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Solution to a semilinear problem on type II

regions determined by the Fucik spectrum ∗

Petr Tomiczek

Abstract

We prove the existence of solutions to the semi-linear problem

u′′(x) + αu+(x) + βu−(x) = f(x) , x ∈ (0, π) ,

u(0) = u(π) = 0

where the point (α, β) falls in regions of type (II) between curves of the
Fuč́ık spectrum. We use a variational method based on the generalization
of the Saddle Point Theorem.

1 Introduction

We investigate the existence of solutions for the nonlinear boundary-value prob-
lem

u′′(x) + αu+(x)− βu−(x) = f(x) , x ∈ (0, π) , (1.1)
x(0) = x(π) = 0 .

Here u± = max{±u, 0}, α, β ∈ R and f ∈ L2(0, π). For f ≡ 0, α = λ+, and
β = λ− Problem (1.1) becomes

u′′(x) + λ+u+(x)− λ−u−(x) = 0 , x ∈ (0, π) , (1.2)
x(0) = x(π) = 0 .

We define Σ = {(λ+, λ−) ∈ R2 : (1.2) has a nontrivial solution}. This set is
called the Fuč́ık spectrum (see [3]), and can be expressed as Σ =

⋃∞
j=1 Σj where

Σ1 = {(λ+, λ−) ∈ R2 : (λ+ − 1)(λ− − 1) = 0} ,

Σ2i = {(λ+, λ−) ∈ R2 : i
( 1√

λ+

+
1√
λ−

)
= 1} ,

Σ2i+1 = Σ2i+1,1 ∪ Σ2i+1,2 where

∗Mathematics Subject Classifications: 35J70, 58E05, 49B27.
Key words: Resonance, eigenvalue, jumping nonlinearities, Fucik spectrum.
c©2003 Southwest Texas State University.
Submitted October 7, 2002. Published January 28, 2003.
Supported by Ministry of Education of the Czech Republic, MSM 235200001.

1



2 Solution to a semilinear problem EJDE–2003/08

Σ2i+1,1 = {(λ+, λ−) ∈ R2 : i
( 1√

λ+

+
1√
λ−

)
+

1√
λ+

= 1} ,

Σ2i+1,2 = {(λ+, λ−) ∈ R2 : i
( 1√

λ+

+
1√
λ−

)
+

1√
λ−

= 1} .

Note that there are two types of regions between the curves of Σ:

Type (I) R1 which consists of regions between the curves Σ2i and Σ2i+1, i ∈ N.

Type (II) R2 which consists of regions between the curves Σ2i+1,1 and Σ2i+1,2,
i ∈ N.

If (α, β) ∈ R1 one can solve (1.1) for arbitrary f ∈ L2(0, π) while this is not so
for regions R2 (see [1]).

We suppose that the point (α, β) ∈ R2 is between the curves Σ2i+1,1 and
Σ2i+1,2, α > β, and k > 0 such that λ+ = α+k, λ− = β +k, (λ+, λ−) ∈ Σ2i+1,2

and λ+ < (2i+2)2. We denote ϕ2 the solution of (1.2) belonging to (λ+, λ−). In
this work we obtain existence results for (1.1) with right hand side f = −cϕ2 +
ϕ⊥2 , c > 0 where

∫ π

0
ϕ2ϕ

⊥
2 dx = 0 and

(
1

β−(2i)2 + 1
(2i+2)2−α)

) ∫ π

0
(ϕ⊥2 )2 dx <(

1
λ+−α − 1

(2i+2)2−α)

) ∫ π

0
(cϕ2)2 dx.

This article is inspired by a result in [7] where the author solves the prob-
lem ∆u(x) + αu+(x) + βu−(x) + p(x, u(x)) = f(x) with nontrivial nonlinearity
satisfying p(x, u(x)) 6= 0.

Remark 1.1 Assuming that (2i + 2)2 > λ+ > λ−, if (λ+, λ−) ∈ Σ2i+1,1, then
λ− > (2i)2.

Assuming that (2i + 2)2 > α, if the point (α, β) is in R2 between the curves
Σ2i+1,1 and Σ2i+1,2, then β > (2i)2. See the illustration in figure 1.

2 Preliminaries

Notation: We shall use the classical spaces C(0, π), Lp(0, π) of continuous
and measurable real-valued functions whose p-th power of the absolute value
is Lebesgue integrable, respectively. H is the Sobolev space of absolutely con-
tinuous functions u: (0, π) → R such that u′ ∈ L2(0, π) and u(0) = u(π) = 0.
We denote by the symbols ‖ · ‖, and ‖ · ‖2 the norm in H, and in L2(0, π),
respectively. We denote 〈., .〉 the pairing in the space H.

By a solution of (1.1) we mean a function u ∈ C1(0, π) such that u′ is
absolutely continuous, u satisfies the boundary conditions and the equations
(1.1) holds a.e. in (0, π).

Let I : H → R be a functional such that I ∈ C1(H, R) (continuously differ-
entiable). We say that u is a critical point of I, if

〈I ′(u), v〉 = 0 for all v ∈ H .

We say that γ is a critical value of I, if there is u0 ∈ H such that I(u0) = γ
and I ′(u0) = 0.
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Figure 1: Regions determined by the Fucik spectrum

We say that I satisfies Palais-Smale condition (PS) if every sequence (un) for
which I(un) is bounded in H and I ′(un) → 0 (as n →∞) possesses a convergent
subsequence.

We study (1.1) by using of varitional methods. More precisely, we look for
critical points of the functional I : H → R, which is defined by

I(u) =
1
2

∫ π

0

[
(u′)2 − α(u+)2 − β(u−)2

]
dx +

∫ π

0

fu dx . (2.1)

Every critical point u ∈ H of the functional I satisfies

〈I ′(u), v〉 =
∫ π

0

[
u′v′ − (αu+ − βu−)v + fv

]
dx = 0 for all v ∈ H .

Then u is also a weak solution of (1.1) and vice versa.
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The usual regularity argument for ODE yields immediately (see Fuč́ık [3])
that any weak solution of (1.1) is also the solution in the sense mentioned above.

Method: We will use the following variant of Saddle Point Theorem which is
proved in Struwe [6, Theorem 8.4].

Theorem 2.1 Let S be a closed subset in H and Q a bounded subset in H with
relative boundary ∂Q. Set Γ = {h : h ∈ C(H,H), h(x) = x on ∂Q}. Suppose
I ∈ C1(H, R) and

(i) S ∩ ∂Q = ∅,

(ii) S ∩ h(Q) 6= ∅, for every h ∈ Γ,

(iii) there are constants µ, ν such that µ = infu∈S I(u) > supu∈∂Q I(u) = ν,

(iv) I satisfies Palais-Smale condition.

Then the number
γ = inf

h∈Γ
sup
u∈Q

I(h(u))

defines a critical value γ > ν of I.

Remark: We say that S and ∂Q link if they satisfy conditions i), ii) of the
theorem above.

Now we present a few results needed later.

Lemma 2.2 Let ϕ be a solution of (1.2) with (λ+, λ−) ∈ Σ, λ+ ≥ λ− and
u = aϕ + w, a ≥ 0, w ∈ H. Then functional J(u) =

∫ π

0

[
(u′)2 − λ+(u+)2 −

λ−(u−)2
]
dx satisfies∫ π

0

[
(w′)2 − λ+w2

]
dx ≤ J(u) ≤

∫ π

0

[
(w′)2 − λ−w2

]
dx . (2.2)

Proof: We prove the inequality in the right of (2.2), the proof of the inequality
in the left is similar. Since ϕ is the solution of (1.2) it holds∫ π

0

(ϕ′)2 dx =
∫ π

0

[
λ+(ϕ+)2 + λ−(ϕ−)2

]
dx (2.3)

and ∫ π

0

ϕ′w′ dx =
∫ π

0

[
λ+ϕ+w − λ−ϕ−w

]
dx for w ∈ H . (2.4)

By (2.3) and (2.4) we obtain

J(u) =
∫ π

0

[
((aϕ + w)′)2 − λ+((aϕ + w)+)2 − λ−((aϕ + w)−)2

]
dx
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=
∫ π

0

[
(aϕ′)2 + 2aϕ′w′ + (w′)2 − (λ+ − λ−)((aϕ + w)+)2

−λ−(aϕ + w)2
]
dx

=
∫ π

0

[
(λ+ − λ−)(aϕ+)2 + λ−(aϕ)2 + 2a((λ+ − λ−)ϕ+ + λ−ϕ)w

+(w′)2 − (λ+ − λ−)((aϕ + w)+)2 − λ−((aϕ)2 + 2aϕw + w2)
]
dx

=
∫ π

0

{
(λ+ − λ−)

[
(aϕ+)2 + 2aϕ+w − ((aϕ + w)+)2

]
+(w′)2 − λ−w2

}
dx . (2.5)

For the function (aϕ+)2 + 2aϕ+w− ((aϕ + w)+)2 in the last integral in (2.5) it
holds

(aϕ+)2 + 2aϕ+w − ((aϕ + w)+)2

=

 −((aϕ + w)+)2 ≤ 0 ϕ < 0
−w2 ≤ 0 ϕ ≥ 0 , aϕ + w ≥ 0
aϕ+(aϕ+ + w + w) ≤ 0 ϕ ≥ 0 , aϕ + w < 0 .

Hence and by assumption λ+ ≥ λ− we obtain the assertion of the lemma (2.2).
�

Lemma 2.3 Let ϕ be a solution of (1.2) with (λ+, λ−) ∈ Σ and ϕ⊥ ∈ H such
that

∫ π

0
ϕϕ⊥ dx = 0. Let d > 0 and w ∈ H satisfying

∫ π

0
[(w′)2 − λ−w2] dx ≤

−d
∫ π

0
w2 dx. We put u = aϕ+w, a ≥ 0 and I(u) = 1

2

∫ π

0
[(u′)2−(λ+−k)(u+)2−

(λ− − k)(u−)2 − 2(cϕ + ϕ⊥)u] dx where 0 < k ≤ d and c > 0. Then there is
constant ã > 0 such that for u = ãϕ + w it holds

I(u) ≤ −1
2

∫ π

0

[1
k

(cϕ)2 − 1
d− k

(ϕ⊥)2
]
dx (2.6)

Proof: By (2.2) from Lemma 2.2 and the assumptions on w, we obtain

I(u)

=
1
2

∫ π

0

[
(u′)2 − λ+(u+)2 − λ−(u−)2

]
dx +

∫ π

0

[k

2
u2 − (cϕ + ϕ⊥)u

]
dx

≤ 1
2

∫ π

0

[
(w′)2 − λ−w2

]
dx +

∫ π

0

[k

2
u2 − (cϕ + ϕ⊥)u

]
dx ≤

≤
∫ π

0

[
−d

2
w2 +

k

2
u2 − (cϕ + ϕ⊥)u

]
dx . (2.7)

We substitute u = aϕ + w and we have for the last integral in (2.7)∫ π

0

[
−d

2
w2 +

k

2
u2 − (cϕ + ϕ⊥)u

]
dx
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=
∫ π

0

[
−d

2
w2 +

k

2
(aϕ + w)2 − (cϕ + ϕ⊥)(aϕ + w)

]
dx

=
∫ π

0

[
−1

2
(d− k)w2 + a

(k

2
a− c

)
ϕ2 + (ak − c)ϕw − ϕ⊥w

]
dx .

We put a = c
k (= ã) and we obtain∫ π

0

[
−1

2
(d− k)w2 +

c

k

(k

2
c

k
− c

)
ϕ2 − ϕ⊥w

]
dx

= −1
2

∫ π

0

[(√
(d− k)w +

1√
(d− k)

ϕ⊥
)2+

1
k

(cϕ)2 − 1
d− k

(ϕ⊥)2
]
dx ≤

≤ −1
2

∫ π

0

[1
k

(cϕ)2 − 1
d− k

(ϕ⊥)2
]
dx . (2.8)

From the above inequality and (2.7) it follows the assertion of Lemma 2.3. �

Lemma 2.4 Let ϕ̂ be a solution of (1.2) with (λ̂+, λ̂−) ∈ Σ. Let u = aϕ̂ + w,
a ≥ 0, f ∈ L2(0, π) and w ∈ H such that

∫ π

0
[(w′)2 − λ̂−w2] dx ≤ 0. Let l > 0

then ∀k2 < 0 ∃K such that for u with ‖u‖2 ≥ K it holds

I(u) =
1
2

∫ π

0

[
(u′)2 − (λ̂+ + l)(u+)2 − (λ̂− + l)(u−)2 + 2fu

]
dx ≤ k2 < 0 . (2.9)

Proof: From inequality (2.2) in Lemma 2.2 and Hölder inequality we obtain

I(u) =
1
2

∫ π

0

[
(u′)2 − λ̂+(u+)2 − λ̂−(u−)2

]
dx +

∫ π

0

[
− l

2
u2 + fu

]
dx

≤ 1
2

∫ π

0

[
(w′)2 − λ̂−w2

]
dx− l

2
‖u‖2

2 + ‖f‖2‖u‖2 .

By assumption, the integral in the above inequality is less than zero. Then it is
easy to see that for sufficiently large K and ‖u‖2 > K, it holds I(u) ≤ k2 < 0.

3 Main result

Theorem 3.1 Let (α, β) be a point in R2 between the curves Σ2i+1,1 and
Σ2i+1,2,. Let α > β and k > 0 be such that λ+ = α + k, λ− = β + k, and
(λ+, λ−) ∈ Σ2i+1,2. Assume that λ+ < (2i + 2)2. We denote by ϕ2 the solution
of (1.2) with (λ+, λ−) and ϕ⊥2 be the function satisfying

∫ π

0
ϕ2ϕ

⊥
2 dx = 0. We

put f = −cϕ2 + ϕ⊥2 , with c > 0 and we assume that( 1
β − (2i)2

+
1

(2i + 2)2 − α)
) ∫ π

0

(ϕ⊥2 )2 dx

<
( 1
λ+ − α

− 1
(2i + 2)2 − α)

) ∫ π

0

(cϕ2)2 dx .

Then there exists a solution of (1.1).
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Proof: We take l > 0 such that (α − l, β − l) ∈ Σ2i+1,1 and we denote by ϕ1

the nontrivial solution of (1.2) with (α − l, β − l). Let H− be the subspace of
H spanned by function sinx, sin 2x, . . . , sin 2ix. We define V ≡ V1 ∪ V2 where

V1 = {u ∈ H : u = a1ϕ1 + w, 0 ≤ a1, w ∈ H−},
V2 = {u ∈ H : u = a2ϕ2 + w, 0 ≤ a2, w ∈ H−}.

Let ã > 0, L > 0 then we define Q ≡ Q1 ∪Q2 where

Q1 = {u ∈ V1 : 0 ≤ a1 ≤ ã, ‖w‖ ≤ L},
Q2 = {u ∈ V2 : 0 ≤ a2 ≤ ã, ‖w‖ ≤ L}.

Let S be the subspace of H spanned by function sin(2i+2)x, sin(2i+3)x, . . . .
Next, we verify the assumptions of Theorem 2.1. We see that S is the closed
subset of H and Q is the bounded subset in H.
i) For u ∈ ∂Q1 we have u = a1ϕ1 +w with a1 > 0 and 〈a1ϕ1 +w, sin(2i+1)x〉 =
a1〈ϕ1, sin(2i + 1)x〉 > 0. Similarly for u ∈ ∂Q2 we obtain 〈u, sin(2i + 1)x〉 < 0.
For z ∈ S it holds 〈z, sin(2i + 1)x〉 = 0. Hence it follows ∂Q ∩ S = ∅.
ii) The proof of the assumption S ∩h(Q) 6= ∅ ∀h ∈ Γ is similar to the proof in
[7, example 8.2]. We see that H = S ⊕ V and let π:H → V be the continuous
projection of H onto V . We have to show that 0 ∈ π(h(Q)). For t ∈ [0, 1],
u ∈ Q we define

ht = tπ(h(u)) + (1− t)u .

Function ht defines a homotopy of h0 = id with h1 = π◦h. Moreover, ht|∂Q = id
for all t ∈ [0, 1]. Hence the topological degree deg(ht, Q, 0) is well-defined and
by homotopy invariance we have

deg(π ◦ h, Q, 0) = deg(id,Q, 0) = 1 .

Hence 0 ∈ π(h(Q)), as was to be shown.
iii) First we find the infimum of functional I on the set S. We have

I(u) =
1
2

∫ π

0

[
(u′)2 − α(u+)2 − β(u−)2 + 2fu

]
dx

=
1
2

∫ π

0

[
(u′)2 − αu2 + (α− β)(u−)2 − 2fu

]
dx .

For u ∈ S it holds
∫ π

0
(u′)2 dx ≥ (2i + 2)2

∫ π

0
u2 dx. We denote b = (2i + 2)2 −α

(which is positive by assumption) and we obtain

I(u) ≥ 1
2

{∫ π

0

[
bu2 − 2fu

]
dx +

∫ π

0

[
(α− β)(u−)2

]
dx

}
=

1
2

{∫ π

0

(√
bu− 1√

b
f
)2

dx− 1
b

∫ π

0

f2 dx +
∫ π

0

(α− β)(u−)2 dx
}

.

We note that α > β. Hence and from previous inequality it follows

inf
u∈S

I(u) ≥ − 1
2b

∫ π

0

f2 dx = − 1
2((2i + 2)2 − α)

∫ π

0

(cϕ2)2 + (ϕ⊥2 )2 dx . (3.1)
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Second we estimate the value I(u) for u ∈ ∂Q. For a function w ∈ H−, we have

‖w‖2 =
∫ π

0

(w′)2 dx ≤ (2i)2
∫ π

0

w2 dx = (2i)2‖w‖2
2 .

For u ∈ Q2 (u = a2ϕ2 + w) we put d = λ− − (2i)2 > 0 then the function w
satisfies the assumption

∫ π

0
(w′)2 − λ−w2 dx ≤ −d

∫ π

0
w2 dx of lemma2.3.

It follows from the Remark 1.1 that d − k = (λ− − (2i)2) − (λ− − β) =
β − (2i)2 > 0. We can use the inequality (2.6) from the lemma2.3 and for
u = c

kϕ2 + w we obtain

I(u) ≤ −1
2

∫ π

0

[1
k

(cϕ)2 − 1
d− k

(ϕ⊥)2
]
dx

= −1
2

∫ π

0

[ 1
λ+ − α

(cϕ)2 − 1
β − (2i)2

(ϕ⊥)2
]
dx . (3.2)

For u ∈ Q1 we put λ̂+ = α − l, λ̂− = β − l, l > 0 and (λ̂+, λ̂−) ∈ Σ2i+1,1.
It follows from remark 1.1 that λ̂− ≥ (2i)2 then the function u ∈ ∂Q1 (u =
a1ϕ1 + w) satisfies assumptions of lemma 2.4 with f = −cϕ2 + ϕ⊥2 . We put
in (2.9) k2 = − 1

2

∫ π

0

[
1

λ+−α (cϕ)2 − 1
β−(2i)2 (ϕ⊥)2

]
dx and we obtain that the

inequality (3.2) holds for u ∈ ∂Q1 too. Hence

sup
u∈∂Q

I(u) ≤ −1
2

∫ π

0

[ 1
λ+ − α

(cϕ)2 − 1
β − (2i)2

(ϕ⊥)2
]
dx . (3.3)

By (3.1), (3.3) and from the assumption of theorem 3.1 we have

inf
u∈S

I(u) ≥ − 1
2((2i + 2)2 − α)

∫ π

0

(cϕ2)2 + (ϕ⊥2 )2 dx

> −1
2

∫ π

0

[ 1
λ+ − α

(cϕ)2 − 1
β − (2i)2

(ϕ⊥)2
]
dx ≥ sup

u∈∂Q
I(u) .

Then assumption iii) of theorem 3.1 holds.
iv) For this assumption, we will show that I satisfies the Palais-Smale condi-
tion. First, we suppose that the sequence (un) is unbounded and there exists a
constant c such that∣∣∣1

2

∫ π

0

[
(u′n)2 − α(u+

n )2 − β(u−n )2
]
dx +

∫ π

0

fun dx
∣∣∣ ≤ c (3.4)

and
lim

n→∞
‖I ′(un)‖ = 0 . (3.5)

Let (wk) be an arbitrary sequence bounded in H. It follows from (3.5) and the
Schwarz inequality that∣∣ lim

n→∞
k→∞

∫ π

0

[
u′nw′k − (αu+

n − βu−n )wk

]
dx +

∫ π

0

fwk dx
∣∣

= | lim
n→∞
k→∞

〈I ′(un), wk〉| ≤ lim
n→∞
k→∞

‖I ′(un)‖ · ‖wk‖ = 0 . (3.6)
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Put vn = un/‖un‖. Due to compact imbedding H ⊂ L2(0, π) there is v0 ∈ H
such that (up to subsequence) vn ⇀ v0 weakly in H, vn → v0 strongly in
L2(0, π). We divide (3.6) by ‖un‖ and we obtain

lim
n→∞
k→∞

∫ π

0

[
v′nw′k − (αv+

n − βv−n )wk

]
dx = 0 (3.7)

and also

lim
n→∞
m→∞
k→∞

∫ π

0

[
(v′n − v′m)w′k − [α(v+

n − v+
m)− β(v−n − v−m)]wk

]
dx = 0 . (3.8)

We set wk = vn − vm in (3.8) and we get

lim
n→∞
m→∞

[
‖vn − vm‖2 −

∫ π

0

[
[α(v+

n − v+
m)− β(v−n − v−m)](vn − vm)

]
dx

]
= 0 . (3.9)

Since vn → v0 strongly in L2(0, π) the integral in (3.9) convergent to 0 and then
vn is a Cauchy sequence in H and vn → v0 strongly in H and ‖v0‖ = 1.

It follows from (3.7) and the usual regularity argument for ordinary differen-
tial equations (see Fuč́ık [3]) that v0 is the solution of the equation v′′0 + αv+

0 −
βv−0 = 0. From the assumption (α, β) 6∈ Σ it follows that v0 = 0. This is
contradiction to ‖v0‖ = 1.

This implies that the sequence (un) is bounded. Then there exists u0 ∈ H
such that un ⇀ u0 in H, un → u0 in L2(0, π) (up to subsequence). It follows
from the equality (3.6) that

lim
n→∞
m→∞
k→∞

∫ π

0

[
(un − um)′w′k − [α(u+

n − u+
m)− β(u−n − u−m)]wk

]
dx = 0 . (3.10)

We put wk = un−um in (3.10) and the strong convergence un → u0 in L2(0, π)
and (3.10) imply the strong convergence un → u0 in H. This shows that
the functional I satisfies Palais-Smale condition and the proof of Theorem 2
is complete.
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[3] S. Fuč́ık: Solvability of Nonlinear Equations and Boundary Value problems,
D.Reidel Publ. Company, Holland 1980.



10 Solution to a semilinear problem EJDE–2003/08

[4] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of elliptic boundary
value problems at resonance, J. Math. Mech. 19(1970), 609–623.

[5] P. Rabinowitz: Minmax methods in critical point theory with applications to
differential equations, CBMS Reg. Conf. Ser. in Math. no 65, Amer. Math.
Soc. Providence, RI., (1986).

[6] M. Struwe: Variational Methods, Springer, Berlin, (1996).

[7] M. Schechter: Type (II) regions between curves of the Fucik spectrum, Non-
linear differ. equ. appl. 4(1997), 459-476.

Petr Tomiczek
Department of Mathematics, University of West Bohemia,
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