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Solution to a semilinear problem on type II
regions determined by the Fucik spectrum *

Petr Tomiczek

Abstract

We prove the existence of solutions to the semi-linear problem

u’(x) + ou’(z) + fu” (z) = f(z), =€ (0,m),
u(0) =u(m) =0

where the point («, ) falls in regions of type (II) between curves of the
Fucik spectrum. We use a variational method based on the generalization
of the Saddle Point Theorem.

1 Introduction

We investigate the existence of solutions for the nonlinear boundary-value prob-
lem

u'(x) + aut(z) — pu=(x) = f(z), =z€(0,m), (1.1)
z(0) =x(m) =0.

Here u* = max{4u,0}, o, 3 € R and f € L?(0,7). For f =0, a = Ay, and
0 = A_ Problem (1.1) becomes

' (x) + Aput(z) = A_u(x) =0, =x€(0,m), (1.2)
z(0) =z(r) =0.

We define ¥ = {(Ay,A_) € R? : (1.2) has a nontrivial solution}. This set is
called the Fucik spectrum (see [3]), and can be expressed as ¥ = [J;Z, ¥; where

o= {(A, A ) eR? (A —1)(A. —1) =0},
222‘ = {(>\+,)\_)€R2Z(\/%+\/1>\7) :1},

Yoit1 = Baip1,1 U Doiq1,2 where
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Note that there are two types of regions between the curves of 3:

222'4_171 = {(>\+,>\_) S Rz : Z(

221‘4_172 = {()\+,)\_) S R? : Z(

Type (I) Ry which consists of regions between the curves ¥o; and 3g;41, ¢ € N.

Type (II) Ro which consists of regions between the curves ¥g;11 1 and Xo;41 2,
i €N,

If (o, 3) € Ry one can solve (1.1) for arbitrary f € L?(0,n) while this is not so
for regions R (see [1]).

We suppose that the point (o, 3) € Ra is between the curves ¥g;41,1 and
221'_;'_172, o > B, and k > 0 such that )\+ = Oé+k, A= ﬁ—‘rk‘, (A_A,_,A_) S 221‘4_172
and A\, < (2i+2)2. We denote @5 the solution of (1.2) belonging to (A, A_). In
this work we obtain existence results for (1.1) with right hand side f = —cps +
¢7, ¢ > 0 where [ @203 dz = 0 and (ﬁ7(12i)2 + (2”21)27&)) Jo (p3)?de <
(>\+1—a - (2i+21)2—a)) Jo (cp2)? da.

This article is inspired by a result in [7] where the author solves the prob-
lem Au(z) + au™(x) + Bu™(x) + p(z,u(x)) = f(x) with nontrivial nonlinearity
satisfying p(x, u(x)) # 0.

Remark 1.1 Assuming that (2i +2)2 > Ay > A_, if (A4, A_) € $g;41.1, then
A > (26)2.

Assuming that (2i 4+ 2)? > q, if the point (a, 8) is in Ry between the curves
221‘4’_171 and 22,‘4_172, then ﬂ > (27,)2 See the illustration in ﬁgure 1.

2 Preliminaries

Notation: We shall use the classical spaces C(0,7), L?(0,7) of continuous
and measurable real-valued functions whose p-th power of the absolute value
is Lebesgue integrable, respectively. H is the Sobolev space of absolutely con-
tinuous functions wu: (0,7) — R such that v’ € L?(0,7) and u(0) = u(r) = 0.
We denote by the symbols || - ||, and || - || the norm in H, and in L2(0, ),
respectively. We denote (.,.) the pairing in the space H.

By a solution of (1.1) we mean a function v € C'(0,7) such that v’ is
absolutely continuous, u satisfies the boundary conditions and the equations
(1.1) holds a.e. in (0, ).

Let I : H — R be a functional such that I € C'(H,R) (continuously differ-
entiable). We say that v is a critical point of I, if

(I'(u),v) =0 forall veH.

We say that v is a critical value of I, if there is ug € H such that I(ug) =~
and I'(ug) = 0.
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Figure 1: Regions determined by the Fucik spectrum

We say that I satisfies Palais-Smale condition (PS) if every sequence (uy,) for
which I(u,,) is bounded in H and I’ (u,) — 0 (as n — 00) possesses a convergent
subsequence.

We study (1.1) by using of varitional methods. More precisely, we look for
critical points of the functional I : H — R, which is defined by

I(u) = 1 /07r [(u’)2 —a(u™)? - ﬂ(u_)Q] dr + /07T fudz. (2.1)

2
Every critical point u € H of the functional I satisfies

(I'(u),v) = /OTr [u'v/ — (cut — Bu")v+ fo]de =0  forall veH.

Then u is also a weak solution of (1.1) and vice versa.
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The usual regularity argument for ODE yields immediately (see Fuéik [3])
that any weak solution of (1.1) is also the solution in the sense mentioned above.

Method: We will use the following variant of Saddle Point Theorem which is
proved in Struwe [6, Theorem 8.4].

Theorem 2.1 Let S be a closed subset in H and Q a bounded subset in H with
relative boundary 0Q. Set T’ = {h : h € C(H,H),h(x) = = on 8Q}. Suppose
I € CYH,R) and

(1) SNoQ =10,

(11) SNh(Q) #0, for every h €T,

(iii) there are constants p,v such that p = inf,es I(u) > sup,cqq I(u) = v,
(iv) I satisfies Palais-Smale condition.

Then the number

v = if sup I(h(u))

defines a critical value v > v of I.

Remark: We say that S and 0Q link if they satisfy conditions i), ii) of the
theorem above.
Now we present a few results needed later.

Lemma 2.2 Let ¢ be a solution of (1.2) with (A4, A_) € &, Ay > A_ and
u=ap+w, a>0, we H. Then functional J(u) = [ [(w)* = Ayp(u™)? —
A_(u™)?| dz satisfies

/7r [(w')? = Apw?] de < J(u) < /7r [(w')? = A_w?] dx. (2.2)
0 0

Proof: We prove the inequality in the right of (2.2), the proof of the inequality
in the left is similar. Since ¢ is the solution of (1.2) it holds

/ (@) da = / e 4 A (g de (2.3)
0 0

and - -
/ Pw' dr = / AroTw—A_p~w] do for we H. (2.4)
0 0

By (2.3) and (2.4) we obtain

a0 = [ [t w0 = Asllag + )P A (lap+ w) ] do
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| e+ 20’ @) = (0 = A+ )

—A_(ap+ w)ﬂ dx

[T =A@ 4 Ao @)+ 2a(0r = A gt + A phu
Hw)? = (A = A)((ap +w)")? = A_((ap)? + 2apw +w?) | da

= [ - 20lep? + 200t - (fap + )Y

+(w')? - A_wQ} dz . (2.5)

For the function (ap™)? + 2ap*w — ((ap +w)™)? in the last integral in (2.5) it
holds

(ap™)? + 200w — ((ap +w)*)?
—((ap +w)H)2 <0 p<0
= —w?2 <0 p>0,ap+w>0
apT(apT +w+w) <0 ¢>0,ap+w<0.

Hence and by assumption Ay > A_ we obtain the assertion of the lemma (2.2).
O

Lemma 2.3 Let ¢ be a solution of (1.2) with (A, A_) € ¥ and o+ € H such
that [ ¢ptdz =0. Let d > 0 and w € H satisfying [; [(w')? — A_w?]dx <
—d [y wrdz. We putu=ap+w, a >0 and I(u) = § [[[(u)?— (A —k)(u)?—
A~ —Ek)(u™)? = 2(cp + o )uldz where 0 < k < d and ¢ > 0. Then there is
constant a > 0 such that for u = ap + w it holds

M) < -3 [ lHee? - s (2.0

Proof: By (2.2) from Lemma 2.2 and the assumptions on w, we obtain

I(u)
— %/0 [(u’)Qf)\_,_(tH)?f)\_(u*)?] dm+/0 [guzf(CSDJFSDL)U} da
< %/o [(w)? = A_w? d:z:+/0 [§u2f(cw+wj_)u} dr <
: /0 [_gw2+ 5“2 —(ep+ o )udu. (2.7)

We substitute u = ap + w and we have for the last integral in (2.7)

Tod k
/ [—-w® + su? = (cp+ o )u] d
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N /W[—gw“’ + gw +w)? = (cp + o) (ap + w)] dz
0

= [ 5= R+ a(Ga - g + (ak - chpw - ptu] do.
0

We put a = £ (= a) and we obtain

/0 [—%(d— k)yw? + %(EE —c)¢? —ptw] da

2k
< o5 [ [P - e P (2.8)

From the above inequality and (2.7) it follows the assertion of Lemma 2.3. O

Lemma 2.4 Let § be a solution of (1.2) with (X+7X,) €. Letu=ap+w,
a>0, f e Ly0,7) and w € H such that fow[(w’)2 —A_w?|dx <0. Letl >0
then Yko < 0 3K such that for u with ||ulla > K it holds

1

I(u) = 5 /Oﬂ[(u/)2 — g +D@h)? = A+ D (u)? +2fu] do < ky < 0. (2.9)

Proof: From inequality (2.2) in Lemma 2.2 and Hélder inequality we obtain

I(w) = ;/OW[(u’)2—X+(u+)2—X_(u)2] dx+/oﬂ[—;u2+fu] da
T ~ l
< 5 | T =) de = Gl + el

By assumption, the integral in the above inequality is less than zero. Then it is
easy to see that for sufficiently large K and |Ju|2 > K, it holds I'(u) < ky < 0.

3 Main result

Theorem 3.1 Let («,3) be a point in Ro between the curves Yo;411 and
Yoit1,2,- Let o > B and kE > 0 be such that \y = a+k, \_ = B+ k, and
(A4, A2) € Bojp1,2. Assume that A < (2i +2)2. We denote by o the solution
of (1.2) with (A4, A=) and @3 be the function satisfying [, papy du = 0. We
put f = —cps + 05, with ¢ > 0 and we assume that

1 1 s )
(5_(%)2—1_(21'4-2)2—04))/0 (p3)? da
1 1 ™ ,
= (/\+fa_(2¢+2)2,a))/0 (cp2)” da .

Then there exists a solution of (1.1).
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Proof: We take I > 0 such that (o« — 1,3 — 1) € X9;41,1 and we denote by ¢
the nontrivial solution of (1.2) with (aw — 1,8 —1). Let H~ be the subspace of
H spanned by function sin z,sin 2z, . .., sin 2iz. We define V = V; U V5 where

Vi = {ueH:u=a1p1+w, 0<ay, we H },
Vo = {ueH:u=axps+w, 0<az, we H }.

Let @ > 0, L > 0 then we define Q = Q1 U Q2 where

Qr = fueVi:0<m<a luwl <L}
Q: = {uelh:0<a<a, ||lw| <L}

Let S be the subspace of H spanned by function sin(2i+2)x, sin(2i+3)z, . . ..
Next, we verify the assumptions of Theorem 2.1. We see that S is the closed
subset of H and (@ is the bounded subset in H.

i) For u € Q1 we have u = a1 +w with a1 > 0 and (a1 +w,sin(2i+1)z) =
a1{p1,sin(2i + 1)z) > 0. Similarly for u € dQ2 we obtain (u,sin(2i + 1)z) < 0.
For z € S it holds (z,sin(2i + 1)z) = 0. Hence it follows 9Q N .S = .

ii) The proof of the assumption SNA(Q) # @ Vh € T is similar to the proof in
[7, example 8.2]. We see that H = S @ V and let m: H — V be the continuous
projection of H onto V. We have to show that 0 € #n(h(Q)). For t € [0,1],
u € @ we define

hy = tw(h(u)) + (1 —t)u.

Function h; defines a homotopy of hg = id with hy = woh. Moreover, h;|0Q = id
for all ¢ € [0,1]. Hence the topological degree deg(h:,@,0) is well-defined and
by homotopy invariance we have

deg(m o h,Q,0) = deg(id,Q,0) = 1.

Hence 0 € w(h(Q)), as was to be shown.
iii) First we find the infimum of functional I on the set S. We have

1 us
I(u) = 5/ [(v)? = a(u™)? = Bu™)* + 2fu] dx
0
1 s
= §/ [(W)? = aw? + (a = B)(u™)? = 2fu] d.
0
For u € S it holds [ (u)?dz > (2i +2)? [ u® dz. We denote b = (2i +2)? — «
(which is positive by assumption) and we obtain

I(u) > ;{/Oﬂ[bUQ—qu} dm—i—/oﬂ[(oz—ﬁ)(u_)Q] dx}

- A [ gntar— g [P [Ta-paorad.

We note that o > . Hence and from previous inequality it follows

1

nt 1) >~ [ e =g [P e @)
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Second we estimate the value I(u) for v € 9Q. For a function w € H_, we have
ol = [ (@) de < @i [ u?do = 0Pl
0 0

For u € Q2 (u = aspa +w) we put d = A_ — (2i)? > 0 then the function w
satisfies the assumption [ (w’)? — A_w? dz < —d [, w? dz of lemma 2.3.

It follows from the Remark 1.1 that d — k = (A_ — (20)?) — (A\- — 3) =
B — (2i)2 > 0. We can use the inequality (2.6) from the lemma?2.3 and for
u = £p2 +w we obtain

1w < =5 [ [peer - 2 7] e
= o [ s s ] 62

For u € Q1 we put X+ = a—I, A = B —1,1>0 and (XJF,X,) € Yoit1,1-
It follows from remark 1.1 that A_ > (2¢)? then the function u € 9Q; (u =
aip1 + w) satisfies assumptions of lemma 2.4 with f = —cpy + 3. We put

in (2.9) ks = =3 [ [M%a(cgo)z - W(wl)ﬂ dr and we obtain that the
inequality (3.2) holds for u € 9Q; too. Hence

1 [7 1 1
swp 1< =5 [ [t - (e G3)

By (3.1), (3.3) and from the assumption of theorem 3.1 we have
1

inf I(u) = —WM/OW(%)“(@%)%

1 [™ 1 1
> 5 e’ — g e e 2 s 1),

Then assumption iii) of theorem 3.1 holds.

iv) For this assumption, we will show that I satisfies the Palais-Smale condi-
tion. First, we suppose that the sequence (u,,) is unbounded and there exists a
constant ¢ such that

5 [ 02— oty - sl do+ [ funds < 3a)
and
Jim [17/(un) [ = 0. 35

Let (wy) be an arbitrary sequence bounded in H. It follows from (3.5) and the
Schwarz inequality that
| lim / [ul,wj, — (ou! — Buy, Jwy ] dx +/ Jwy, da|

0 0

n— oo
k— o0

n—oo
k— oo k— o0

= | Jim (7" (un), wie)| < Jim (17 (un)|| - [lwill = 0. (3.6)
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Put v, = u,/||u,|. Due to compact imbedding H C L?(0, ) there is vg € H
such that (up to subsequence) v, — wvo weakly in H, v, — wvo strongly in
L?(0,7). We divide (3.6) by |lu,|| and we obtain

s

lim [ [opw), — (av,) — B, Jwy] dz =0 (3.7)
k—oo 40
and also
tim ([ — o)l — [a(of — o) — Bluy — vl dr =0, (3.8)
n=% Jo
k— oo

We set wg, = v, — vy, in (3.8) and we get

Jim [ llon = vmll? / [lo(wf — o) - Aoy — vl — va)] d2] =0. (39)

m— oo

Since v, — vg strongly in L?(0,7) the integral in (3.9) convergent to 0 and then
v, 18 a Cauchy sequence in H and v,, — vg strongly in H and |Jvg] = 1.

It follows from (3.7) and the usual regularity argument for ordinary differen-
tial equations (see Fuéik [3]) that v is the solution of the equation vfj + avg —
Bvy = 0. From the assumption (o, ) ¢ ¥ it follows that vg = 0. This is
contradiction to ||vg|| = 1.

This implies that the sequence (u,) is bounded. Then there exists ug € H
such that u, — ug in H, u, — ug in L?(0,7) (up to subsequence). It follows
from the equality (3.6) that

lim [(un = ) Wy, — [t —ut) = Bluy, —up)]wi] de=0.  (3.10)
m— 00 0
We put wy, = U, — Uy, in (3.10) and the strong convergence u,, — ug in L?(0, )
and (3.10) imply the strong convergence wu, — wug in H. This shows that
the functional I satisfies Palais-Smale condition and the proof of Theorem 2

is complete.
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