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Multiple positive solutions for a class of
quasilinear elliptic boundary-value problems *

Kanishka Perera

Abstract

Using variational arguments we prove some nonexistence and multi-
plicity results for positive solutions of a class of elliptic boundary-value
problems involving the p-Laplacian and a parameter.

1 Introduction

In a recent paper, Maya and Shivaji [4] studied the existence, multiplicity, and
non-existence of positive classical solutions of the semilinear elliptic boundary-
value problem
—Au=Af(u) in Q,
u=0 on 0f)

where € is a smooth bounded domain in R™, n > 1, A > 0 is a parameter, and
fis a C! function such that

(1.1)

lim @

t—o0 t

£(0) =0, =0. (1.2)

Assuming
(f1) f'(0) <0,
(f2) 38 > 0 such that f(¢) <0 for 0 <t < fand f(t) > 0 for t > 3,
(f3) f is eventually increasing,

they showed using sub-super solutions arguments and recent results from semi-
positone problems that there are A and X such that (1.1) has no positive solution
for A < ) and at least two positive solutions for A > .

In the present paper we consider the corresponding quasilinear problem

—Apu = Af(z,u) inQ,

1.3
u=0 on 9Jf (1.3)
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where Apu = div (|Vu|p_2Vu) is the p-Laplacian, 1 < p < oo, A > 0, and f is
a Carathéodory function on €2 x [0, 00) satisfying

fla,0)=0, |f(z,t)] <Ot (1.4)

for some constant C' > 0. Note that when p = 2 and f is C! and satisfies (1.2),
the existence of the limits lim;_,o f(¢)/t = f/(0) and lim; o f(¢)/t imply (1.4).
Using variational methods, we shall prove the following theorems.

Theorem 1.1. There is a A such that (1.3) has no positive solution for A < \.
Theorem 1.2. Set F(x,t) = fg f(z,s)ds, and assume

(F1) 30 > 0 such that F(x,t) <0 for 0 <t <9,

(Fg) Jto > 0 such that F(x,tg) > 0,

(Fy) Jim 70D

t—o0

< 0 uniformly in x.

Then there is a X such that (1.3) has at least two positive solutions uy > uy for
A> A

Note that we have substantially relaxed the assumptions in [4] and therefore
our results seem to be new even in the semilinear case p = 2. More specifically,
we have let f depend on x and dropped the assumption of differentiability in
t, and replaced (f;), (f2), and (f3) with the much weaker assumptions (F;) and
(F2) on the primitive F. We emphasize that (F;) follows from (f;), while (fz)
and (f3) together imply (F3), and that we make no monotonicity assumptions.
The limit in (F3) equals 0 in the p-sublinear case

lim f@?)
t—oo tP—1

= 0 uniformly in x, (1.5)

in particular, in the special case considered in [4].

2 Proofs of Theorems 1.1 and 1.2

Recall that the first Dirichlet eigenvalue of —A,, is positive and is given by

VulP
A1 = min M (2.1)
w0 [o |ulP

(see Lindqvist [3]). If (1.3) has a positive solution w, multiplying (1.3) by u,
integrating by parts, and using (1.4) gives

/QIVu\p = )\/Qf(%u)u < C’/\/Qup7 (2.2)

and hence A > A1 /C by (2.1), proving Theorem 1.1.
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We will prove Theorem 1.2 using critical point theory. Set f(z,t) = 0 for
t < 0, and consider the C! functional

D)\ (u) = / \VulP — A\pF(z,u), ue WP (Q). (2.3)
Q
If w is a critical point of @y, denoting by u~ the negative part of u,
0= @) = [ [Vl 2V Vum =M = [l (24)
Q

shows that v > 0. Furthermore, v € L*°(Q) N C'(Q) by Anane [1] and
di Benedetto [2], so it follows from the Harnack inequality (Theorem 1.1 of
Trudinger [6]) that either u > 0 or w = 0. Thus, nontrivial critical points of ®
are positive solutions of (1.3).

By (F3) and (1.4), there is a constant C > 0 such that

A
ApF (a,1) < [P + Cs (2.5)
and hence
P A p 1 P
aw) > [ V=l - Oz Gl - C@) (26

where p denotes the Lebesgue measure in R™, so @ is bounded from below and
coercive. This yields a global minimizer u; since ®) is weakly lower semicon-
tinuous.

Lemma 2.1. There is a A such that inf ®y < 0, and hence u; # 0, for A > X.
Proof. Taking a sufficiently large compact subset Q' of Q and a function ug €

W, P(€2) such that ug(z) = to on Q" and 0 < ug(z) < to on Q\ ', where t is
as in (F3), we have

/QF(J:,UO) > [ F.t) - Cifu@\ 2) > 0 2.7)

and hence @) (ug) < 0 for A large enough. O
Now fix A > A\, let
) ~
flz,t) = and F(z,t) = (x,8)ds.  (2.8)
f(x,ul(x)), t>u1(x), 0

Then consider
By (1) = / IVl — ApF(w,u). (2.9)
Q
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If w is a critical point of &))\, then u > 0 as before, and
0 =(®4 () = 5 (ur), (u—u1)™)

:/ (IVulP2Vu — |V P2V ) - V(i —ug) ™t
0

= Af(@,u) = f2,u1)) (w = ug) ¥ (2.10)
:/> (IVu\”*QVu — |Vu1|p72Vu1) - (Vu — Vuy)

> [ (v V) (V] - [Fu]) 2 0
u>uq

implies that 4 < uy, so u is a solution of (1.3) in the order interval [0, u1]. We
will obtain a critical point us with ®,(us) > 0 via the mountain-pass lemma,
which would complete the proof since ®5(0) =0 > ®y(uq).

Lemma 2.2. The origin is a strict local minimizer of (T)A.

Proof. Setting Q, = {z € Q : u(z) > min{ui(z),0}}, by (2.8) and (Fy),

F(z,u(z)) <0on Q\ Q,, so

Dy (u) > ||qu—)\p/ F(z,u). (2.11)

u

By (1.4), Hélder’s inequality, and Sobolev imbedding,

Flz,u) <C [ u” < Cpu() " |ulP (2.12)
Qy Qy
where ¢ = np/(n —p) if p < n and ¢ > p if p > n, so it suffices to show that
#(92,) — 0 as lull — 0.
Given e > 0, take a compact subset 2 of 2 such that u(Q\ ) < e and let
Qe =0y NQ. Then

> [ > s (2.13)
where ¢ = min{minul(Qa),d} > 0, so () — 0. But, since Q, C QU
2\ Q),

1(y) < p(Que) +e, (2.14)
and ¢ is arbitrary. O

An argument similar to the one we used for ®, shows that P ) is also co-
ercive, so every Palais-Smale sequence of @, is bounded and hence contains a
convergent subsequence as usual. Now the mountain-pass lemma gives a critical
point us of @, at the level

c:=inf max ®,(u)>0 (2.15)
vEl uev([0,1])
where I' = {y € C([0, 1], Wy P(€)) : v(0) = 0,7(1) = uy} is the class of paths
joining the origin to uy (see, e.g., Rabinowitz [5]).
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