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ON THE INSTABILITY OF SOLITARY-WAVE SOLUTIONS FOR
FIFTH-ORDER WATER WAVE MODELS

JAIME ANGULO PAVA

Abstract. This work presents new results about the instability of solitary-

wave solutions to a generalized fifth-order Korteweg-deVries equation of the
form

ut + uxxxxx + buxxx = (G(u, ux, uxx))x,

where G(q, r, s) = Fq(q, r) − rFqr(q, r) − sFrr(q, r) for some F (q, r) which is

homogeneous of degree p+ 1 for some p > 1. This model arises, for example,
in the mathematical description of phenomena in water waves and magneto-

sound propagation in plasma. The existence of a class of solitary-wave so-
lutions is obtained by solving a constrained minimization problem in H2(R)
which is based in results obtained by Levandosky. The instability of this class

of solitary-wave solutions is determined for b 6= 0, and it is obtained by making
use of the variational characterization of the solitary waves and a modifica-

tion of the theories of instability established by Shatah & Strauss, Bona &
Souganidis & Strauss and Gonçalves Ribeiro. Moreover, our approach shows

that the trajectories used to exhibit instability will be uniformly bounded in

H2(R).

1. Introduction

In this work we study some instability properties of solitary-wave solutions to a
Hamiltonian generalized fifth-order Korteweg-deVries equation of the form

ut + uxxxxx + buxxx = (G(u, ux, uxx))x, (1.1)

where we assume that the nonlinear term has the form

G(q, r, s) = Fq(q, r)− rFqr(q, r)− sFrr(q, r), (1.2)

for some F (q, r) ∈ C3(R2) which is homogeneous of degree p + 1 for some p > 1.
That is, we assume

F (λq, λr) = λp+1F (q, r) (1.3)
for all λ ≥ 0 and (q, r) ∈ R2.

It is important to note that equation (1.1) arises as a model for a variety of
physical phenomena. For instance by choosing F (u, ux) = −u3, we have that the
corresponding model describes the evolution of gravity-capillary water waves on a
shallow layer ([14], [30]), as well as a chain of coupled nonlinear oscillators ([12])
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and magneto-sound propagation in plasma ([16]). On the other hand, for the water
wave problem, namely, the irrotational motion of an inviscid and incompressible
fluid under the influence of gravity, where we have the interaction of small amplitude
and long two-dimensional waves over a shallow horizontal bottom, we observe that
Olver in [24] derived equation (1.1) as a second-order expansion for unidirectional
wave propagation with a nonlinear term of the form F (u, ux) = uu2

x − au3. Here
the parameters a and b depend on wave amplitude, wave length and surface tension
(see Benney [5] and Craig & Groves [9] where equation (1.1) with this special choice
of F has also been studied). Our study of instability in this paper will consider the
cases (in the water wave framework) when the coefficient b in (1.1) is proportional
to τ− 1

3 , where τ represents the Bond number which is a nondimensionalized surface
tension. So, we have that b in (1.1) may be negative, zero or positive, which occurs
in the respective limits τ → 1

3

+, τ = 1
3 (no surface tension) and τ → 1

3

−. For
a more detailed discussion about higher-order water wave models equations and
specific forms of the function G, we refer the reader to Benney [5], Craig & Groves
[9], Hunter & Scheurle [14], Kichenassamy & Olver [19], Olver [24], Ponce [25] and
the references therein.

Our main interest in this paper is to obtain conditions which will imply that the
orbit generated by a solitary-wave solution of (1.1) will be unstable. By a solitary-
wave solution we mean a solution of (1.1) of the form u(x, t) = ϕ(x+ ct), where c
represents the speed of the wave and ϕ(ξ) and its derivatives tend to zero as the
variable ξ = x+ ct approaches to ±∞. By the orbit generated by the solitary-wave
ϕ we mean the set Ωϕ = {ϕ(·+ y) | y ∈ R }, i.e., the set of all the translates of ϕ.
So, putting this form of u in (1.1) and integrating once, we see that ϕ must satisfy
the fourth-order ordinary differential equation

ϕxxxx + bϕxx + cϕ = G(ϕ,ϕx, ϕxx). (1.4)

We observe that equation (1.4) has also been studied in other contexts, such as
travelling waves equation for models of both a elastic strut (Amick & Toland [1])
and a suspension bridge (McKenna & Walter [23]). Now, the problem of existence
of solutions to (1.4) with specific form of G has already been considered by several
authors, by example Weinstein [29], Kichenassamy & Olver [19], Kichenassamy [18]
and Champneys & Groves [8]. In fact, in [29] a variational characterization of
solutions of (1.4) in the case b < 0 and F (u, ux) = |u|p+1 has been proved, while
in [19] is given a classification of admissible expression for G which lead to explicit
sech2 solitary-wave. Finally, for a general function G such as that established in
(1.2), Levandosky in [20] proved via the Concentration Compactness Method (Lions
[21], [22]) (see Theorem 2.2 below) the existence of a class of solitary-wave solutions
of (1.1) providing c > b2+/4, where b+ = max{b, 0}. In this point, we note that our
interest of study will be the class of solitary waves found by Levandosky above.

Now, if we consider G satisfying (1.2) and we assume the existence of such a
large range of solitary-wave solutions for (1.1) found in [20], a natural issue arises:
to determine whether they are stable or unstable (see Definition 3.1 below) by the
flow of the fifth-order equation (1.1). This point was considered initially in [20] in
which a definitive picture for the specific case b = 0 was obtained (see subsection
2.1 below for a review of it). In this case, the method of proving the stability
(or instability) was based by making use of the variational characterization of the
solitary-wave solutions and the theory of Grillakis & Shatah & Strauss established
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in [13]. So the use of the function d(c) = E(ϕ) + cQ(ϕ), which is associated with
the conserved quantities E and Q for (1.1), namely,

E(f) =
1
2

∫ ∞
−∞

[(fxx)2 − b(fx)2 − 2F (f, fx)] dx, Q(f) =
1
2

∫ ∞
−∞

f2 dx, (1.5)

was a main ingredient in the analysis of stability. In fact, as well-known the solitary
waves with speed c will be stable if and only if d is convex at c. An explicit
formula to d(c) (see (2.5) below) has been obtained if b = 0 and so in this case
is possible to determine the values of p for which we have stability or instability,
while for b 6= 0 it is not easy to determine the behaviour of d. Here we will obtain
a theory of instability exactly when b 6= 0. We note that a recent theory about
the linear instability problem of solitary-wave solutions for equation (1.1), with a
more general admissible expressions for G, has been established by Bridges & Derks
in [7] by using the sympletic Evans function and the sympletic Evans matrix for
Hamiltonian evolutions equations.

In this paper we will show a new approach to study instability of solitary-wave
solutions to nonlinear Hamiltonian evolution equations. Applying this method to
equation (1.1), we can obtain and improve the results established in [20] about the
property of instability of the ϕ-orbit, Ωϕ, where the solitary-wave solution ϕ is
obtained by solving a constrained minimization problem (see Theorem 2.2 below).
Our approach makes use of the variational characterization of solutions for (1.4) as
well as of modifications made in the theories established by Grillakis & Shatah &
Strauss in [13], Bona & Souganidis & Strauss in [6] and Gonçalves Ribeiro in [11].
More specifically, we make an extension of some ideas from Gonçalves Ribeiro in [11]
about the instability of stationary states of a semi-linear Schrödinger equation to
nonlinear evolution equations which are not semi-linear. Moreover, in our analysis
we avoid the use of the function d. The idea of our approach for obtaining the
instability of the set Ωϕ in H2(R) will be to find a vector field B (see (3.3) for
definition), which will be defined in a specific neighbourhood V (Ωϕ, ε0) of Ωϕ, such
that the vector B(ϕ) will produce an unstable direction if we have that the action
defined by S(u) = E(u)+ c Q(u) has the Hessian at ϕ strictly negative along B(ϕ),
namely

〈S′′(ϕ)B(ϕ), B(ϕ)〉 < 0. (1.6)

More exactly, we will obtain that the flow created by B (see (3.13) below) through
ϕ will produce a sequence of points {un} such that un → ϕ in H2(R) as n → ∞,
and the flow generated by equation (1.1) starting in these points un, it will escape
from V (Ωϕ, ε0) in a finite time. So, as it is shown in Theorem 4.2 below, if we
choose the direction B(ϕ) = ϕ + 2xϕ′ then condition (1.6) will imply that if F is
homogeneous in r of degree β, β ∈ [0, p + 1] ( and therefore homogeneous in q of
degree α where α+ β = p+ 1), then the conditions

b = 0 and β >
9− p

2
, or

b < 0 and β ≥ 9− p
2

, or

β >
9− p

2
, b > 0 and b small,

(1.7)

imply that Ωϕ is unstable by the flow of equation (1.1). Moreover, our approach also
produces that the trajectories used to exhibit instability are uniformly bounded in
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H2(R) (see (3.23) below). Therefore, if we have a local existence theory for equation
(1.1) in H2(R) (see Assumption 2.1 below) then the trajectories in this case, will
be defined for all time and hence the mechanics that leads to instability in our case
is not produced by any singularity formation or blow-up of solutions. In this point,
we would like to comment that our Assumption 2.1 related with the well-posedness
problem to equation (1.1) in H2(R), is induced by the difficulties that appear when
we work with a general non-linear term as G(u, ux, uxx) in (1.1) (see Section 2 to
get examples of local existence theory of solutions for equation (1.1)). Finally, we
do not know if in a general context the property of instability can be produced by
some singularity formation of solutions of (1.1), namely, if there is a set of initial
data u0 ∈ H2(R) and T ∗ = T ∗(‖u0‖H2) with 0 < T ∗ < ∞, such that the solution
u(t) of (1.1) with u(0) = u0 satisfies that ‖u(t)‖H2 → +∞ as t→ T ∗−.

We note that similarly as occurred in the approach made in [20], we do not need
in our analysis of instability to show the existence of exactly one negative eigenvalue
simple and that zero is a simple eigenvalue with eigenfunction ϕ′ associated to the
linear operator

S′′(ϕ) =∂4
x + b ∂2

x + c− Fqq(ϕ,ϕ′) + ϕ′Fqqr(ϕ,ϕ′) + ϕ′Fqrr(ϕ,ϕ′)∂x

+ ϕ′′Fqrr(ϕ,ϕ′) + ϕ′′Frrr(ϕ,ϕ′)∂x + Frr(ϕ,ϕ′)∂2
x,

such as is required in the instabilities theories of [6] and [13]. We would like to add
that, in general for our approach, we do not know if there is a mechanics that shows
that our choice of the value of the vector field B in ϕ, produces that the restrictions
for b 6= 0 in (1.7) are sharp, a situation that does not occur when we use an explicit
form for the function d(c). In fact, our restrictions about p in (1.7) when b = 0
are sharp in the light of those obtained in [20] to prove stability. In this point we
would like to note that there is a typo in Leavandosky’s work [20] about the right
formula to d(c), where we must say that the correct expression for d(c) is that given
by (2.5) below. Finally, we think that a possible good choice for B(ϕ) in cases of
evolution equations in one-dimension ((x, t) ∈ R × R) may be B(ϕ) = ϕ + 2xϕ′,
which has given sharp results in the study of instability as it has already happened
in a recent work of Angulo ([2]) about the instability for solitary-wave solutions of
the following generalization of the Benjamin equation (Benjamin [3], [4])

ut + (un)x + lHuxx + uxxx = 0,

where l ∈ R, H is the Hilbert transform and n ∈ N, n ≥ 2.
The plan of this note is as follows. Section 2 is devoted to give a review on

the results known about the stability and instability of solitary-wave solutions to
equation (1.1) when b = 0 and F (q, r) is homogeneous in both q and r. In this
section we also establish an assumption about the problem of local well-posedness
to equation (1.1) which will be used in our instability theory, as well as, the exis-
tence of solutions for equation (1.4) which are constructed by solving a constrained
minimization problem in H2(R). We finish this section obtaining some regularities
and asymptotics properties for solitary-wave solutions of equation (1.1). Section 3
contains our criterium of instability of solitary-wave solutions for (1.1) (see Theo-
rem 3.5 below). Finally in Section 4, we give our main result of instability of the
ϕ-orbit Ωϕ, by the flow of the fifth-order equation (1.1).

Notation. We denote by f̂ the Fourier transform of f , which is defined as f̂(ξ) =∫∞
−∞ f(x)e−iξx dx. |f |Lp denotes the Lp(R) norm of f , 1 ≤ p ≤ ∞. In particular,
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| · |L2 = ‖ · ‖ and | · |L∞ = | · |∞. The inner product of two elements f, g ∈ L2(R)
will be denote by 〈f, g〉. We denote by Hs(R), s ∈ R, the Sobolev space of all f
(tempered distributions) for which the norm ‖f‖2Hs =

∫∞
−∞ (1 + |ξ|2)s|f̂(ξ)|2 dξ is

finite.

2. Review and Preliminaries

2.1. Stability theory for equation (1.1) when b = 0 (review). The problem
of existence and stability of solitary-wave solutions of (1.4) with G established in
(1.2), has been studied recently by Levandosky in [20]. The results about both
stability and instability obtained in [20], were based essentially in the possibility
of obtaining a solution to (1.4) as the Euler-Lagrange equation for a constrained
minimization problem in H2(R) (because of this approach we have the assumptions
established in (1.2)). More exactly, we have the following main results of [20]: It
considers the functionals Ic,b,K ∈ C2(H2(R);R) defined by

Ic,b(f) =
1
2

∫ ∞
−∞

[(fxx)2 − b(fx)2 + cf2] dx (2.1)

and

K(f) =
∫ ∞
−∞

F (f, fx) dx. (2.2)

Define for λ > 0 and c > b2+/4, where b+ = max{b, 0}, the family of minimization
problems

Mc(λ) = inf{Ic,b(f) : f ∈ H2(R) and K(f) = λ}. (2.3)
Then using the Concentration Compactness Method (see Lions [21,22]), it is shown
in Theorem 2.3 in [20] (see also Theorem 2.2 below) that (2.3) has a solution which
after a rescale (using that G is homogeneous) is a classical solution ϕc of (1.4). Now,
with regard to the stability theory we have initially the following classical function
d(c) (see Grillakis & Shatah & Strauss [13] and Bona & Souganidis & Strauss [6])
defined for c > b2+/4, by

d(c) = E(ϕc) + c Q(ϕc) (2.4)
where ϕc is any solitary-wave solution of (1.4) obtained via the minimization
problem (2.3) and E, Q are defined by (1.5). We note that in terms of E, the
evolution equation (1.1) has the following Hamiltonian form

ut = −∂xE′(u),

and the solitary-wave equation (1.4) takes the form

E′(ϕc) + c Q′(ϕc) = 0.

Therefore, from the variational characterization of ϕc, (2.1) and (2.2), it is obtained
the following main form for d(c):

d(c) =
p− 1
p+ 1

Ic,b(ϕc) =
p− 1

2
K(ϕc) =

p− 1
2

(2Mc(1)
p+ 1

)(p+1)/(p−1)

.

So, with the condition that d′′(c) > 0 implies stability, it is obtained that the
following set of solitary-wave solutions for (1.1)

Gc = {ϕ ∈ H2(R) : 2(p− 1)Ic(ϕc) = (p2 − 1)K(ϕc) = 2(p+ 1)d(c) },
is a set stable with respect to the flow generated by (1.1). We note that this
criterium of stability works sharply if we have a good expression to d(c). In fact,
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in the case when b = 0 in (1.1) and F (q, r) is homogeneous in r of degree β,
β ∈ [0, p+ 1] (and therefore homogeneous in q of degree α where α+ β = p+ 1), it
was found in [20] that for all c > 0

d(c) = d(1)cγ where γ =
3p− 2β + 5

4(p− 1)
, (2.5)

and therefore we have that the set Gc will be stable if 2 − β < α < 10 − 3β.
In particular, when F (q, r) depends only on q we have stability of the set Gc for
1 < p < 9. In the case b 6= 0 in (1.1) an explicit formula for d(c) is not known yet.

Finally with regard to the problem of instability, it has been established in
[20] that if we suppose that “there exists a choice ϕ(c) which is C1 as a map
from (b2+/4,+∞) to H2(R) such that ϕ(c) ∈ Gc” and d′′(c) < 0, then the set
Ωϕc = {ϕc(· + y) | y ∈ R } is unstable by the flow of the evolution equation (1.1).
So, for b = 0 and F (q, r) homogeneous in r of degree β, β ∈ [0, p + 1], it follows
from (2.5) that Ωϕc will be unstable for α > 10 − 3β, where α + β = p + 1. In
particular, when F (q, r) depends only on q we have instability of Ωϕc for p > 9.
We observe that via our approach of instability, we do not need to use the function
d and hence the existence of a smooth curve of solitary-wave solutions depending
on c is not necessary in our analysis.

2.2. Cauchy problem and existence of solitary-wave solutions for equa-
tion (1.1). In this subsection, we establish an assumption about the initial-value
problem to (1.1) and also give some results concerning to the existence of solitary-
wave solutions, as well as, about regularities and asymptotic properties of these
solutions.

Here we need to make an assumption more than an affirmation about the well-
posedness problem to equation (1.1) in the space H2(R), that is, about existence,
uniqueness, persistence property and continuous dependence of the solution upon
the initial data. This assumption is naturally induced by the difficulties which
appear when we work with a general non-linear term as G(u, ux, uxx) in (1.1). In
fact, when F (u, ux) depends only on u is possible to obtain a local well-posedness
(and global also) theory in H2(R) (see Kato [15], Saut [26]). For more general
nonlinearities, for example F (u, ux) = uu2

x − u3 (so that G(u, ux, uxx) = −3u2 −
u2
x− 2uuxx), Ponce in [25] has shown a well-posedness theory in Hs(R) with s ≥ 4.

Finally in [17], Kenig & Ponce & Vega have shown that the following higher-order
nonlinear dispersive equation

∂tu+ ∂2j+1
x u+ P (u, ∂xu, . . . , ∂2j

x u) = 0, x, t ∈ R, j ∈ N,

where P (·) is a polynomial having no constant or linear terms, is locally well posed
in the weighted Sobolev spaces Hs(R)∩L2(|x|mdx) for some s (in general sufficiently
large) and m ∈ N.
Assumption 2.1. For any u0 ∈ H2(R) there exist T = T (‖u0‖H2) > 0 and
a unique solution u(t) ≡ U(t)u0 ∈ C([−T, T ];H2(R)) of (1.1) with u(x, 0) =
u0(x). Moreover, for T1 < T the map u0 → U(t)u0 is continuous from H2(R)
to C([−T1, T1];H2(R)).
Remark: Since our analysis of instability is based in the Sobolev space H2(R),
Assumption 2.1 is sufficient to our purpose. But we can also suppose a local
well-posedness theory to equation (1.1) in a general Hilbert space Z such that
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Z ⊂ H2(R) and the embedding Z ↪→ H2(R) is continuous, so we can deduce the
existence of a continuous curve u(t) ∈ C([0, T ];H2(R)) which is solution of (1.1).

Now we establish a result of existence of solitary-wave solutions for (1.4) based
in the minimization problem (2.3).
Theorem 2.2. Suppose G has the structure established in (1.2) and F (q, r) is
homogeneous of degree p+ 1 for some p > 1. Moreover, assume that there is some
f ∈ H2(R) such that K(f) > 0 and c > b2+/4 , where b+ = max{b, 0}, then:

(i) Any minimizing sequence {ψk}k∈N for Mc(λ) is relatively compact in H2(R)
up to translations, i.e., there are sequences {ψnk}k∈N and {ynk}k∈N ⊂ R
such that ψnk(· − ynk) converges strongly in H2(R) to some ψ, which is a
minimum of Mc(λ).

(ii) If the variational problem (2.3) has a solution, then there exists a µ such
that every corresponding minimum point ϕ of Mc(µ) satisfies

ϕxxxx + bϕxx + cϕ = G(ϕ,ϕx, ϕxx). (2.6)

Moreover, µ =
[
Mc(1)
p+1

] p+1
p−1

.

Proof The proof of existence of minimum is based on the Concentration Com-
pactness Method as it was shown in [20]. The value of µ is obtained via the relations

qFq(q, r) + rFr(q, r) = (p+ 1)F (q, r)

and Mc(λ) = λ2/(p+1)Mc(1). �
Now we will obtain some regularity and asymptotic properties of the solutions

of equation (1.4) obtained via Theorem 2.2. Initially, from the homogeneity of F
and (1.2) we have that

|G(q, r, s)| ≤ C
(
|q|p + |r|p + |r||q|p−1 + |s|[|q|p−1 + |r|p−1]). (2.7)

Since ϕ ∈ H2(R), we know from Sobolev’s embedding that both ϕ and ϕ′ are in
L∞(R)∩L2(R)∩C0(R) (where C0(R) is the set of all continuous function on R that
converges to zero at the infinity) and so from (2.7), we get G(ϕ,ϕ′, ϕ′′) ∈ L2(R).
Since ϕ is a solution of (2.6) we have then that ϕ ∈ H4(R) and so

ϕ,ϕ′, ϕ′′, ϕ′′′ ∈ L∞(R) ∩ C0(R). (2.8)

Moreover, from (1.2) it follows that G(ϕ,ϕ′, ϕ′′) ∈ C1(R) and from Sobolev’s em-
bedding theorem it follows that

|G(ϕ,ϕy, ϕyy)|L1 ≤ C‖ϕ‖H2 .

Now, our attention is turned to the asymptotic properties of solutions for (2.6).
Initially, we choose c such that minx∈R{c − bξ2 + ξ4} > 0, that means, c > b2+/4
where b+ = max{b, 0}, so we can write

k(ξ) ≡ 1
ξ4 − bξ2 + c

=
1

ξ4 + 2α2cos(2θ)ξ2 + α4
(2.9)

where α = c1/4 and cos(2θ) = − b
2
√
c

for −π2 < θ < π
2 . Then from [10] we find that

there exists an even function Z ∈ L2(R) ∩ L1(R) such that its Fourier transform
satisfies Ẑ(ξ) = k(ξ), more precisely, we have

Z(x) =
π

2
α−1/3e−α|x| cos θ sin(θ + α|x| sin θ) csc(2θ). (2.10)
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Note that Z ∈ C∞(R−{0}) and Z(n) ∈ L1(R) for n = 1, 2, 3, . . . . Now, by writing
M = ∂4

x + b∂2
x we can rewrite equation (2.6) in the integral form

ϕ(x) = (c+M)−1G(ϕ,ϕ′, ϕ′′)(x) =
∫ ∞
−∞

Z(x− y)G(ϕ,ϕy, ϕyy) dy. (2.11)

So, from Young’s inequality on convolutions we get that for all n

|ϕ(n)|L1 ≤ |Z(n)|L1 |G(ϕ,ϕy, ϕyy)|L1 <∞,

‖ϕ(n)‖L2 ≤ |Z(n)|L1‖G(ϕ,ϕy, ϕyy)‖L2 <∞.

Finally, from the following results: (2.8), G(·, ·, ·) ∈ C1(R3), c > b2+/4, and the
stable-manifold theorem (see Lemma 2.4 in [20]) we have that ϕ,ϕ′, ϕ′′, ϕ′′′ decay
exponentially to zero at ±∞. Then using (2.11), (2.7) and (2.8), we obtain that
for all n, ϕ(n) also decay exponentially to zero at ±∞. Therefore, we have shown
the following Lemma.

Lemma 2.3. Suppose that ϕ is a solution of (2.6) obtained via Theorem 2.2-(ii).
Then ϕ ∈ Hn(R), ϕ(n) ∈ L1(R), n = 0, 1, 2, . . . , and there exist σ > 0 and constants
Cn > 0 such that

|ϕ(n)(x)| ≤ Cne−σ|x|, for all x ∈ R.

Moreover, xϕ(n) ∈ L1(R) for n ∈ N.

We finish this Section giving for u(t), solution of (1.1), an estimate of how fast
its tail near infinity grows with t. This estimate will be a key step in the proof
of instability. We note that this type of information for solutions of dispersive
evolution equations has already used as an essential ingredient in studies about
instability (see [6] and [28]).

Theorem 2.4. Let p ≥ 2 and suppose Assumption 2.1. Assume u0 ∈ H2(R) ∩
L1(R) andMu0 ≡ (∂4

x+b∂2
x)u0 ∈ L1(R). If u(t) is the solution of (1.1) with initial

data u(0) = u0, then

sup
−∞<x<∞

∣∣∣ ∫ x

−∞
u(y, t) dy

∣∣∣ ≤ C(1 + tθ/(1+θ)
)

for 0 ≤ t < T0, where T0 denotes the existence time for u. Moreover, θ = 2 if b 6= 0,
θ = 4 if b = 0 and the constant C depends only on sup {‖u(t)‖H2 : 0 ≤ t < T0},
|u0|L1 and |Mu0|L1 .

Proof The proof follows the same lines of the proof of Theorem 4.3 in [28] or
Lemma 5.12 in [20], and is based essentially on the following estimate for the free
group U0(t) associated to the linear evolution equation

ut + uxxxxx + buxxx = 0, u(0) = u0,

namely, for all t > 0 we have

|U0(t)u0|∞ ≤ C0(1 + t)−1/(1+θ)|u0|L1

where θ = 2 if b 6= 0 and θ = 4 if b = 0. �
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3. Instability Theory for Equation (1.1)

In this section the attention is turned to establish a criterium of instability for
solitary-wave solutions associated to equation (1.1), which are obtained via the
variational problem (2.3). By using the notations from [11], for any X ⊂ H2(R)
and δ > 0 we define V(X, δ), the δ-neighbourhood of X in H2(R), by

V(X, δ) = ∪v∈XBδ(v) = {g ∈ H2(R) : inf
v∈X
‖v − g‖H2 < δ}

where Bδ(v) = {u ∈ H2(R) : ‖u− v‖H2 < δ}. So, based in Assumption 2.1 we have
the following definition of stability.

Definition 3.1. We say that X ⊂ H2(R) is stable by the flow of (1.1) if and only
if for any ε > 0 there exists δ > 0 such that for all u0 ∈ V(X, δ), the solution u(t)
of (1.1) with initial data u(0) = u0 satisfies u(t) ∈ V(X, ε) for all t ∈ R. Otherwise,
we say X is unstable by the flow of (1.1).

For each y ∈ R, let τy be the translation operator defined by τyv = v(· + y). If
Y ⊂ Lp(R), we denote ΩY = {τyv | y ∈ R, v ∈ Y }. With this notation we introduce
for ϕ solution of (1.4), the set Ωϕ ≡ {τyϕ | y ∈ R}, called the ϕ-orbit.

In the next, we give some basic Lemmas which will be used in the proof of the
criterium of instability given in Theorem 3.5.

Lemma 3.2. There exist ε0 > 0 and a unique function Λ : V(Ωϕ, ε0) → R, which
is a C2-functional, such that Λ(ϕ) = 0 and such that for all v ∈ V(Ωϕ, ε0) and all
w ∈ Ωϕ, ‖v − τΛ(v)ϕ‖ ≤ ‖v − w‖. Moreover, for y ∈ R

Λ(τyv) = Λ(v) + y

Λ′(v) = − 1
〈v, ϕ′′(·+ Λ(v))〉

ϕ′(·+ Λ(v)).
(3.1)

In particular, for v ∈ Ωϕ we have

〈Λ′(v), v〉 = 0,

Λ′(v) =
1
‖ϕ′‖2

v′.
(3.2)

For the proof of this lemma see Theorem 3.1 in [11] or Lemma 3.3 in [2].
Remark: We note that the value Λ(v), obtained in Lemma 3.2, can be seen as the
“optimal” translation for ϕ to be the best approximation of v to the ϕ-orbit, Ωϕ,
in the L2(R)-norm .

Now, we define our main vector field in the study of instability. We consider
initially a function ψ ∈ L∞(R) such that ψ′ ∈ H2(R) and ϕ a nonzero-solution of
(1.4), then for v ∈ V (Ωϕ, ε0) we define Bψ(v) by the formula

Bψ(v) ≡ τΛ(v)ψ
′ −
〈v, τΛ(v)ψ

′〉
〈v, τΛ(v)ϕ′′〉

τΛ(v)ϕ
′′. (3.3)

We note that the vector field Bψ is an extension of the formula (4.2) in [6] as well as
of the formula (5.9) in [20] (a similar vector field was also used in [2] and [11]). Now,
for v ∈ Ωϕ we can obtain an easy geometric interpretation of the vector Bψ(v) as
being the derivative of the “ orthogonal component of τΛ(v)ψ with regard to τΛ(v)ϕ

′

”. In fact, let y ∈ R such that v = τyϕ. Then from Lemma 3.2 it follows that
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Λ(v) = y. Now, even that ψ /∈ L2(R) we have from Lemma 2.3 that

〈v, τΛ(v)ψ
′〉

〈v, τΛ(v)ϕ′′〉
τyϕ
′ =
〈τyϕ, τyψ′〉
〈τyϕ, τyϕ′′〉

τyϕ
′ =
〈τyϕ′, τyψ〉
‖τyϕ′‖2

τyϕ
′ ≡ Pq.

So, defining Q⊥ ≡ τyψ − Pq we obtain that 〈Q⊥, τyϕ′〉 = 0 and Bψ(v) = ∂xQ⊥.
Next, we have some basic properties of the vector field Bψ.

Lemma 3.3. For ψ ∈ L∞(R) such that ψ′, ψ′′ ∈ H2(R) and ϕ nonzero-solution of
(1.4), we have

Bψ : V (Ωϕ, ε0)→ H2(R) is C1 with bounded derivative, (3.4)

Bψ commutes with translations, (3.5)

〈Bψ(v), v〉 = 0 for all v ∈ V (Ωϕ, ε0), (3.6)

if 〈ϕ,ψ′〉 = 0 then Bψ(ϕ) = ψ′, (3.7)

if 〈ϕ′, ψ′〉 = 0 then 〈Bψ(v), v′〉 = 0, for all v ∈ Ωϕ. (3.8)

Proof The proof of statements (3.4), (3.5), (3.6) follows the same lines from the
proof of Lemma 3.5 in [2]. Statements (3.7) and (3.8) follow from equality Λ(ϕ) = 0
and from the formula

Bψ(ϕ) = ψ′ +
〈ϕ,ψ′〉
‖ϕ′‖2

ϕ′′. (3.9)

�
Before establishing our instability criterium, we need to assure the convergence

of an integral which will be used in our analysis.
Lemma 3.4. Let p ≥ 2 and ϕ a solution of (2.6) obtained via Theorem 2.2-(ii) .
Assume that u0 ∈ V (Ωϕ, ε0) such that u0,Mu0 ≡ (∂4

x + b∂2
x)u0 ∈ L1(R). If u(t)

is a solution of (1.1) which corresponds to the initial data u0 and u(t) ∈ V (Ωϕ, ε0)
for t ∈ [0, T1], then we have that for ψ(x) =

∫ x
−∞[ϕ(y) + 2yϕ′(y)]dy it follows that

Aψ(u(t)) ≡
∫ ∞
−∞

ψ(x− Λ(u(t)))u(x, t) dx <∞, for all t ∈ [0, T1]. (3.10)

Proof Let H be the Heaviside function and γ =
∫
R
[ϕ(y) + 2yϕ′(y)]dy (note that

γ <∞ from Lemma 2.3) then

Aψ(u(t)) =
∫ ∞
−∞

[ψ(x− Λ(u(t)))− γH(x− Λ(u(t)))]u(x, t)dx+ γ

∫ ∞
Λ(u(t))

u(x, t)dx.

It follows then from Cauchy-Schwarz inequality, (1.5) and Theorem 2.4 that

|Aψ(u(t))| ≤ ‖ψ − γH‖‖u0‖+ |γ|C0

(
1 + tθ/(1+θ)

)
,

and therefore
|Aψ(u(t))| ≤ K1

(
1 + tθ/(1+θ)

)
(3.11)

where θ is given by Theorem 2.4 and K1 is a constant. To show that ψ−γH ∈ L2(R)
it is sufficient to know that

∫
R
|y|1/2|ϕ(y)| + |y|3/2|ϕ′(y)|dy < ∞, which is true by

Lemma 2.3. This proves the Lemma. �
Now we establish a sufficient condition of instability for solitary-wave solutions

of equation (1.1) which are obtained via the variational problem (2.3).
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Theorem 3.5 (Criterium of Instability). Let p ≥ 2 and ϕ be a solution from
(1.4) obtained via Theorem 2.2-(ii) with λ = µ. If there is ψ ∈ L∞(R) such that
ψ′, ψ′′ ∈ H2(R) ∩ L1(R), ψ′′′, ψ(v) ∈ L1(R), and it is chosen such that (3.11) is
true with 0 < θ/(1 + θ) < 1 and

〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉 < 0 (3.12)

where S(u) = E(u)+c Q(u), then there exist ε > 0 and a sequence {uj0} in V (Ωϕ, ε)
satisfying:

(i) uj0 → ϕ in H2(R) as j →∞.
(ii) For all j ∈ N, u(t) = U(t)uj0 is uniformly bounded in H2(R), but escapes

from V (Ωϕ, ε) in a finite time.
The proof of this theorem follows the same spirit of ideas as those established

in [11] and [2] (see also [27]), therefore we will explain only the main points of the
argument. We will divide the proof in a few Lemmas.
Lemma 3.6. Let ϕ be a solution from (1.4) obtained via Theorem 2.2-(ii) with
λ = µ. Suppose that there is ψ ∈ L∞(R) such that ψ′, ψ′′ ∈ H2(R) ∩ L1(R),
ψ′′′, ψ(v) ∈ L1(R) and the action S satisfies (3.12). Then there are positive numbers
ε3 and σ3 such that

for v0 ∈ V (Ωϕ, ε3), there exists s ∈ (−σ3, σ3) : S(ϕ) ≤ S(v0) + P (v0)s

where P (u) = 〈S′(u), Bψ(u)〉.
Proof We consider for v0 ∈ V (Ωϕ, ε0), where ε0 is given by Lemma 3.2, the
initial-value problem

d

ds
v(s) = Bψ(v(s))

v(0) = v0.
(3.13)

So, from (3.4) we have that (3.13) admits for each v0 ∈ V (Ωϕ, ε0) a unique maximal
solution v ∈ C2((−σ, σ);V (Ωϕ, ε0)), where v(0) = v0 and σ = σ(v0) ∈ (0,∞].
Moreover, for each ε1 < ε0, there exists σ1 > 0 such that σ(v0) ≥ σ1, for all
v0 ∈ V (Ωϕ, ε1). Hence, we can define for fixed ε1, σ1 the following dynamical
system

W : (−σ1, σ1)× V (Ωϕ, ε1)→ V (Ωϕ, ε0)

(s, v0)→W(s)v0,

where s → W(s)v0 is the maximal solution of (3.13) with initial data v0. Now we
establish some basic properties of the flow s → W(s)v0. In fact, from Lemma 3.3
one has that W is a C1-function, also we have that for each v0 ∈ V (Ωϕ, ε1) the
function s ∈ (−σ1, σ1) → W(s)v0 is C2 and the flow s → W(s)v0 commutes with
translations. Finally, from the relation

W(s)ϕ = ϕ+
∫ s

0

τΛ(W(t)ϕ)ψ
′ dt−

∫ s

0

D(t)τΛ(W(t)ϕ)ϕ
′′ dt,

(where the map s ∈ (−σ1, σ1) → D(s) is a continuous function), Lemma 2.3 and
the hypothesis on ψ, we have the following consequences

W(s)ϕ, ∂2
xW(s)ϕ, ∂4

xW(s)ϕ ∈ L1(R) for all s ∈ (−σ1, σ1). (3.14)

Now, given v0 ∈ V (Ωϕ, ε1) we get from Taylor’s Theorem that there is θ ∈
(0, 1) such that S(W(s)v0) = S(v0) + P (v0)s + 1

2R(W(θs)v0)s2, where P and
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R are functionals defined on V (Ωϕ, ε1) by P (v) = 〈S′(v), Bψ(v)〉 and R(v) =
〈S′′(v)Bψ(v), Bψ(v)〉+ 〈S′(v), B′ψ(v)(Bψ(v))〉. Since R, W are continuous, S′(ϕ) =
0 and R(ϕ) < 0, then there exist ε2 ∈ (0, ε1], σ2 ∈ (0, σ1] such that

S(W(s)v0) ≤ S(v0) + P (v0)s for v0 ∈ Bε2(ϕ), s ∈ (−σ2, σ2). (3.15)

Since W(s)v0 commutes with translations, we obtain from the relation V (Ωϕ, ε2) =
ΩBε2 (ϕ), the extension

for v0 ∈ V (Ωϕ, ε2), s ∈ (−σ2, σ2)

S(W(s)v0) ≤ S(v0) + P (v0)s.
(3.16)

So that, for v0 =W(τ)ϕ with τ 6= 0 small enough, we get

S(ϕ) ≤ S(W(τ)ϕ)− P (W(τ)ϕ)τ. (3.17)

Moreover, from (3.12) the function τ → S(W(τ)ϕ) has a strict local maximum in
0 and therefore

S(W(τ)ϕ) < S(ϕ) for τ ∈ (−σ2, σ2), τ 6= 0, (3.18)

and so from (3.17) and (3.18) we have that for some σ3 ≤ σ2

P (W(τ)ϕ) < 0, τ ∈ (0, σ3). (3.19)

On the other hand, we have that for K(v) =
∫∞
−∞ F (v, vx) dx

〈K ′(ϕ), Bψ(ϕ)〉 6= 0, (3.20)

otherwise, Bψ(ϕ) would be tangent to F = {v ∈ H2(R)| K(v) = µ} and then one
would have 〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉 ≥ 0 (since ϕ minimizes S on F by Theorem 2.2),
but this is a contradiction with (3.12). So, if we consider the function

(v0, s) ∈ V (Ωϕ, ε1)× (−σ1, σ1) −→ K(W(s)v0) =
∫ ∞
−∞

F (W(s)v0, ∂xW(s)v0) dx,

which is a C1- mapping with (ϕ, 0)→ K(ϕ) = µ, it follows from (3.20) that

d

ds
K(W(s)v0)

∣∣∣
(ϕ,0)

= 〈K ′(ϕ), Bψ(ϕ)〉 6= 0,

and therefore from the Implicit Function Theorem it follows that, there exist
ε3 ∈ (0, ε2) and σ3 ∈ (0, σ2] such that for all v0 ∈ Bε3(ϕ), there exists a unique
s ≡ s(v0) ∈ (−σ3, σ3) such that K(W(s)v0) = µ, i.e. W(s)v0 ∈ F . Then,
applying (3.15) to (v0, s(v0)) ∈ Bε3(ϕ) × (−σ3, σ3) and using that ϕ minimizes
S on F , we have that for v0 ∈ Bε3(ϕ) there exists s ∈ (−σ3, σ3) such that
S(ϕ) ≤ S(v0) + P (v0)s. Therefore, using again that W(s)v0 commutes with trans-
lations and V (Ωϕ, ε2) = ΩBε2 (ϕ) we obtain the extension

for each v0 ∈ V (Ωϕ, ε3), there exists s ∈ (−σ3, σ3) : S(ϕ) ≤ S(v0) + P (v0)s.

This shows the Lemma. �
Since B−ψ(ϕ) = −Bψ(ϕ) we can assume from (3.20) that 〈K ′(ϕ), Bψ(ϕ)〉 < 0.

So, if we consider the continuous flow τ →W(τ)ϕ which is solution of (3.13) with
initial data ϕ, we will have for τ > 0 and small enough that we can get some δ
small such that

K(W(τ)ϕ) = K(ϕ) +
∫ τ

0

〈K ′(W(ξ)ϕ), Bψ(W(ξ)ϕ)〉 dξ = µ− δ < µ . (3.21)
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Lemma 3.7. Suppose ϕ, ψ and S satisfy the same hypotheses as those established
in Lemma 3.6 and ψ is chosen such that (3.11) is true with 0 < θ/(1 + θ) < 1.
Define

D = {v ∈ H2(R)| S(v) < S(ϕ), K(v) < µ} ∩ {v ∈ H2(R)| P (v) < 0} ≡ B ∩ P
(3.22)

where P (v) = 〈S′(v), Bψ(v)〉. Then we have:
(i) W(τ)ϕ ∈ D for all τ ∈ (0, σ3).
(ii) B is invariant by the flow u(t) of equation (1.1).
(iii) The flow u(t) of (1.1) with initial data in B has a uniformly bounded tra-

jectory in H2(R)
(iv) For Aψ defined in (3.10) we have ∂tAψ(u(t)) = −P (u(t)).

Proof (i) From (3.18), (3.19) and (3.21) we get that the flow generated by (3.13)
through ϕ satisfies W(τ)ϕ ∈ D for all τ ∈ (0, σ3).

(ii) Let u0 ∈ B ⊂ H2(R). Then from Assumption 2.1 (local existence theory),
there exists T0 > 0 such that u(t) = U(t)u0 ∈ H2(R) and satisfies (1.1) for all
t ∈ [0, T0). So from (1.5) we have S(U(t)u0) = S(u0) < S(ϕ). Therefore from this
last relation and the property of minimization of S on F = {v ∈ H2(R)| K(v) = µ}
by ϕ, we have that for all t ∈ [0, T0), K(U(t)u0) 6= µ. Finally, since t→ K(U(t)u0)
is continuous on [0, T0) we obtain that K(U(t)u0) < µ for all t ∈ [0, T0). This shows
property (ii).

(iii) Let u0 ∈ B. Then from the conservation quantities in (1.5) by the flow of
equation (1.1), we have that

1
2

∫ ∞
−∞

[∂2
xU(t)u0]2 − b[∂xU(t)u0]2 + c[U(t)u0]2dx = S(U(t)u0) +K(U(t)u0)

< S(ϕ) + µ (3.23)

for all t ∈ [0, T0). So, if we have b = 0 in (3.23) then a simple interpolation argument
shows that there is a constant M(ϕ, µ) > 0 such that ‖∂xU(t)u0‖ ≤ M(ϕ, µ) and
therefore ‖U(t)u0‖2H2 ≤ M(ϕ, µ) for all t ∈ [0, T0). If b > 0 then from restriction
c > b2/4 we get

1
2

(
1− b

2
√
c

) ∫ ∞
−∞

[∂2
xU(t)u0]2 + c[U(t)u0]2dx

≤ 1
2

∫ ∞
−∞

[∂2
xU(t)u0]2 − b[∂xU(t)u0]2 + c[U(t)u0]2dx < S(ϕ) + µ,

and again an interpolation argument shows that ‖U(t)u0‖2H2 ≤ M(ϕ, µ) for all
t ∈ [0, T0). Note that this last fact shows that the flow t→ U(t)u0 will be a global
solution for equation (1.1) if we have in fact a local existence theory of solutions in
H2(R).

(iv) Let u(t) be a solution of (1.1). Then as long as this flow remains in V (Ωϕ, ε)
(note that from hypothesis Aψ(u(t)) <∞) we have that

∂tAψ(u(t)) =
∫ ∞
−∞

(
〈τΛ(u(t))ψ

′(x), u(t)〉Λ′(u(t)) + τΛ(u(t))ψ(x)
)∂u
∂t

(x, t) dx

= −〈〈τΛ(u(t))ψ
′(x), u(t)〉 d

dx
Λ′(u(t)) + τΛ(u(t))ψ

′(x), E′(u(t))〉

= −〈Bψ(u(t)), S′(u(t))〉+ c〈Bψ(u(t)), u(t)〉 = −P (u(t)),

(3.24)
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where in the last equality we have used the fact that 〈Bψ(v), v〉 = 0 for all v ∈
V (Ωϕ, ε). This shows the Lemma. �
Proof of Theorem 3.5 By (i) in Lemma 3.7, let τj ∈ (0, σ3) such that τj → 0
as j → ∞ and define uj0 ≡ W(τj)ϕ. Then uj0 → ϕ in H2(R) as j → ∞. Since
uj0 ∈ D ⊂ B, it follows from Lemma 3.7 that t → u(t) ≡ U(t)uj0 is uniformly
bounded for all j. So, to conclude the proof of our criterium of instability we need
only to verify that t → U(t)uj0 escapes from V (Ωϕ, ε3) for some ε3 > 0 and for all
j ∈ N in a finite time. In fact, let ε3 > 0 determined in Lemma 3.6 and define

Tj = sup{τ > 0 : U(t)uj0 ∈ V (Ωϕ, ε3), for all t ∈ (0, τ)}.

Then, it follows from Lemma 3.6 that for all j ∈ N and t ∈ (0, Tj) there exists s =
sj(t) ∈ (−σ3, σ3) satisfying S(ϕ) ≤ S(U(t)uj0) +P (U(t)uj0)s = S(uj0) +P (U(t)uj0)s.
Now, since uj0 ∈ D then t→ U(t)uj0 ∈ P for t ∈ (0, Tj), so we have that

−P (U(t)uj0) ≥ S(ϕ)− S(uj0)
σ3

= ηj > 0, for all t ∈ (0, Tj). (3.25)

Now suppose that for some j, Tj = +∞. Then from the properties obtained by
the flow τ → W(τ)ϕ in (3.14) and considering that (3.11) is true, we obtain from
(3.24) and (3.25) that Aψ(U(t)uj0)) ≥ tηj +Aψ(uj0) for all t ∈ (0,+∞). Then from
(3.11) it follows

K1 ≥
tηj +Aψ(uj0)
1 + tθ/(1+θ)

for all t ∈ (0,+∞),

which is a contradiction . Therefore Tj < +∞, which means that u(t) = U(t)uj0
eventually leaves V (Ωϕ, ε3). This proves the Theorem. �

4. Instability of the Orbit Ωϕ

In this section we give conditions to assure inequality (3.12) and so to obtain
the instability of the ϕ-orbit, Ωϕ, with respect to equation (1.1). For that, we start
showing the following Lemma.

Lemma 4.1. Let p ≥ 2 and suppose that F (q, r), homogeneous of degree p + 1,
satisfies relation (1.2). Consider ϕ a solution of (1.4) obtained via Theorem 2.2-
(ii) with λ = µ. Then for ψ(x) =

∫ x
−∞[ϕ(y) + 2yϕ′(y)]dy we get that

〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉

= 8b
∫ ∞
−∞

(ϕ′)2 dx+ (9− p)(p− 1)
∫ ∞
−∞

F (ϕ,ϕ′) dx

+ 4
∫ ∞
−∞

[4ϕ′Fr(ϕ,ϕ′)− ϕϕ′Fqr(ϕ,ϕ′)− 2(ϕ′)2Frr(ϕ,ϕ′)] dx.

(4.1)

Proof Since 〈ψ′, ϕ〉 = 0 it follows immediately from (3.9) that Bψ(ϕ) = ψ′ and
therefore we need only to estimate the quantity 〈S′′(ϕ)ψ′, ψ′〉. In fact, it denotes
by L = S′′(ϕ) the linear operator

L =∂4
x + b ∂2

x + c− Fqq(ϕ,ϕ′) + ϕ′Fqqr(ϕ,ϕ′) + ϕ′Fqrr(ϕ,ϕ′)∂x

+ ϕ′′Fqrr(ϕ,ϕ′) + ϕ′′Frrr(ϕ,ϕ′)∂x + Frr(ϕ,ϕ′)∂2
x.

(4.2)



EJDE–2003/06 ON THE INSTABILITY OF SOLITARY-WAVE SOLUTIONS 15

Initially, from the homogeneity of F we obtain the relations

ϕFq(ϕ,ϕ′) + ϕ′Fr(ϕ,ϕ′) = (p+ 1)F (ϕ,ϕ′),

ϕ2Fqq(ϕ,ϕ′) + 2ϕϕ′Fqr(ϕ,ϕ′) + (ϕ′)2Frr(ϕ,ϕ′) = p(p+ 1)F (ϕ,ϕ′).
(4.3)

Now, using (1.2) and (1.4), we have from (4.2)

Lϕ = Fq − ϕ′Fqr − ϕFqq + ϕ(Fqr)x + ϕ′(Frr)x

L(xϕ′) = −2bϕ′′ − 4cϕ+ 4Fq − 4ϕ′Fqr − 2ϕ′′Frr + (ϕ′)2Fqrr + ϕ′ϕ′′Frrr.
(4.4)

So, using the first equation in (4.4), integration by parts and (4.3) we get that

〈Lϕ,ϕ〉 =
∫ ∞
−∞

[ϕFq − ϕϕ′Fqr − ϕ2Fqq + ϕ2(Fqr)x + ϕϕ′(Frr)x] dx

=
∫ ∞
−∞

[ϕFq − ϕϕ′Fqr − ϕϕ′′Frr − p(p+ 1)F ] dx

=
∫ ∞
−∞

[ϕFq + ϕ′Fr − p(p+ 1)F ] dx = (p+ 1)(1− p)
∫ ∞
−∞

F dx.

(4.5)

Now, from the first equation in (4.4), some integrations by parts and the first
equation of (4.3), we estimate the following term

〈Lϕ, xϕ′〉 =
∫ ∞
−∞

[−ϕFq − 2xϕ(Fr)x − 2xϕ′(Fq)x − ϕϕ′Fqr − (ϕ′)2Frr] dx

=
∫ ∞
−∞

[−ϕFq + 2x(F )x + 2(ϕFq + ϕ′Fr)− ϕϕ′Fqr − (ϕ′)2Frr] dx

= (p− 1)
∫ ∞
−∞

F dx+
∫ ∞
−∞

[ϕ′Fr − ϕϕ′Fqr − (ϕ′)2Frr] dx.

(4.6)

We are going to estimate the term 〈L(xϕ′), xϕ′〉. Initially from the second equation
in (4.4) and integration by parts we get

〈L(xϕ′), xϕ′〉

=
∫ ∞
−∞

[b(ϕ′)2 + 4xϕ′Fq − 4x(ϕ′)2Fqr − 2xϕ′ϕ′′Frr + x(ϕ′)2(Frr)x + 2cϕ2] dx

=
∫ ∞
−∞

[b(ϕ′)2 + 4xϕ′Fq − 4xϕ′(Fr)x − (ϕ′)2Frr + 2cϕ2] dx

=
∫ ∞
−∞

[b(ϕ′)2 − 4F + 4ϕ′Fr − (ϕ′)2Frr + 2cϕ2] dx.

(4.7)

We need now an expression for
∫∞
−∞ 2cϕ2 dx. In fact, multiplying (1.4) by xϕ′,

integrating by parts several times and using the relation∫ ∞
−∞

xϕ′∂4
xϕdx =

3
2

∫ ∞
−∞

(ϕ′′)2 dx

we have ∫ ∞
−∞

[3
2

(ϕ′′)2 − b

2
(ϕ′)2 + F − ϕ′Fr −

c

2
ϕ2
]
dx = 0. (4.8)

Moreover, from (1.4) we obtain immediately that∫ ∞
−∞

(ϕ′′)2 dx =
∫ ∞
−∞

[b(ϕ′)2 + (p+ 1)F − cϕ2] dx. (4.9)
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So, from (4.8) and (4.9) we get the main relation∫ ∞
−∞

[
b(ϕ′)2 +

3
2
ϕFq +

1
2
ϕ′Fr + F

]
dx =

∫ ∞
−∞

2cϕ2 dx. (4.10)

Then, from (4.7) and (4.10) we obtain

〈L(xϕ′), xϕ′〉 =
∫ ∞
−∞

[
2b(ϕ′)2+

3(p− 1)
2

F
]
dx+

∫ ∞
−∞

[3ϕ′Fr−(ϕ′)2Frr] dx. (4.11)

Finally, from (4.5), (4.6) and (4.11) we get (4.1). This completes the Proof. �
With Theorem 3.5 and Lemma 4.1 we are ready to establish our Theorem of

instability for solitary-wave solutions associated to the fifth-order equation (1.1).
Theorem 4.2 (Instability for Ωϕ). Let p ≥ 2 and suppose that F (q, r), homo-
geneous of degree p + 1, satisfies relation (1.2). Consider ϕ a solution of (1.4)
obtained via Theorem 2.2-(ii) with λ = µ. Then if F (ϕ,ϕ′) is homogeneous in ϕ′

of degree β, β ∈ [0, p+ 1], then the conditions

b = 0 and β >
9− p

2
, or

b < 0 and β ≥ 9− p
2

, or

β >
9− p

2
, b > 0 and b small,

imply that the ϕ-orbit, Ωϕ, is unstable by the flow of (1.1).
Proof From Lemma 3.4 we have that (3.11) is true since we have 0 < θ/(1+θ) <
1, and from Lemma 2.3 we obtain the properties of regularity on ψ(x) =

∫ x
−∞[ϕ(y)+

2yϕ′(y)]dy required by Theorem 3.5. So, we only need to verify condition (3.12) and
therefore from Lemma 4.1 we need to know when expression (4.1) is negative. In
fact, let F (ϕ,ϕ′) be homogeneous in ϕ′ of degree β, β ∈ [0, p+1]. Since F satisfies
the relations ϕ′Fr = βF , (ϕ′)2Frr = β(β−1)F , ϕFq = αF and ϕ2Fqq = α(α−1)F ,
where α+ β = p+ 1, we have initially from (4.1) and the second equation in (4.3)
that

4
∫ ∞
−∞

[4ϕ′Fr − ϕϕ′Fqr − 2(ϕ′)2Frr] dx = 4β(5− β − p)
∫ ∞
−∞

F dx

so from (4.1) we get

〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉

=
[
(1− p)(p− 9) + 4(5− p)β − 4β2

] ∫ ∞
−∞

F (ϕ,ϕ′) dx+ 8b
∫ ∞
−∞

(ϕ′)2 dx,
(4.12)

which is negative if either b = 0 and β > 9−p
2 or b < 0 and β ≥ 9−p

2 .
Now if we consider β > 9−p

2 and b > 0 then it follows from condition c > b2/4,
properties obtained for ϕ and Theorem 2.2, that

b

∫ ∞
−∞

(ϕ′)2 dx ≤ b
∫ ∞
−∞

[(ϕ′′)2 + ϕ2] dx ≤ b max{1, c}
c

∫ ∞
−∞

[(ϕ′′)2 + cϕ2] dx

≤ 4b max{1, c}√
c(2
√
c− b)

Ic,b(ϕ) =
4b max{1, c}√
c(2
√
c− b)

µ
2
p+1Mc(1)

=
4b max{1, c}√
c(2
√
c− b)

( 1
p+ 1

) 2
p−1

[Mc(1)]
p+1
p−1 .

(4.13)
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So, we get from (4.12) and (4.13) that

〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉 ≤
[
[(9− p)(p− 1) + 4(5− p)β − 4β2]

( 1
p+ 1

) p+1
p−1

+
32b max{1, c}√

c(2
√
c− b)

( 1
p+ 1

) 2
p−1
]
[Mc(1)]

p+1
p−1

≡ K0(b)[Mc(1)]
p+1
p−1 .

Therefore, if we choose b small such that K0(b) < 0 then we obtain from the last
inequality that 〈S′′(ϕ)Bψ(ϕ), Bψ(ϕ)〉 < 0. This finishes the proof. �
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