Electronic Journal of Differential Equations, Vol. 2003(2003), No. 106, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A REDUCTION METHOD FOR PROVING THE EXISTENCE OF SOLUTIONS TO ELLIPTIC EQUATIONS INVOLVING THE *p*-LAPLACIAN

MOHAMED BENALILI & YOUSSEF MALIKI

ABSTRACT. We introduce a reduction method for proving the existence of solutions to elliptic equations involving the *p*-Laplacian operator. The existence of solutions is implied by the existence of a positive essentially weak subsolution on a manifold and the existence of a positive supersolution on each compact domain of this manifold. The existence and nonexistence of positive supersolutions is given by the sign of the first eigenvalue of a nonlinear operator.

1. INTRODUCTION

Let (M, g) be a complete non-compact Riemannian manifold of dimension $n \ge 3$. On this manifold, we consider the elliptic quasilinear equation

$$\Delta_p u + k u^{p-1} - K u^q = 0, (1.1)$$

with q > p - 1, where $K \ge 0$ and $k \le K$ are smooth functions on the manifold M and $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the *p*-laplacian operator of u.

Under some positivity assumption on the function K, we reduce the existence of a weak positive solution to (1.1) on M to the existence of a positive essentially weak subsolution on M together with the existence of a positive supersolution on each compact subdomain of M. The difficulty we face using the method of sub and supersolutions resides in seeking a positive subsolution \underline{u} and a positive supersolution \overline{u} that at the same time satisfy the condition $\underline{u} \leq \overline{u}$. Our reduction method makes easier the analysis of (1.1) on general complete non-compact manifolds. This result extends the case studied by Peter Li et al [2] for the Laplace-Beltrami operator (i.e. p = 2).

In the third section, we show that the existence and the nonexistence of positive supersolutions to (1.1) on arbitrary bounded subdomains of M is completely determined by the sign of the first eigenvalue of the non-linear operator $L_p u =$ $-\Delta_p u - k|u|^{p-2}u$ on the zero set $Z_o = \{x \in M : K(x) = 0\}$ of the function K. This property was also obtained in [2] for the Laplace-Beltrami operator.

¹⁹⁹¹ Mathematics Subject Classification. 58J05, 53C21.

Key words and phrases. Analysis on manifolds, semi-linear elliptic PDE.

^{©2003} Texas State University-San Marcos.

Submitted March 10, 2003. Published October 21, 2003.

2. Reduction Result

Definition 2.1. A positive and smooth function K is said to be essentially positive if there exists an exhaustion by compact domains $\{\Omega_i\}_{i>0}$ such that

$$M = \bigcup_{i \ge 0} \Omega_i$$
 and $K \Big|_{\partial \Omega_i} > 0 \quad \forall i \ge 0.$

Furthermore, If there is a positive weak supersolution $u_i \in H_1^p(\Omega_i) \cap C^o(\Omega_i)$ on each Ω_i , then K is called permissible.

Definition 2.2. A positive solution u of the equation (1.1) is said to be maximal if for every positive solution v, we have $v \leq u$.

In this section, we prove the following theorem.

Theorem 2.3. Suppose that K is permissible and $k \leq K$. If there exists a positive subsolution $\underline{u} \in H^p_{1,\text{loc}}(M) \cap L^{\infty}(M) \cap C^o(M)$ of (1.1) on M, then it has a weak positive and maximal solution $u \in H^p_1(M)$. Moreover u is of class $C^{1,\alpha}$ on each compact set for some $\alpha \in (0, 1)$.

To prove this theorem, we show the following lemmas.

Lemma 2.4. Let $\Omega \subset M$ be a bounded domain. Assume that (1.1) has a positive subsolution $\underline{u} \in H^p_{1,\text{loc}}(\Omega) \cap C^o(\Omega)$ and a positive supersolution $\overline{u} \in H^p_{1,\text{loc}}(\Omega)$. If $(\overline{u} - \underline{u})|_{\partial\Omega} \geq 0$ then $\overline{u} \geq \underline{u}$ on Ω .

Proof. First, we note that multiplying a positive supersolution \overline{u} of (1.1) by a constant $a \ge 1$ we get a supersolution. Indeed,

$$\Delta_p(au) + k(au)^{p-1} - K(au)^q = a^{p-1} \left(\Delta_p u + ku^{p-1} \right) u^q - K(au)^q$$

$$\leq a^{p-1} K u^q \left(1 - a^{q-p+1} \right)$$

$$\leq 0.$$

So we can assume without loss of generality that $\overline{u} \geq 1$ on a compact domain. Suppose that the set $S = \{x \in \Omega : \overline{u}(x) < \underline{u}(x)\}$ is not empty. Let $\phi = \max(\underline{u} - \overline{u}, 0)$ be the test function which is positive and belongs to $H_{1,0}^p(\Omega)$. We have,

$$\begin{split} &\int_{S} \left\langle |\nabla \underline{u}|^{p-2} \nabla \underline{u} - |\nabla \overline{u}|^{p-2} \nabla \overline{u}, \nabla (\underline{u} - \overline{u}) \right\rangle dv_{g} \\ &\leq \int_{S} (k(\underline{u}^{p-1} - \overline{u}^{p-1})(\underline{u} - \overline{u}) - K(\underline{u}^{q} - \overline{u}^{q}))(\underline{u} - \overline{u}) dv_{g} \\ &\leq \int_{S} K(\underline{u}^{p-1} - \overline{u}^{p-1} - \underline{u}^{q} + \overline{u}^{q}))(\underline{u} - \overline{u}) dv_{g} \\ &\leq \int_{S} K(\underline{u}^{p-1}(1 - \underline{u}^{q-p+1}) - \overline{u}^{p-1}(1 - \overline{u}^{q-p+1}))(\underline{u} - \overline{u}) dv_{g} \\ &\leq \int_{S} K(\underline{u}^{p-1}(1 - \underline{u}^{q-p+1}) - \overline{u}^{p-1}(1 - \underline{u}^{q-p+1}))(\underline{u} - \overline{u}) dv_{g} \\ &\leq \int_{S} K(1 - \underline{u}^{q-p+1})(\underline{u}^{p-1} - \overline{u}^{p-1})(\underline{u} - \overline{u}) dv_{g} \\ &\leq 0 \quad (q - p + 1 > 0). \end{split}$$

If $p \ge 2$, by Simon inequality there exists a positive constant $C_p > 0$ such that $C_p \int_S |\nabla(\underline{u} - \overline{u})|^p dv_g \le \int_S \langle |\nabla \underline{u}|^{p-2} \nabla \underline{u} - |\nabla \overline{u}|^{p-2} \nabla \overline{u}, \nabla(\underline{u} - \overline{u}) \rangle dv_g \le 0.$ EJDE-2003/106

$$\left\| (\underline{u} - \overline{u})^+ \right\|_{H^p_{1,0}(\Omega)} = \int_{\Omega} \left| \nabla (\underline{u} - \overline{u})^+ \right|^p dv_g = 0$$

i.e. $(\underline{u} - \overline{u})^+ = 0$, or $\underline{u} \le \overline{u}$ on Ω .

For $1 , there exists by the same inequality there exists a positive constant <math>C'_p > 0$ such that

$$C_p' \int_S \frac{\left|\nabla(\underline{u} - \overline{u})\right|^2}{(\left|\nabla\underline{u}\right| + \left|\nabla\overline{u}\right|)^{2-p}} dv_g \le \int_S \left\langle \left|\nabla\underline{u}\right|^{p-2} \nabla\underline{u} - \left|\nabla\overline{u}\right|^{p-2} \nabla\overline{u}, \nabla(\underline{u} - \overline{u})\right\rangle dv_g \le 0$$
hat is

that is

$$\int_{S} \frac{|\nabla(\underline{u} - \overline{u})|^2}{(|\nabla \underline{u}| + |\nabla \overline{u}|)^{2-p}} \, dv = 0.$$
(2.1)

It follows from the Hölder inequality that,

$$\begin{split} \int_{S} \left| \nabla(\underline{u} - \overline{u}) \right|^{p} dv_{g} &= \int_{S} \frac{\left| \nabla(\underline{u} - \overline{u}) \right|^{p}}{(\left| \nabla \underline{u} \right| + \left| \nabla \overline{u} \right|)^{p(1 - \frac{p}{2})}} ((\left| \nabla \underline{u} \right| + \left| \nabla \overline{u} \right|)^{p(1 - \frac{p}{2})} dv_{g} \\ &\leq \Big(\int_{S} \frac{\left| \nabla(\underline{u} - \overline{u}) \right|^{2}}{(\left| \nabla \underline{u} \right| + \left| \nabla \overline{u} \right|)^{2 - p}} dv_{g} \Big)^{p/2} \Big(\int_{S} (\left| \nabla \underline{u} \right| + \left| \nabla \overline{u} \right|)^{p})^{1 - \frac{p}{2}} dv_{g} \Big). \end{split}$$

By (2.1), we get

$$\left\| (\underline{u} - \overline{u})^+ \right\|_{H^p_{1,0}(\Omega)} = \int_{\Omega} \left| \nabla (\underline{u} - \overline{u})^+ \right|^p dv_g = 0.$$

Hence $\underline{u} \leq \overline{u}$ on Ω .

Let $H^n(-1)$ be the *n*-dimensional simply connected hyperbolic space of sectional curvature equals to -1.

Lemma 2.5. Let $\varepsilon > 0$, $\beta > 0$ and λ constants, then there exists a positive and increasing function ϕ_{ε} such that the function $V_{\varepsilon}(x) = \phi_{\epsilon}(r(x))$, defined on the geodesic ball $B(\varepsilon) \subset H^n(-1)$ satisfies

$$\begin{aligned} \Delta_p V_{\varepsilon} + \lambda V_{\varepsilon}^{p-1} - \beta V_{\varepsilon}^q &\leq 0, \\ V_{\varepsilon} \big|_{\partial B(\varepsilon)} &= \infty. \end{aligned}$$

Here r(x) is the distance function on the ball $B(\varepsilon)$

Proof. In polar coordinates, the metric of $H^n(-1)$ is

$$ds^2 = dr^2 + \sinh^2(r)W^2$$

where W^2 is the metric on the sphere S^{n-1} . We get easily

$$\Delta_{H^n(-1)} = \frac{\partial^2}{\partial r^2} + (n-1)\coth(r)\frac{\partial}{\partial r} + \frac{1}{\sinh^2(r)}\Delta_{S^{n-1}}$$

where Δ_M is the Laplace-Beltrami operator on the manifold M. and

$$\Delta_p u = |\nabla u|^{p-2} \Delta_M u + \left\langle \nabla u, \nabla |\nabla u|^{p-2} \right\rangle.$$

For $p \in (1, n)$, let $\Delta_p^M u = \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right)$ be the *p*-Laplacian operator of *u* on the manifold *M*. For q > p-1 we consider the function $\phi : (0, \varepsilon) \to R$,

$$\phi(r) = \left(\sinh^2(\frac{\varepsilon}{2}) - \sinh^2(\frac{r}{2})\right)^{-\alpha},\,$$

with $\alpha = \frac{p}{q-p+1}$. Setting

$$a(r) = \sinh^2\left(\frac{\varepsilon}{2}\right) - \sinh^2\left(\frac{r}{2}\right), \quad V(x) = \phi\left(r(x)\right),$$

we obtain

$$\Delta_p^{H^n(-1)}V = \phi'^{p-2}\Delta_{H^n(-1)}V + (p-2)\phi'^{p-2}\phi''.$$
(2.2)

A direct computation shows that

$$\Delta_{H^{n}(-1)}V = \frac{1}{4}\alpha \left(\alpha + 1\right) a(r)^{-(\alpha+2)} \sinh^{2}(r) + \frac{1}{2}n\alpha a(r)^{-(\alpha+1)} \cosh(r)$$

Therefore,

$$\Delta_p^{H^n(-1)}V + \lambda V^{p-1} = \left(\frac{\alpha}{2}\right)^{p-1} a(r)^{-\alpha p + \alpha - p} \left[\frac{1}{2} \left(p - 1\right) \left(\alpha + 1\right) \sinh^p(r) + (n + p - 2)a(r) \sinh^{p-2}(r) \cosh(r) + \lambda a(r)^p\right].$$

Taking

$$C(\varepsilon, \lambda, p, q) = \frac{1}{2}(p-1)(\alpha+1)\left(\frac{\alpha}{2}\right)^{p-1}\sinh^{p}(\varepsilon) + (n+p-2)\left(\frac{\alpha}{2}\right)^{p-1}a(0)\cosh(\varepsilon) + \lambda(a(0))^{p},$$

we obtain $\Delta_p^{H^n(-1)}V + \lambda V^{p-1} \leq CV^q$ and putting

$$\psi = \left(\frac{C}{\beta}\right)^{1/(q-p+1)}\phi, \qquad (2.3)$$

we obtain the desired function.

Lemma 2.6. Let Ω be a bounded domain. Suppose that there exists a compact domain $X \subset \Omega$ such that $K|_{\partial X} > 0$, then there exists a constant C > 0 such that for any positive regular solution u of (1.1) on Ω , we have $u|_{\partial X} \leq C$, where ∂X is the boundary of X.

Proof. Since $X \subset \Omega$ is compact, it follows that there exist a positive constant $\varepsilon > 0$ less than the injectivity radius of X and a positive constant $\beta > 0$ such that the ε -neighborhood of ∂X , $U_{\varepsilon}(\partial X)$ is contained in Ω and

$$K\Big|_{U_{\varepsilon}(\partial X)} \ge \beta > 0. \tag{2.4}$$

Let $x_0 \in \partial X$ and let $r_o(x) = \operatorname{dist}(x_0, x)$ be the distance function on the geodesic ball $B(x_0, \varepsilon)$. Let Δ_p^M be the *p*-lapalcian operator on the manifold M. Let $\lambda = \sup_{x \in \Omega} k(x)$. By Lemma 2.5, there exists a positive and increasing function $V(x) = \phi_{\varepsilon}(r_o(x))$ defined on the geodesic ball $B(\varepsilon) \subset H^n(-1)$ satisfying

$$\Delta_p^{H^n(-1)} V_{\varepsilon} + \lambda V_{\varepsilon}^{p-1} \le \beta V_{\varepsilon}^q.$$
(2.5)

Since Ω is bounded, by rescaling the metric if necessary, we can assume that

Ricci
$$|_{\Omega} \geq -(n-1)$$
.

Knowing that the gradient of the distance function satisfies $|\nabla r| = 1$, we have

$$\Delta_p^M r = \Delta^M r$$

By a geometric comparison argument, we have

$$\Delta_p^M r \le \Delta_p^{H^n(-1)} r. \tag{2.6}$$

 $\mathrm{EJDE}{-2003}/106$

On the other hand,

$$\Delta_M V_{\varepsilon} = \operatorname{div} \left(\nabla \phi_{\varepsilon}(r(x)) \right) = \phi_{\varepsilon}' \Delta_M r + \phi_{\varepsilon}''.$$

Then

$$\Delta_p^M V_{\varepsilon} = \phi_{\varepsilon}'^{p-2} \Delta_M V_{\varepsilon} + (p-2) \phi_{\varepsilon}'^{p-2} \phi_{\varepsilon}''$$

and

$$\Delta_p^M V_{\varepsilon} = \phi_{\varepsilon}^{'^{p-1}} \Delta_M r + (p-1) \phi_{\varepsilon}^{'^{p-2}} \phi_{\varepsilon}^{''}.$$

By the inequality (2.6), we have

$$\Delta_p^M V_{\varepsilon} \le \Delta_p^{H^n(-1)} V_{\varepsilon}$$

and from the inequalities (2.4) and (2.5), we deduce that

$$\Delta_p^M V_{\varepsilon} + k V_{\varepsilon}^{p-1} - K V_{\varepsilon}^q \le \Delta_p^{H^n(-1)} V_{\varepsilon} + \lambda V_{\varepsilon}^{p-1} - \beta V_{\varepsilon}^q \le 0.$$

which implies that V_{ε} is a positive supersolution of the equation(1.1) on $B(x_0, \varepsilon)$. Since $V_{\varepsilon}|_{\partial B(x_0,\varepsilon)} = \infty$, Lemma 2.4 shows that for any solution u of the equation (1.1), we have

$$u(x) \le V_{\varepsilon}(x) \ \forall x \in B(x_0, \varepsilon)$$

hence

$$u(x_0) \le V_{\varepsilon}(x_0) = \phi_{\varepsilon}(0) = C,$$

where C is a positive constant independent of x_0 and u.

Lemma 2.7. Let $\Omega \subset M$ be a bounded domain. Suppose that $K|_{\partial\Omega} > 0$ and there is a positive and bounded solution $v \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ of the equation (1.1) such that v is bounded from below by a positive constant. Then there exists a positive weak solution u of the boundary-value problem

$$\Delta_p u + k u^{p-1} - K u^q = 0 \quad on \ \Omega$$
$$u = \infty \quad on \ \partial\Omega$$

and $u \ge v$ on Ω . Moreover $u \in C^{1,\alpha}(X)$ on each compact $X \subset \Omega$, and some $\alpha \in (0,1)$.

Proof. Let $C = \inf_{\Omega} v$ (which is positive by hypothesis). Since v is bounded from above on Ω then there exists $n_0 \in N^*$ such that $\sup_{\Omega} v \leq n_0 C$. Consider the boundary-value problem

$$\Delta_p u + k u^{p-1} - K u^q = 0 \quad \text{on } \Omega$$

$$u = nC, \quad n \ge n_0 \quad \text{on } \partial\Omega.$$
(2.7)

Obviously, $v \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ and $nv \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ are respectively positive sub and supersolutions of problem (2.7), and hence by the sub and supersolutions method, the problem (2.7) has for each $n \ge n_0$ a positive solution $v_n \in H_1^p(\Omega) \cap$ $L^{\infty}(\Omega)$ such that $v \le v_n \le nv$. Since $(v_{n+1} - v_n)|_{\partial\Omega} = C > 0$, it follows from Lemma 2.4 that $\{v_n\}_{n\ge n_0}$ in an increasing sequence of positive solutions of the equation (1.1) on Ω . Consider the set

$$\Omega_{\varepsilon} = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon \}$$

and setting $X = \overline{\Omega}_{\varepsilon} \subset \Omega$, which is compact, then by Lemma 2.6 there exists for each $\varepsilon > 0$ (small enough) a constant $C(\varepsilon) > 0$ such that

$$\sup_{\partial \Omega_{\varepsilon}} v_n \le C(\varepsilon) \ \forall n \ge n_0.$$
(2.8)

Consider the function $u = C(\varepsilon) C^{-1}v$ and take $C(\varepsilon)$ such that $C(\varepsilon) C^{-1} > 1$, so that u is a positive supersolution of the equation (1.1). Since $(u - v_n)|_{\partial\Omega_{\varepsilon}} \ge 0$, it follows from Lemma 2.4 that $v_n \le C(\varepsilon) C^{-1}v$ on Ω_{ε} for all $n \ge n_0$, and then $\{v_n\}_{n\ge n_0}$ is uniformly bounded on compact subsets of Ω . Hence $\{v_n\}_{n\ge n_0}$, converges in the distribution sense to a weak positive solution u of the equation (1.1) on Ω . By the regularity theorem $u \in C^{1,\alpha}(\Omega_{\epsilon})$ for some $\alpha \in (0,1)$. It obvious that $u|_{\partial\Omega} = \infty$.

Proof of Theorem 2.3. Let $\underline{u} \in H^p_{1,loc}(M) \cap L^{\infty}(M) \cap C^o(M)$ a positive subsolution of the equation (1.1) on M. Since K is permissible then there exists an increasing sequence of compact domains $\{\Omega_i\}_{i\geq 0}$ such that $M = \bigcup_i \Omega_i$ and $K|_{\partial\Omega_i} > 0$ for all $i \geq 0$ and a positive supersolution $\overline{u}_i \in H^p_1(\Omega_i) \cap C^o(\Omega_i)$ on each Ω_i . Since $\alpha \overline{u}$ (where α is a constant greater than 1) is again a positive supersolution of the equation (1.1) on Ω_i , we can assume that $\overline{u}_i \geq \underline{u}$ on Ω_i . Hence by the method of sub and supersolutions there exists a positive solution $u_i \in C^{1,\alpha}(\Omega_i)$ of the equation (1.1) such that $\underline{u} \leq u_i \leq \overline{u}_i$. Since u_i is bounded from below by \underline{u} and Ω_i is compact, then u_i is bounded from below by a positive constant, thus it follows from Lemma 2.7 that there exists a positive $C^{1,\alpha}(\Omega_i)$ -solution still denoted by u_i of the boundary-value problem

$$\Delta_p u_i + k u_i^{p-1} - K u_i^q = 0 \quad \text{in } \Omega_i$$
$$u_i = \infty \quad \text{on } \partial \Omega_i \,.$$

Since for each $i_0 \geq 1$ we have $(u_{i+1} - u_i)|_{\partial\Omega_{i_0}} \leq 0$, Lemma 2.4 implies that $\{u_i\}_{i\geq i_0}$ is a decreasing sequence of positive solutions of the equation (1.1) on Ω_{i_0} . Moreover, all u_i are bounded from below by \underline{u} , thus the sequence $\{u_i\}_{i\geq i_0}$ converges in distribution sense to a weak solution of (1.1). By regularity theorem $u \in C^{1,\alpha}(\Omega_i)$ for some $\alpha \in (0, 1)$.

Now, if v is an other solution of the equation (1.1) on $M = \bigcup_i \Omega_i$, then for $x_0 \in M$ there exist $i_0 \ge 1$ such that $x_0 \in \Omega_i$ for all $i \ge i_0$, as $u_i|_{\partial\Omega_i} = \infty$, Lemma 2.4 implies that $v \le u_i$ for all $i \ge i_0$. In particular $v \le \lim_{i \to \infty} u_i = u$. Thus u is maximal. \Box

3. EXISTENCE OF SUPERSOLUTION

Let $K \ge 0$ and k be smooth functions on the manifold M. In this section we show that the existence or the nonexistence of a positive supersolution on a bounded domain $\Omega \subset M$ is completely determined by the sign of the first eigenvalue of the non linear operator $L_p u = -\Delta_p u - k|u|^{p-2}u$ on the zero set $Z = \{x \in \Omega : K(x) = 0\}$ of the function K. Let us recall some definitions first.

Definition 3.1. Let $\Omega \subset M$ be a bounded and smooth open set. The first eigenvalue of the non linear operator $L_p u = -\Delta_p u - k|u|^{p-2}u$ on Ω is

$$\lambda_{1,p}^{\Omega} = \inf\left(\int_{\Omega} \left(|\nabla u|^p - k|u|^p\right) dv_g\right)$$
(3.1)

where the infimum is taken over all functions $u \in H_{1,0}^p(\Omega)$ such that $\int_{\Omega} |u|^p dv_g = 1$.

Definition 3.2. Let $S \subset M$ be a bounded subset. The first eigenvalue of the non linear operator $L_p u = -\Delta_p u - k|u|^{p-2}u$ on Ω is

$$\lambda_{1,p}^S = \sup \lambda_{1,p}^\Omega \tag{3.2}$$

EJDE-2003/106

7

where the sup is taken over all smooth open sets Ω containing S. In particular $\lambda_{1,p}^{\phi} = +\infty$.

Definition 3.3. Let $S \subset M$ be an unbounded subset. The first eigenvalue of the non-linear operator $L_p u = -\Delta_p u - k|u|^{p-2}u$ on Ω is

$$\lambda_{1,p}^S = \lim_{r \to +\infty} \lambda_{1,p}^{\Omega_r} \tag{3.3}$$

where $\Omega_r = S \cap \overline{B}(o, r)$ for all r > 0 and $o \in M$ a fixed point.

Let Ω be a bounded domain. It is known that there exists a unique $C^{1,\alpha}(\Omega)$ eigenfunction satisfying

$$\begin{split} \Delta_p \phi + k \phi^{p-1} + \lambda_{1,p}^{\Omega_0} \phi^{p-1} &= 0 \quad \text{in } \Omega \\ \phi &> 0 \quad \text{in } \Omega \\ \phi &= 0 \quad \text{on } \partial \Omega \\ \frac{\partial \phi}{\partial \nu} &< 0 \quad \text{on } \partial \Omega \,. \end{split}$$

Let $Z = \{x \in M : K(x) = 0\}$ the zero set of the smooth function K and $\lambda_{1,p}^{Z \cap \Omega}$ be the first eigenvalue of the non-linear operator $L_p u = -\Delta_p u - k|u|^{p-2}u$ on $\Omega \cap Z$.

Theorem 3.4. Let $K \ge 0$ be a smooth function on a bounded domain Ω . If $\lambda_{1,p}^{Z\cap\Omega} > 0$, then there exists a positive supersolution $\overline{u} \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ of the equation (1.1) on Ω . Conversely if there exists a positive supersolution $\overline{u} \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ of the equation (1.1) then $\lambda_{1,p}^{Z\cap\Omega} \ge 0$.

Proof. Let $\Omega \subset M$ be a bounded domain. Suppose that $\lambda_{1,p}^{Z\cap\Omega} > 0$, it follows from the continuity of the first eigenvalue with respect to C^0 deformation of the domain that there exists a bounded domain Ω_0 such that $Z \cap \Omega \subset \Omega_0 \subset \Omega$ and $\lambda_{1,p}^{\Omega_0} > 0$. On Ω_0 there exists a unique positive eigenfunction $\phi \in C^{1,\alpha}(\overline{\Omega}_0)$ such that

$$\begin{split} \Delta_p \phi + k \phi^{p-1} + \lambda_{1,p}^{\Omega_0} \phi^{p-1} &= 0 \quad \text{in } \Omega_0 \\ \phi &> 0 \quad \text{in } \Omega_0 \\ \phi &= 0 \quad \text{on } \partial \Omega_0 \\ \frac{\partial \phi}{\partial \nu} &< 0 \quad \text{on } \partial \Omega_0 \,. \end{split}$$

Writting $\Omega = (\Omega \setminus \Omega_0) \cup (\Omega \cap \Omega_0)$ and setting

$$\overline{u} = \chi_{\Omega_0}\phi + C\left(1 - \chi_{\Omega_0}\right)$$

where χ_{Ω} is the characteristic function,

$$\chi_{\Omega} = \begin{cases} 1 & \text{if } x \in \Omega \\ 0 & \text{if } x \notin \Omega \end{cases}$$

and C is a positive constant large enough so that $\overline{u} = C$, on $\Omega - \Omega_o$, is a positive supersolution of (1.1). On $\Omega \cap \Omega_0$, $\overline{u} = \phi$, but

$$\Delta_p \overline{u} + k\overline{u}^{p-1} - K\overline{u}^q = -\lambda_{1,p}^{\Omega_0} \overline{u}^{p-1} - K\overline{u}^q \le 0$$

because $\lambda_{1,p}^{\Omega_0} > 0$. Therefore, $\overline{u} \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ is positive supersolution of the equation (1.1) on Ω .

Conversely, suppose that there exists a positive supersolution $\overline{u} \in H_1^p(\Omega) \cap L^{\infty}(\Omega)$ of (1.1) and $\lambda_{1,p}^{Z\cap\Omega} < 0$. It follows again from the continuity of the first eigenvalue with respect to C^0 -deformation of the domain that there exists a bounded domain Ω_1 such that $Z \cap \Omega \subset \Omega_1 \subset \Omega$ and $\lambda_{1,p}^{\Omega_1} < 0$. By the same way as above, we can find a decreasing sequence $\{\Omega_i\}_{i\geq 0}$ of bounded domains such that $\Omega_i \subset \Omega, Z \cap \Omega = \bigcap_i \Omega_i$ and $\lambda_{1,p}^{\Omega_i} < 0$. On Ω_i there exists a positive eigenfunction $\phi_i \in C^{1,\alpha}(\overline{\Omega}_i)$ and $\frac{\partial \phi_i}{\partial \nu} < 0$ on $\partial \Omega_i$ satisfying

$$\begin{split} \Delta_p \phi_i + k \phi_i^{p-1} + \lambda_{1,p}^{\Omega_i} \phi_i^{p-1} &= 0 \quad \text{in } \Omega_i \\ \phi_i &= 0 \quad \text{on } \partial \Omega_i \,. \end{split}$$

Consider the boundary-value problem, with q > p - 1,

$$\Delta_p u_i + k u_i^{p-1} - K u_i^{q-1} = 0 \quad \text{in } \Omega_i$$

$$u_i = 0 \quad \text{on } \partial \Omega_i .$$
(3.4)

One can check that for $\varepsilon > 0$ small and C > 0 large, $\varepsilon \phi_i$ and $C\overline{u}$ are respectively positive sub and supersolutions of the boundary-value problem (3.4) and $\varepsilon \phi_i \leq C\overline{u}$. Therefore, by the sub and supersolutions method there exists a positive $C^{1,\alpha}$ solution u_i of the problem (3.4) such that $\varepsilon \phi_i \leq u_i \leq C\overline{u}$, we have also $\frac{\partial u_i}{\partial \nu} < 0$ on $\partial \Omega_i$. Thus $\frac{\phi_i}{u_i}$ and $\frac{u_i}{\phi_i} \in L^{\infty}(\Omega_i)$. Consider now the set $\Omega_{i,C} = \{x \in \Omega_i : C\phi_i(x) < u_i(x)\}$, It follows from [1, Lemma 2] that

$$0 \leq \int_{\Omega_{i,C}} \left(\frac{\Delta_p(C\phi_i)}{(C\phi_i)^{p-1}} + \frac{-\Delta_p u_i}{u_i^{p-1}} \right) \left(u_i^p - (C\phi_i)^p \right) dv_g$$
$$= -\int_{\Omega_{i,C}} \left(\lambda_{1,p}^{\Omega_i} + K u_i^{q-p+1} \right) \left(u_i^p - (C\phi_i)^p \right) dv_g.$$

For *i* large enough this contradicts the fact that $\lambda_{1,p}^{\Omega_i} + K < 0$ and completes the proof.

Theorem 3.5. Let $K \geq 0$ be a smooth function on a bounded domain Ω . If $\lambda_{1,p}^{Z\cap\Omega} > 0$, then there exists a positive supersolution $\overline{u} \in C^{1,\alpha}(\Omega)$ of the equation (1.1) on Ω for some $\alpha \in (0,1)$.

Proof. Let Ω_o , Ω_1 be bounded domains such that $Z \cap \Omega \subset \Omega_o \subset \Omega_1$ such that $\lambda_{1,p}^{Z\cap\Omega} > 0$. Let $v \in C^{1,\alpha}(\Omega_1)$ be the first eigenfunction on Ω_1 and $0 \le \phi \le 1$ a smooth function such that $\phi = 1$ on Ω_o , 0 outside Ω_1 . We can check easily as in [2, Theorem 2.1] that the function $u = \phi v + (1 - \phi)C$, where C is a suitably chosen constant, is a positive $C^{1,\alpha}(\Omega)$ supersolution of the equation (1.1).

Corollary 3.6. Let Z be the zero set of the function K. Suppose that the first eigenvalue $\lambda_{1,p}^Z$ of the operator $L_p u = -\Delta_p u - k(x)|u|^{p-2}u$ is strictly positive. Then the function K is permissible. In particular if K > 0 on M, K is permissible

4. Example

Consider the cylinder $M = R^+ \times N$ where (N, h) is a compact manifold with Riemannian metric h and of scalar curvature $S_h \ge 0$. We endows M with the metric

$$g = dr^2 + f(r)^2 h$$

EJDE-2003/106

9

where f is smooth positive function. Denote by $\Gamma_{i,j}^l$, S_g , \overline{R}_{ijl}^k and R_{ijl}^k , $1 \le i, j, k, l \le n$ respectively the Christofell symbols, the scalar curvature, the curvature tensor on M and the curvature tensor on N.

¿From the local expression of Γ_{ij}^{α} ,

$$\Gamma^{\alpha}_{ij} = \frac{1}{2}g^{\alpha l} \big(\frac{\partial g_{jl}}{\partial x_i} + \frac{\partial g_{il}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_l}\big),$$

we have

$$\begin{split} \Gamma^{1}_{ij} &= -f(r)f'(r)h_{ij}, \quad 2 \leq i,j \leq n \\ \Gamma^{1}_{i1} &= 0, \quad 1 \leq i \leq n \\ \Gamma^{\alpha}_{11} &= 0, \quad 1 \leq \alpha \leq n \\ \Gamma^{\alpha}_{1j} &= -f(r)/f'(r)\delta^{\alpha}_{j}, \quad 2 \leq \alpha, \ j \leq n \\ \Gamma^{\alpha}_{ij} &= \frac{1}{2}g^{\alpha l}(\frac{\partial g_{jl}}{\partial x_{i}} + \frac{\partial g_{il}}{\partial x_{i}} - \frac{\partial g_{ij}}{\partial x_{l}}), \quad 2 \leq i,j,\alpha \leq n \,. \end{split}$$

A direct computation gives

$$\overline{R}_{1\alpha1}^{\alpha} = -f''(r)/f(r), \quad 2 \le \alpha \le n$$
$$\overline{R}_{i1j}^{1} = -f(r)f''(r)h_{ij}, \quad 2 \le i, j \le n$$
$$\overline{R}_{i\alpha\alpha}^{\alpha} = 0, \quad 1 \le i, \alpha \le n$$
$$\overline{R}_{i\alpha j}^{\alpha} = R_{i\alpha j}^{\alpha} - f'(r)^{2}h_{ij}, \quad 2 \le i, j, \alpha \le n, \ j \ne \alpha$$

 \mathbf{SO}

$$S_g = -2(n-1)f''(r)/f(r) - (n-1)(n-2)f'(r)^2/f(r)^2 + \frac{S_h}{f(r)^2}.$$

When we take $f(r) = \exp r^2$,

$$f'(r) > 0 \tag{4.1}$$

$$\lim_{r \to \infty} f(r) = \lim_{r \to \infty} \lim f'(r) / f(r) = \lim_{r \to \infty} f''(r) / f(r) = \infty$$
(4.2)

For r > 0 large enough, by inequalities (4.1) and (4.2) we obtain $S_g \leq -\varepsilon$. By re-parametrizing, we can assume that

$$S_g \le -\varepsilon$$
 for any $r > 0$. (4.3)

Let $K = \varepsilon + 4(n-1)(1+nr^2)$ then $k = -S_g \leq K$. Now consider on M the equation

$$\Delta_p u - S_g u^{p-1} - K u^{p^* - 1} = 0 \tag{4.4}$$

with $2 and <math>p^* = (pn/(n-p))$. Note that the positive function K is permissible by Corollary 3.6. Let

$$\phi = \begin{cases} (\delta r / r_1^2)^{\alpha} & \text{if } 0 < r < r_1 \\ (\delta / r)^{\alpha} & \text{if } r \ge r_1, \end{cases}$$

where $\alpha \geq 2/(p^* - p)$, δ and r_1 are constants which will be suitably chosen. For $0 < r < r_1$ we have

$$\begin{split} &\Delta_p \phi - S_g \phi^{p-1} - [4(n-1)(1+4n^2r^2) + \varepsilon] \phi^{p^*-1} \\ &\geq \left(\frac{\delta r}{r_1^2}\right)^{(p-1)\alpha} \left[\varepsilon + (\frac{\alpha}{r})^{p-1} \Delta r + (p-1)(\alpha-1)\alpha^{p-1}(\frac{1}{r})^p \\ &- (4(n-1)(1+nr^2) + \varepsilon)(\frac{\delta r}{r_1^2})^{(p^*-p)\alpha}\right]. \end{split}$$

Letting δ be small, and r_1 large, and using that

$$\Delta r = f'(r)/f(r) = 2(n-1)r\,,$$

we obtain that the left-hand side of (4.4) is positive. In the case $r \ge r_1$, the same computations yield

$$\begin{split} &\Delta_p \phi - S_g \phi^{p-1} - (4(n-1)(1+4n^2r^2)+\varepsilon)\phi^{p^*-1} \\ &\geq (\frac{\delta}{r})^{\alpha(p-1)} \Big[\varepsilon - 2(n-1)\alpha^{p-1}(\frac{1}{r})^{p-2} + (p-1)(\alpha+1)\alpha^{p-1}(\frac{1}{r})^p \\ &- (4(n-1)(1+4n^2r^2)+\varepsilon))(\frac{\delta}{r})^{\alpha(p^*-p)} \Big] \,. \end{split}$$

The same arguments as above show that the left-hand side of (4.4) is positive in this case. Therefore, ϕ is a positive subsolution of the equation (4.4) and by Theorem 2.3, there exists a positive weak solution to this equation on the manifold M.

References

- J. I. Diaz, J. E. Saa; Existence et unicité de solutions positives pour certaines équations élliptiques quasilinéaires; CRAS, t. 305. Série I. (1987), 521-524.
- [2] P. Li, L. Tam, D. Gang; On the Elliptic Equation \(\Delta u + ku Ku^p = 0\) on Complete Riemannian Manifolds and their Geometric Applications; Trans. Am. Soc. Vol 350, 3 (1998), 1045-1078.
- [3] P. Tolksdorf; Regularity for a more General Class of Quasilinear elliptic Equations; J. Diff. Eqns. 51 (1984), 126-156.

Mohamed Benalili

UNIVERSITÉ ABOU-BAKR BELKAÏD, FACULTÉ DES SCIENCES, DEPART. MATHÉMATIQUES, B. P. 119, TLEMCEN, ALGERIE

E-mail address: m_benalili@mail.univ-tlemcen.dz

Youssef Maliki

UNIVERSITÉ ABOU-BAKR BELKAÏD, FACULTÉ DES SCIENCES, DEPART. MATHÉMATIQUES, B. P. 119, TLEMCEN, ALGERIE

E-mail address: malyouc@yahoo.fr