
Electronic Journal of Differential Equations, Vol. 2003(2003), No. 105, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

LIMIT CYCLES FOR A CLASS OF POLYNOMIAL SYSTEMS
AND APPLICATIONS

HANYING FENG, RUI XU, QIMING LIU, & PINGHUA YANG

Abstract. In this paper, we study the existence and uniqueness of limit cycles
for a particular polynomial system. Some known results are extended and
improved.

1. Introduction

As well known, the second part of Hilbert’s 16th problem deals with polynomial
differential equations in the plane. Recall that the second part of Hilbert’s 16th
problem asks about the following three questions:

(i) Is it true that a planar polynomial vector field has but a finite number of
limit cycles?

(ii) Is it true that the number of limit cycles of a planar polynomial vector field
is bounded by a constant depending on the degree of the polynomials only?

(iii) Given an upper bound on the number of limit cycles in (ii).
There has been a large body of excellent work on the study of the problems above

since 1900 (see, for example, [1-9] and the references cited therein). However, it
remains unsolved even for quadratic polynomials. There may be a long distance
to solve this problem. So far, most of the previous important works tackle the
quadratic polynomial systems, but there aren’t many results dealing with cubic
and higher degree polynomial system. In this paper, we are concerned with a
class of higher degree polynomial differential system which contains as particular
cases certain more simple systems considered earlier by other authors. The main
purpose of this paper is to study the number and the distribution of limit cycles of
higher degree polynomial differential equations. To do so, we consider the following
differential system

dx/dt = −yα(1 + ny)α + dxα(1 + ny)α + lxα+1(1 + ny)α−1 −myα+1(1 + ny)α,

dy/dt = xα[(1 + ny)α + (ax)α],
(1.1)

where n ≥ m ≥ 0, α is a positive odd integer. Without loss of generality, we assume
a ≤ 0 (Otherwise, one may make the transformation x1 = −x, t1 = −t).
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The paper is organized as follows. In the next section, by analyzing an equivalent
system of (1.1), we discuss the existence and uniqueness of limit cycles of system
(1.1). In section 3, by applying the main results in section 2, we discuss some more
simple polynomial differential systems considered earlier by some other authors.
Some known results in [2, 4, 5, 9] are extended and improved.

2. The main results and proofs

In this section, we discuss the existence and uniqueness of limit cycles of system
(1.1) by using the qualitative theory of ordinary differential equations.

Noting that y = −1/n is a straight line isocline, we set x = x(1+ny), y = y, dt =
(1 + ny)1−αdt, then system (1.1) can be transformed into the following equivalent
system (denoting x, y, t again by x, y, t, respectively):

dx/dt = −yα −myα+1 + (1 + ny)α[dxα + (l − n)xα+1 − naαx2α+1] ≡ P (x, y),

dy/dt = (1 + ny)α+1xα(1 + aαxα) ≡ Q(x, y).
(2.1)

We now formulate our main results for systems (1.1) and (2.1) as follows.

Theorem 2.1. If ad[l(α + 1) + nα] ≤ 0, then system (1.1) has no limit cycle in
the whole plane.

Proof. Take a Dulac’s function

B(y) = (1 + ny)
−l(α+1)

n .

Along solutions of system (2.1), we derive that

div(BP, BQ) = (1 + ny)
nα−l(α+1)

n xα−1[ad− (l(α + 1) + nα)aαxα+1].

Thus, if ad[l(α + 1) + nα] ≤ 0, then div(BP, BQ) is of fixed sign in the region
y + 1

n > 0 or y + 1
n < 0 and is not identically equal to zero in any subregion since

α is a positive odd integer. By Dulac’s criterion, we know that system (2.1) has no
limit cycle in the whole plane. Since system (1.1) is equivalent to system (2.1), we
assert that system (1.1) has no limit cycle in the whole plane. This completes the
proof. �

By Theorem 2.1, we can assume ad[l(α + 1) + nα] > 0. By the assumption of
a ≤ 0, we have d[l(α + 1) + nα] < 0. Hence, in the following, we always assume
l > −nα/(α + 1), a < 0, and d < 0.

Lemma 2.2. If system (2.1) has limit cycles, then they must intersect the line
x = −αd/[l(α + 1) + nα].

Proof. Take a Dulac’s function B(y) = (1 + ny)α. Then it follows that

div(BP, BQ) = xα−1(1 + ny)2α[αd + (l(α + 1) + nα)x].

Hence, if system (2.1) has limit cycles, then they must intersect the line x =
−αd/[l(α + 1) + nα]. The proof is complete. �

Lemma 2.3. If system (2.1) has limit cycles around the origin, then they must not
intersect the line x = −1/a.
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Proof. Let Γ be a limit cycle around the origin which intersects the y-axis at R and
the line x = −1/a on S. Since Q(x, y) = (1 + ny)α+1xα(1 + aαxα) < 0 on the right
hand of the line x = −1/a, Γ will go in a right downward direction after it passes
through the point S. Moreover, it is impossible for it to go around the origin. This
contradicts the assumption that Γ is a limit cycle around the origin. The proof is
complete. �

Theorem 2.4. If ad ≥ [l(α + 1) + nα]/α, then system (2.1) has no limit cycle
around the origin.

Proof. By Lemma 2.2, if system (2.1) has a limit cycle around the origin, it must
intersect the line x = −αd/[l(α + 1) + nα]. By Lemma 2.3, it must not intersect
the line x = −1/a. Hence the line x = −αd/[l(α+1)+nα] must lie in the left hand
of the line x = −1/a, i.e. −αd/[l(α + 1) + nα] < −1/a. Noticing the assumptions
of l > −nα/(α + 1), a < 0, d < 0, the inequality above can be written in the form
ad < [l(α + 1) + nα]/α. Therefore, if ad ≥ [l(α + 1) + nα]/α, then system (2.1) has
no limit cycle around the origin.The proof is complete. �

From what has been discussed above, we can assume 0 < ad < [l(α+1)+nα]/α,
and we know that if system (2.1) has a limit cycle around the origin, it must lie in
the region D = {(x, y) : x < −1/a, y > −1/n}.

Let

x̂ = x, e−ŷ = 1 + ny, dt̂ = −(1 + ny)αdt. (2.2)

On dropping the hats for ease of notation, system (2.1) becomes

dx/dt = −ϕ(y)− F (x),

dy/dt = g(x),
(2.3)

where
ϕ(y) = (ey − 1)α[(n−m) + me−y]/nα+1,

F (x) = dxα + (l − n)xα+1 − naαx2α+1,

g(x) = nxα(1 + aαxα).
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Denote
f(x) = F ′(x) = αdxα−1 + (α + 1)(l − n)xα − n(2α + 1)aαx2α,

G(x) =
∫ x

0

g(x)dx =
n

α + 1
xα+1 +

naα

2α + 1
x2α+1.

Lemma 2.5. If d < 0, |d| � 1, then the singular point O of system (1.1) is a stable
focus; if d = 0, then the singular point O is an unstable focus.

Proof. Let z = G(x). We denote by x1(z) > 0 the inverse function of G(x) in
the interval (0,−1/a), and by x2(z) the inverse function of G(x) in the half plane
x < 0. Since G(x) ∼ n

α+1xα+1 as x → 0, we have x1(z) ∼ (α+1
n )1/(α+1)z1/(α+1)

and x2(z) ∼ −x1(z) as z → 0. Denote Fi(z) = F (xi(z)), i = 1, 2. It is easy to
verify that ϕ(y) and Fi(z) satisfy all the conditions of Corollary 4 in [3] for d ≤ 0
and a < 0.

Since

F1(z)− F2(z) ∼ 2d

(
α + 1

n

)α/(α+1)

z
α

α+1 − 2naα

(
α + 1

n

)(2α+1)/(α+1)

z
2α+1
α+1

as z → 0, it is easy to see that for 0 < z � 1, if d < 0, then F1(z)− F2(z) < 0 and
if d = 0, then F1(z)− F2(z) > 0. Hence, if d < 0, then the origin O is an unstable
focus of system (2.3); if d = 0, then the origin O is a stable focus. Noticing the
transformation (2.2), it follows that if d < 0, then the origin O is a stable focus
of system (1.1); if d = 0, then the origin O is an unstable focus. The proof is
complete. �

Theorem 2.6. If 0 < ad < [l(α + 1) + nα]/α and |d| � 1, then system (1.1) has
limit cycles around the origin.

Proof. By Lemma 2.5 and the Hopf’s bifurcation Theorem in [7], the conclusion of
Theorem 2.6 can be obtained directly. This completes the proof. �

Theorem 2.7. If 0 < ad < [l(α + 1) + nα]/α, then system (1.1) has at most one
limit cycle around the origin, and if it exists, it must be unstable.

Proof. Consider system (2.3). It is easy to determine ϕ′(y) > 0, ϕ(0) = 0 and
xg(x) > 0 for x < −1/a and x 6= 0, and(f(x)

g(x)

)′
= − α

nx2(1 + aαxα)2
{[nα + l(α + 1)]aαxα+1 + (α + 1)daαxα + d}.

Let
h(x) = [nα + l(α + 1)]aαxα+1 + (α + 1)daαxα + d.

Then it follows

h′(x) = (α + 1)[nα + l(α + 1)]aαxα + α(α + 1)daαxα−1

= (1 + α){[l(α + 1) + nα]x + dα}aαxα−1.

It is easy to verify that h(x) has a unique point, namely x0 = −αd/[nα+l(α+1)]
at which h(x) attains its maximum, and h(x0) = d{1−[ αad

l(α+1)+nα ]α}. Noticing that
0 < ad < [l(α + 1) + nα]/α, we know that h(x0) < 0, hence h(x) < 0. Therefore, it
follows that ( f(x)

g(x) )
′ > 0.
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By Lemma 2.5, if d < 0, then the origin O is a stable focus of system (1.1).
Applying the Zhang Zhifen’s Theorem in [8], we have that system (1.1) has at
most one limit cycle around the origin, and if it exists, it must be unstable. This
completes the proof. �

3. The applications of the main results

In [4], the author considered the system

dx/dt = −y + dx + x2 + dxy − (m + 1)y2 −my3,

dy/dt = x(1 + ax + y), (0 ≤ m ≤ 1),
(3.1)

which is a special case of (1.1) when n = 1, α = 1, l = 1 in system (1.1). It is easy
to derive the following corollaries by Theorems 2.1, 2.4, 2.6, 2.7.

Corollary 3.1. For system (3.1), if ad ≤ 0, then there is no limit cycle in the
whole plane; if ad ≥ 3, then there is no limit cycle around the origin.

Corollary 3.2. For system (3.1), we have the following conclusions:
(i) If 0 < ad < 3, then there is at most one limit cycle around the origin, and

if it exists, it must be unstable;
(ii) If 0 < ad < 3 and |d| � 1, then there is a unique unstable limit cycle

around the origin.

In [9], the author discussed the quadratic system

dx/dt = −y + dx + x2 + dxy − y2

dy/dt = x(1 + ax + y),
(3.2)

which is a special case of (3.1) when m = 0 in system (3.1) or a special case of (1.1)
when n = 1, α = 1, l = 1 and m = 0 in system (1.1). From what has been discussed
above, it is easy to see that above Corollaries 3.1, 3.2 still hold for system (3.2).

Remark 3.3. Corollaries 3.1, 3.2 not only contain all results in [4] and [9], but also
show sufficient conditions for the existence of limit cycles which was not involved
in [9].

In [2], the authors studied the system

dx/dt = dxα(1− ny)α + lxα+1(1− ny)α−1,

dy/dt = xα[(1− ny)α + (ax)α].
(3.3)

On substituting
x̂ = x, ŷ = −y, t̂ = −t (3.4)

into (3.3) and dropping the hats for ease of notation, system (3.3) reduces to the
equivalent system

dx/dt = −yα(1 + ny)α + dxα(1 + ny)α − lxα+1(1 + ny)α−1,

dy/dt = xα[(1 + ny)α + (ax)α],
(3.5)

which is a special case of (1.1) when m = 0 in system (1.1). Noticing the negative
sign before l in system (3.5) and the transformation (3.4), by Theorems 2.1, 2.4,
2.6, 2.7, we have the following results.
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Corollary 3.4. If ad[l(α + 1) − nα] ≥ 0, then system (3.5) has no limit cycle in
the whole plane; If ad ≥ [nα − l(α + 1)]/α, then system (3.5) has no limit cycle
around the origin.

Corollary 3.5. For system (3.5), we have the following conclusions:
(i) If 0 < ad < [nα− l(α+1)]/α, then system (3.5) has at most one limit cycle

around the origin, and if it exists, it must be stable;
(ii) If 0 < ad < [nα− l(α + 1)]/α and |d| � 1, then system (3.5) has a unique

stable limit cycle around the origin.

In [5], the author discussed the following system:

dx/dt = −yα(1− y)α − dxα(1− y)α + lxα+1(1− y)α−1,

dy/dt = xα[(1− y)α + (ax)α],
(3.6)

which is a special case of (3.5) when n = 1 in system (3.5). by Corollary 3.4 and
Corollary 3.5, we have the following results directly.

Corollary 3.6. If ad[l(α + 1)−α] ≥ 0, then system (3.6) has no limit cycle in the
whole plane; If ad ≥ [α− l(α + 1)]/α, then system (3.6) has no limit cycle around
the origin.

Corollary 3.7. For system (3.6), we have the following conclusions:
(i) If 0 < ad < [α− l(α + 1)]/α, then system (3.6) has at most one limit cycle

around the origin, and if it exists, it must be stable;
(ii) If 0 < ad < [α − l(α + 1)]/α and |d| � 1, then system (3.6) has a unique

stable limit cycle around the origin.

In [1], the author considered the following quadratic system with a degenerate
critical point:

dx/dt = −y − dx + lx2 + dxy + y2,

dy/dt = x(1 + ax− y),
(3.7)

which is a special case of (3.6) when α = 1 in system (3.6) or a special case of (1.1)
when n = 1, α = 1, and m = 0 in system (1.1). From what has been discussed
above, it is easy to see that above Corollaries 3.6, 3.7 in which when α = 1 still
hold for system (3.7).

Remark 3.8. Corollaries 3.4, 3.5 and corollaries 3.6, 3.7 contain the main results
in [2] and [5] respectively.
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