}}\\ Math. Institute of Charles University\\ Sokolovsk\'a 83, 186 75 Praha 8, Czech Republic\\ e-mail: {\tt pokorny@karlin.mff.cuni.cz} \end{document} \end{document}