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A REDUCTION METHOD FOR PROVING THE EXISTENCE OF
SOLUTIONS TO ELLIPTIC EQUATIONS INVOLVING THE
p-LAPLACIAN

MOHAMED BENALILI & YOUSSEF MALIKI

ABSTRACT. We introduce a reduction method for proving the existence of so-
lutions to elliptic equations involving the p-Laplacian operator. The existence
of solutions is implied by the existence of a positive essentially weak subso-
lution on a manifold and the existence of a positive supersolution on each
compact domain of this manifold. The existence and nonexistence of posi-
tive supersolutions is given by the sign of the first eigenvalue of a nonlinear
operator.

1. INTRODUCTION

Let (M, g) be a complete non-compact Riemannian manifold of dimension n > 3.
On this manifold, we consider the elliptic quasilinear equation

Apu+ kuP™ — Kul =0, (1.1)

with ¢ > p — 1, where K > 0 and k < K are smooth functions on the manifold M
and Apu = div(|Vu|P~2Vu) is the p-laplacian operator of w.

Under some positivity assumption on the function K, we reduce the existence of
a weak positive solution to (1.1) on M to the existence of a positive essentially weak
subsolution on M together with the existence of a positive supersolution on each
compact subdomain of M. The difficulty we face using the method of sub and su-
persolutions resides in seeking a positive subsolution u and a positive supersolution
u that at the same time satisfy the condition u < @. Our reduction method makes
easier the analysis of (1.1) on general complete non-compact manifolds. This result
extends the case studied by Peter Li et al [2] for the Laplace-Beltrami operator (i.e.
p=2).

In the third section, we show that the existence and the nonexistence of posi-
tive supersolutions to (1.1) on arbitrary bounded subdomains of M is completely
determined by the sign of the first eigenvalue of the non-linear operator L,u =
—Apu — k|u|P~2u on the zero set Z, = {x € M : K(z) = 0} of the function K.
This property was also obtained in [2] for the Laplace-Beltrami operator.
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2. REDUCTION RESULT

Definition 2.1. A positive and smooth function K is said to be essentially positive
if there exists an exhaustion by compact domains {£2;};>0 such that

M =U;>0Q; and K|, >0 Vi>0.
Furthermore, If there is a positive weak supersolution u; € HY(;) N C°(£;) on

each §2;, then K is called permissible.

Definition 2.2. A positive solution u of the equation (1.1) is said to be maximal
if for every positive solution v, we have v < u.

In this section, we prove the following theorem.

Theorem 2.3. Suppose that K is permissible and k < K. If there exists a positive
subsolution w € HY (M) N L®(M) N C°(M) of (1.1) on M, then it has a weak

positive and mazimal solution uw € HY(M). Moreover u is of class C* on each
compact set for some a € (0,1).

To prove this theorem, we show the following lemmas.
Lemma 2.4. Let Q@ C M be a bounded domain. Assume that (1.1) has a positive
subsolution w € HY () N C°(Q) and a positive supersolution u € HY (Q). If

1,loc

(U—Q)L,mZO then uw > u on €.

Proof. First, we note that multiplying a positive supersolution @ of (1.1) by a
constant a > 1 we get a supersolution. Indeed,
Ap(au) + k(au)P™ — K(au)? = a? " (Apu+ kuP ') u? — K (au)*
< aP lKud (1 — aq*pﬂ)

<0.

So we can assume without loss of generality that @ > 1 on a compact domain.
Suppose that the set S = {z € Q : u(z) < u(x)} is not empty. Let ¢ = max(u—1u,0)
be the test function which is positive and belongs to HfO(Q). We have,

/ <\vg\f"2 Vu — Va2 va, Vi — a)> dv,

S

< [ =@ ) — K (!~ )~ w)de,

g/SK(@p*Lapfl w4 7)) (u — W),

< [ K =)~ (=) = w)do,

< [ K@) S ) - wde,
S

< [ KO—wr - -

<0 (¢g—p+1>0).
If p > 2, by Simon inequality there exists a positive constant C), > 0 such that

c, / IV (u =) d, < / (Va2 Vu — Va2 va, V(u - a))dv, < 0.
S S
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Hence,
I = oy = [ [V ="ty = 0

ie. (wu—u)t =0, oru<uon .
For 1 < p < 2, there exists by the same inequality there exists a positive constant
C,, > 0 such that

|V (u—)? 2 2o _
C’I’/S(|Vm+|Vﬂ|)2ﬂ’dvgS/S<|vu|p Vu — [Val’™ > v, V(u —u))dvg <0

that is

V(u —a)|? B
/s (|Vu| + |Val)2-r dv = 0. (2.1)

It follows from the Holder inequality that,

_ V(u—a)? (1P
V(u—1)"d :/ | —((|Vu| + |Va|)PA=3)d
/s| (w=m[ dvy s(|Vy|+|Vﬂ|)p(1—§)((| ul + [Val) Yy

- 2 /2 B o
- (/s (V|Z|(+ |Vu)|)2—Pdv9> / (/S(WM-i-\Vu\)P) deg),

By (2.1), we get

(=L oy = || V=) oy = 0.

Hence v < w on €. O

Let H™(—1) be the n-dimensional simply connected hyperbolic space of sectional
curvature equals to —1.

Lemma 2.5. Let € > 0, 8 > 0 and \ constants, then there exists a positive and
increasing function ¢. such that the function V.(z) = ¢.(r(x)), defined on the
geodesic ball B(e) C H™"(—1) satisfies

AV + VPl - VA <0,

= Q.

V5|6B(a)
Here r(x) is the distance function on the ball B(e)
Proof. In polar coordinates, the metric of H™(—1) is
ds* = dr? + sinh®(r)W?
where W2 is the metric on the sphere S"~1. We get easily
Aniery = 85722 +(n—1) coth(r)% + SinhlzmASn_l
where A,y is the Laplace-Beltrami operator on the manifold M. and
Apu = [VulP2Apu+ (Vu, V|VuP2).
For p € (1,n), let A;,V[u = div (\Vu|p*2Vu) be the p-Laplacian operator of u on the
manifold M. For ¢ > p — 1 we consider the function ¢ : (0,¢) — R,

é(r) = (sinhZ(%) - sinh2(g)>_a :
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with a = q_:ﬁ. Setting
a(r) = sinh’(5) —sink®(3),  V(x) = ¢ (r(x)).
we obtain
AI"CDY = P2 Ay V + (p— 2)¢'P 29" (2:2)

A direct computation shows that
1 1
Agn—pyV = 1 (o + 1) a(r) =@+ sinh?(r) + inaa(r)f(wrl) cosh(r)

Therefore,
n _ a\p—1 —apta—prl .
AFCOV AV = () ()" (p - 1) (a4 1) sink(r)

+ (n+p = 2)a(r) sinh?*(r) cosh(r) + Aa(r)"].

Taking
Clerp)= 10—+ (2) sn (o)
e A p4) = 5(p o 5 sinh? (e
p—1
+(n+p—2) (%) a (0) cosh () + A (a(0))?
we obtain Afn(_l)V + AVP~1 < CV? and putting
C\1/(g—p+1
1/):(5> /(a—p )(b’ (2.3)
we obtain the desired function. O

Lemma 2.6. Let Q be a bounded domain. Suppose that there exists a compact
domain X C § such that K‘ax > 0, then there exists a constant C > 0 such that

for any positive regular solution u of (1.1) on Q, we have u’ax < C, where 0X is
the boundary of X.

Proof. Since X C 2 is compact, it follows that there exist a positive constant € > 0
less than the injectivity radius of X and a positive constant 5 > 0 such that the
e-neighborhood of 90X, U, (0X) is contained in £ and

K| > 3> 0. (2.4)

Uz (0X)

Let o € 0X and let r,(z) = dist(zg, ) be the distance function on the geodesic
ball B(zg,e). Let Aé,w be the p-lapalcian operator on the manifold M. Let A =
SUp,cq k(z). By Lemma 2.5, there exists a positive and increasing function V(z) =
¢e(ro(z)) defined on the geodesic ball B(e) C H™(—1) satisfying

AF"CDV, AVt < gy, (2.5)
Since (1 is bounded, by rescaling the metric if necessary, we can assume that
Ricci |Q > —(n—1).
Knowing that the gradient of the distance function satisfies |Vr| = 1, we have
Agd r=AMp.
By a geometric comparison argument, we have

Aﬁ/[r <AV (2.6)
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On the other hand,
Ay Ve = div (Vo (r(2))) = dLAMT + ¢7.
Then .
AYVe =0 PAMVe+ (p—2) ¢ @
and /p—1 p—2
A Ve=0¢. Aur+(p-1)¢. ¢
By the inequality (2.6), we have
AV < ANV,
and from the inequalities (2.4) and (2.5), we deduce that
AMV. 4+ VPt — KV2 < AFPCDY 4 Avp=t - pra <.
which implies that V. is a positive supersolution of the equation(1.1) on B(zg,¢).
Since VE|BB(10 5 = % Lemma 2.4 shows that for any solution u of the equation
(1.1), we have
u(z) < Ve(z) Vz € B(xog,¢)
hence
u(zo) < Ve(wo) = ¢(0) = C,

where C' is a positive constant independent of zg and . O

Lemma 2.7. Let Q C M be a bounded domain. Suppose that K|aQ > 0 and there
is a positive and bounded solution v € HY(2) N L>(Q) of the equation (1.1) such
that v is bounded from below by a positive constant. Then there exists a positive
weak solution u of the boundary-value problem
Apu+ku?™t —Kul=0 onQ
u=o00 on 0f)

and u > v on Q. Moreover u € C*(X) on each compact X C Q, and some
a € (0,1).

Proof. Let C = infg v (which is positive by hypothesis). Since v is bounded from
above on () then there exists ng € N* such that supgv < ngC. Consider the
boundary-value problem

Apu+kuP™! — Ku? =0 on

u=nC, n>ng ondf.

Obviously, v € HY(Q) N L>(Q) and nv € HY(Q) N L>(Q) are respectively positive
sub and supersolutions of problem (2.7), and hence by the sub and supersolutions
method, the problem (2.7) has for each n > ng a positive solution v, € HY(Q) N
L>(Q) such that v < v, < nv. Since (V41 — U””an = C > 0, it follows from
Lemma 2.4 that {v,}n>n, in an increasing sequence of positive solutions of the
equation (1.1) on Q. Consider the set

Q. = {z € Q: dist(z,00) > e}

and setting X = Q. C Q, which is compact, then by Lemma 2.6 there exists for
each £ > 0 (small enough) a constant C' (¢) > 0 such that

supv, < C (g) Vn > ny. (2.8)

€

(2.7)
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Consider the function u = C (¢) C~'v and take C (¢) such that C () C~t > 1, so
that u is a positive supersolution of the equation (1.1). Since (u —vy)|aq. > 0,
it follows from Lemma 2.4 that v, < C(¢) C~'v on Q. for all n > ng, and then
{vn}, >y, is uniformly bounded on compact subsets of 2. Hence{v, }, 5, , converges
in the distribution sense to a weak positive solution u of the equation (1.1) on €.
By the regularity theorem v € C1*(Q.) for some a € (0,1). It obvious that
u|aQ = Q. U
Proof of Theorem 2.3. Let w € HY ;, .(M)NL>(M)NC®(M) a positive subsolution
of the equation (1.1) on M. Since K is permissible then there exists an increasing
sequence of compact domains {€;};>¢ such that M = U;Q; and K } 0, > 0 for
all i > 0 and a positive supersolution w; € HY(Q;) N C°(Q;) on each Q;. Since
ow (where « is a constant greater than 1) is again a positive supersolution of the
equation (1.1) on Q;, we can assume that w; > u on ;. Hence by the method
of sub and supersolutions there exists a positive solution u; € C1*(Q;) of the
equation (1.1) such that v < w; <@;. Since u; is bounded from below by u and ;
is compact, then u; is bounded from below by a positive constant, thus it follows
from Lemma 2.7 that there exists a positive C1:%(;)-solution still denoted by u;
of the boundary-value problem

Apui—i—kuf*l —Kul!=0 in&
u; =00 on 08;.

Since for each ig > 1 we have (u;11 —u;) ‘89, < 0, Lemma 2.4 implies that {u;}
iQ

is a decreasing sequence of positive solutions of the equation (1.1) on €;,. More-
over, all u; are bounded from below by w, thus the sequence {u;} converges in

i>io

i>io
distribution sense to a weak solution of (1.1). By regularity theorem u € C*%(£;)
for some « € (0,1).
Now, if v is an other solution of the equation (1.1) on M = USQ;, then for xg € M
K2
there exist ig > 1 such that xg € Q; for alli > ig , as u;|sq, = 0o, Lemma 2.4 implies
that v < w; for all ¢ > 4p. In particular v < lim u; = u. Thus u is maximal. U

11— 00
3. EXISTENCE OF SUPERSOLUTION

Let K > 0 and k be smooth functions on the manifold M. In this section we
show that the existence or the nonexistence of a positive supersolution on a bounded
domain Q C M is completely determined by the sign of the first eigenvalue of the
non linear operator L,u = —A,u—k|u|P~2u on the zeroset Z = {z € Q: K(z) = 0}
of the function K. Let us recall some definitions first.

Definition 3.1. Let 2 C M be a bounded and smooth open set. The first eigen-
value of the non linear operator Lyu = —A,u — k|u|P~2u on Q is

A2, = inf (/ (Vul” — kfuf?) dv, (3.1)
Q
where the infimum is taken over all functions u € HY ; () such that [, [u[Pdv, = 1.

Definition 3.2. Let S C M be a bounded subset. The first eigenvalue of the non
linear operator L,u = —A,u — k|u[P~2u on Q is

)\f,p = sup /\Sﬁp (3.2)
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where the sup is taken over all smooth open sets {2 containing S. In particular
)\‘f,p =400 .

Definition 3.3. Let S C M be an unbounded subset. The first eigenvalue of the
non-linear operator Lyu = —Apu — k|u[P~?u on Q is

M= ETOOA%% (3.3)
where Q. = SN B (o,r) for all 7 > 0 and 0 € M a fixed point.

Let Q be a bounded domain. It is known that there exists a unique C1*(Q)-
eigenfunction satisfying

Apdp+ kP M+ AP =0 inQ

¢>0 inQ
¢=0 on 0N
qu <0 on0Q.
Let Z = {x € M : K(x) = 0} the zero set of the smooth function K and AZ7 be
the first eigenvalue of the non-linear operator Lyu = —A,u — k|u|P~2u on Q ﬂ Z.

Theorem 3.4. Let K > 0 be a smooth function on a bounded domain . If /\fgg >
0, then there exists a positive supersolution w € HY(2) N L () of the equation
(1.1) on Q. Conversely if there exists a positive supersolution w € HY () N L>(Q)
of the equation (1.1) then AP > 0.

Proof. Let Q2 C M be a bounded domain. Suppose that )\Z”Q > 0, it follows from
the continuity of the first eigenvalue with respect to C° deformatlon of the domain
that there exists a bounded domain 2y such that ZNQ C Qy C Q and )\ 5 > 0.

On Qg there exists a unique positive eigenfunction ¢ € C1* (Qo) such that

App+ kPt AP =0 in Qo

¢ >0 in
=0 on 9Q
a¢ <0 on 890

v
Writting Q = (2\Qo) U (2N Q) and setting
u=xa,¢+C(1-xa)
where xq is the characteristic function,
1 ifz e
TN itz ¢ 0

and C' is a positive constant large enough so that w = C, on  — §,, is a positive
supersolution of (1.1). On QN g, uw = ¢, but

Ayt + kPt — Ku? = —ATouP ! — Ku? < 0

because A\{ %, > 0. Therefore, w € HY () N L> (Q) is positive supersolution of the
equation (1 1) on .
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Conversely, suppose that there exists a positive supersolution u € HY(Q2) N
L () of (1.1) and A < 0. It follows again from the continuity of the first eigen-
value with respect to C°-deformation of the domain that there exists a bounded
domain 2 such that Z NQ C Q; C Q and )\?’; < 0. By the same way as
above, we can find a decreasing sequence {€2;},-, of bounded domains such that
Q, CQ, ZNnOQ =n;Q; and )\5127;, < 0. On €; there exists a positive eigenfunction
¢; € CH*(Q;) and %(f, < 0 on 09); satisfying

Apti + kg +ATEgP =0 in Q;
¢; =0 on 09;.

Consider the boundary-value problem, with ¢ > p — 1,
Apu; + kuff1 — Kugfl =0 in

(3.4)
u; =0 on 09);.

One can check that for ¢ > 0 small and C > 0 large, €¢; and Cu are respectively
positive sub and supersolutions of the boundary-value problem (3.4) and £¢; < C7u.
Therefore, by the sub and supersolutions method there exists a positive C'® solu-
tion u; of the problem (3.4) such that e¢; < u; < Cu, we have also % < 0 on 09;.
Thus % and % € L>(Q;). Consider now the set Q; ¢ = {x € Q; : Coi(z) < wi(z)},

It follows from [1, Lemma 2] that

A (C(ZZ) —-A Ujg
0 < P + P
/szlc (Coi)p=t ™!

_ /Q (A7 + Kul ™) (uf = (Co)")
i,C

) (f = (Ci)") dvg

For i large enough this contradicts the fact that )\&j + K < 0 and completes the
proof. O

Theorem 3.5. Let K > 0 be a smooth function on a bounded domain Q. If
)\fgﬂ > 0, then there exists a positive supersolution w € C1*(Q) of the equation
(1.1) on Q for some « € (0,1).

Proof. Let Q,, 1 be bounded domains such that Z N Q2 C 9, C Q7 such that
Afgg > 0. Let v € CL™ (€21) be the first eigenfunction on 7 and 0 < ¢ < 1 a
smooth function such that ¢ = 1 on Q,, 0 outside ;. We can check easily as in [2,
Theorem 2.1] that the function u = ¢v + (1 — ¢)C, where C' is a suitably chosen
constant, is a positive C1®(2) supersolution of the equation (1.1). ([

Corollary 3.6. Let Z be the zero set of the function K. Suppose that the first
eigenvalue Afp of the operator Lyu = —Ayu—k(x)|u[P~2u is strictly positive. Then
the function K is permissible. In particular if K >0 on M, K is permissible

4. EXAMPLE

Consider the cylinder M = R x N where (N, h) is a compact manifold with
Riemannian metric A and of scalar curvature S, > 0. We endows M with the
metric

g=dr®+ f(r)Qh
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: . . =k .
where f is smooth positive function. Denote by T} ;, Sy R;;; and R 1 <4, j,k,1 <

n respectively the Christofell symbols, the scalar curvature, the curvature tensor
on M and the curvature tensor on V.
(From the local expression of I'(},

re L al(agjl g 8gij)
K 2 8(El 8{17j aiI/'l ’

we have

Ll =—f(r)f'(r)hi, 2<ij<n
=0, 1<i<n
I'i=0, 1<a<n

Iy =—fr)/f'(r)s, 2<a, j<n

re — % al(agjl Ogi 391‘]‘)7

+ 2<4,73,a<n.
Ox; 6‘mj ox; =hJ

A direct computation gives
R?041 = —f”(T)/f(T)’ 2 SO[STL
Ry = —f()f"(Nhy, 2<ij<n
Riaa =0,
E?aj:R?aj_f/(r)2hijv 2§i7jva§n7 ]#O‘

1<t,aln

Sy = —2(n— D) F"(r)/£(r) — (n— D)0 — 2 f (/£ + ff:)Q .
When we take f(r) = expr?,
fi(ry>0 (4.1)
Tim £(r) = lim L f/(r)/£(r) = lm f"(r)/£(r) = o0 (4.2

For r > 0 large enough, by inequalities (4.1) and (4.2) we obtain S, < —e. By
re-parametrizing, we can assume that

Sg < —e foranyr >0. (4.3)
Let K =e+4(n—1)(1+nr?) then k = —S, < K. Now consider on M the equation
Apu — SquP~! — KuP =1 =0 (4.4)

with 2 < p < n and p* = (pn/(n — p). Note that the positive function K is
permissible by Corollary 3.6. Let

= (6r/r3)e if0<r<mr
/) if r >,



10 MOHAMED BENALILI & YOUSSEF MALIKI EJDE-2003/106

where o > 2/(p* — p), § and r; are constants which will be suitably chosen. For
0 < r < r; we have

Dy = Sg¢" ™! = [A(n — 1)(1 + 4n*r?) +elo? !

2\ P~ a
- (62) [e+ ()P tAr+(p—1)(a - 1)0/’_1(1)”

T3 r r
2 O\ (p* —p)ar
— (@A = D +nr) +e)()" 7]
1
Letting § be small, and r; large, and using that
Ar = f'(r)/f(r) =2(n—1)r,

we obtain that the left-hand side of (4.4) is positive. In the case r > 7, the same
computations yield

App — SgpPt — (4(n — 1)(1 + 4n*r2) + e)p? !

> ()00 = 20— P (P 4 (p— e+ Dar™ ()7

~ (4(n— 1)(1 + 4n2r?) + g))(g)a@*—p)] .

The same arguments as above show that the left-hand side of (4.4) is positive in this
case. Therefore, ¢ is a positive subsolution of the equation (4.4) and by Theorem
2.3, there exists a positive weak solution to this equation on the manifold M.
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