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An existence theorem for Volterra

integrodifferential equations with infinite delay ∗

Ferenc Izsák

Abstract

Using Schauder’s fixed point theorem, we prove an existence theorem
for Volterra integrodifferential equations with infinite delay. As an app-
plication, we consider an n species Lotka-Volterra competitive system.

1 Introduction

Vrabie [10, page 265] studied the partial integrodifferential equation

u̇(t) = −Au(t) +
∫ t

a

k(t− s)g(s, u(s))ds

u(a) = u0,

(1.1)

where u : [a, b] → X, X is a Banach space, A : D(A) ⊂ X → X is an M -
accretive operator; t ∈ [a, b], g : [a, b]×X → X, k : [0, a]→ L(X) are continuous
functions. The result, existence of solutions on some interval [a, c) was obtained
by using the Schauder’s fixed point theorem.

Schauder’s fixed point theorem is a usual tool for proving existence theo-
rems in infinite delay case. In [8], Teng applied it to prove existence theorems
for Kolmogorov systems. Another frequently used method (especially for in-
tegrodifferential equations) is the Leray-Schauder alternative, see [5] and its
references.

Modifying (1.1) we investigate the case when the initial function is given on
(−∞, 0], which means infinite delay, moreover in the right-hand side we take
a function of the integral. This form allows us proving existence theorems for
systems. In this case g, k in the right hand side have to be also modified. The
spirit of the proof is similar to [10, pages 265–268] but we need some assumptions
on k and g and additional spaces and operators have to be introduced to carry
out the proof.

In section 3 we apply the result to a system (a competition model arising
from population dynamics); existence of global solution will be proved. In the
compactness arguments we need the following definition.
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Definition A family of functions H ⊂ L1([a, b];X) is 1-equiintegrable if the
following two conditions are satisfied:

• For all ε > 0, there exists δ such that for all f ∈ H, λ(E) < δ →∫
E
‖f(t)‖dt < ε)

• For all ε > 0, there exists h > 0 such that for all f ∈ H and all h0 < h,∫ b−h0

a

‖f(t+ h0)− f(t)‖dt < ε.

In this paper, let X be a Banach space, A : D(A) ⊂ X → X an M-accretive
operator [10, page 21]. Further, the spaces equipped with the supremum-norm
are denoted by denoted by C. We study of the abstract Cauchy problem ([7,
page 90], [2, pages 390–398])

u̇f (t) +Auf (t) = f(t) if t ≥ a
uf (a) = u(a).

(1.2)

Here uf denotes the f dependence of the solution. We also use the following
theorem [10, page 65] which is the basis of the compactness method employing
in the following section.

Theorem 1.1 Let A : X → X be an M -accretive operator, and (I−λA)−1 com-
pact for each λ > 0. Let u0 ∈ D(A) and K ⊂ L1([a, b];X) be 1-equiintegrable.
Then the set M(K) = {uf : uf is the mild solution of (1.2), f ∈ K} is relatively
compact in C([a, b];X).

2 An existence result for a class of Volterra-type
integrodifferential equations

A class of Volterra-type integrodifferential equations

Let U be an open subset of X, and UA = U ∩D(A), with (I − λA)−1 compact.
Let b > a and g = (g1, g2, . . . , gn) be Lipschitz-continuous functions in the
second variable, where gi : (−∞, b]×UA → X are bounded and continuous. Let
k = (k1, k2, . . . , kn) be a function such that ki ∈ L1([0,∞),L(X)) and

k(t)g(s, u(s)) = (k1(t)g1(s, u(s)), k2(t)g2(s, u(s)), . . . , kn(t)gn(s, u(s))). (2.1)

Let the space Xn be equipped with the maximum norm, ‖x‖ = max1≤i≤n ‖xi‖,
where x = (x1, x2, . . . , xn). Let F : Xn → X be a function such that for some
constant MF ∈ R,

‖F (x)‖ ≤MF ‖x‖ and MF

∫ 0

−∞
‖k(−τ)‖dτ ≤ 1. (2.2)
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Consider the problem

u̇(t) = −Au(t) + F
( ∫ t

−∞
k(t− s)g(s, u(s))ds

)
for t ≥ a (2.3)

u(t) = u0(t− a) for t ≤ a, (2.4)

where u0 ∈ C((−∞, 0], X) is a given bounded, equiintegrable function which
fulfills the matching condition

u0(0) = F
(∫ 0

−∞
k(−s)g(a+ s, u0(s))ds

)
. (2.5)

Theorem 2.1 Under assumptions (2.1) and (2.2), there is a value c in (a, b)
such that (2.3)-(2.4) has a weak solution on (−∞, c].

Proof: Note that ki ∈ L1([0,∞),L(X)) implies k ∈ L1([0,∞),L(Xn,Rn))
and (2.2) makes sense. This is only a technical supposition because (2.3) could
be rewrite with k/M and Mg (instead of k, g, resp.; M ∈ R is sufficiently big)
fulfilled (2.3). Let

P : C((−∞, b], U) 7→ C((−∞, b], U)

defined by

Pf(t) =

{
F
( ∫ t
−∞ k(t− s)g(s, uf (s))ds

)
if t ≥ a

f(t) if t ≤ a,
(2.6)

where uf is the weak solution of (1.2).
Observe that Pf = f holds if and only if uf is the weak solution of the

equation (2.3)-(2.4). Let us choose ρ > 0 such that

B(u(a), ρ) := {v ∈ X : ‖v − u(a)‖ ≤ ρ} ⊂ U. (2.7)

Since g is bounded there is M ∈ R such that

‖g(s, v)‖ ≤M for (s, v) ∈ ([−∞, b]× [UA ∩B(u0, ρ)]). (2.8)

Denote by S(t) the semigroup generated by −A on D(A). Let us choose further
b ≥ c0 ≥ a such that for all t ∈ [a, c0]

‖S(t− a)u0 − u0‖+ (c0 − a)M ≤ ρ, (2.9)

and c ∈ [a, c0] such that
(c− a)MF ‖k‖L1 ≤ 1. (2.10)

Let us define

Cu0((−∞, b], U) = {u ∈ C((−∞, b], U) : u(t) = u0(t− a) for t ≤ a}. (2.11)
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Let
H : Cu0((−∞, b], U) 7→ C([a, b], U)

be a natural homeomorphism with (Hf)(t) = f(t) for t ∈ [a, b] and let

Kr
u0

:= {f ∈ C([−∞, c], X) : ‖Hf(t)‖∞ ≤ r & f(b) = u0(d− a) for d ≤ a}.
(2.12)

Obviously Kr
u0

is nonempty, bounded, closed and convex subset of the space
Cu0([−∞, c], X).

Observe that P = P1 ◦ P2, where (using the matching condition (2.5)) we
define P1 : Cu0((−∞, b], U)→ Cu0((−∞, b], U) as

P1v(t) =

{
F
( ∫ t
−∞ k(t− s)g(s, v(s))ds

)
if t ≥ a

v(t) if t ≤ a
(2.13)

and P2 : Cu0((−∞, b], U)→ Cu0((−∞, b], U) is defined as P2 = H−1P ∗2H, where

P ∗2 : C([a, b], U)→ C([a, b], U)

and P ∗2 g(t) is the weak solution of the abstract Cauchy problem

u̇(t) +Au(t) = g(t) for t ≥ a
u(a) = g(a) = u0(0).

(2.14)

For details on this problem, we refer the reader to Barbu [1, page 124] and for
some applications of this result to [10, page 35].

Let f, h ∈ L1([a, b], X) and let u, v be solutions, in the weak sense, of

u̇(t) +Au(t) = f(t)
v̇(t) +Av(t) = h(t) (2.15)

with some initial conditions u(a), v(a). Then for s, t ∈ [a, b] we have

‖u(t)− v(t)‖ ≤ ‖u(s)− v(s)‖+
∫ t

s

‖f(τ)− h(τ)‖dτ. (2.16)

From this inequality, it follows that

‖P ∗2 h1(t)− P ∗2 h2(t)‖ ≤ ‖h1(a)− h2(a)‖+
∫ t

a

‖h1(τ)− h2(τ)‖dτ

≤ ‖h1 − h2‖∞(t− a+ 1),

which implies the continuity of P ∗2 on C([a, b], U) and so P2 on Kr
u0

. Using (2.8),
(2.9) and (2.16) for u ∈ Kr

u0
, t ∈ [a, c0] we get

‖P ∗2 u(t)− u(a)‖ ≤ ‖P2u(t)− S(t− a)u(a)‖+ ‖S(t− a)u(a)− u(a)‖

≤ ‖S(t− a)u(a)− u(a)‖+
∫ c0

a

‖g(t)‖dt

≤ ‖S(t− a)u(a)− u(a)‖+ (c0 − a)M ≤ ρ.

(2.17)
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Then we conclude that P ∗2 u(t) ∈ B(u(a), ρ) ∩ D(A). Consequently, P2u(t) ∈
D(g) for t ≥ a . By (2.2), (2.8), (2.10) and (2.13), for t ≥ a we have

‖Pu(t)‖ = ‖P1P2u(t)‖ = ‖F
( ∫ t

−∞
k(t− s)g(s, P2u(s))ds

)
‖

≤MF sup
s∈(−∞,t]

‖g(s, P2u(s))‖
∫ 0

−∞
‖k(−τ)‖dτ

≤MFM

∫ 0

−∞
‖k(−τ)‖dτ ≤M .

and (2.5) implies that
Pu(t) = u(t) for t ≤ a ;

i.e., P maps KM
u0

into itself. Since

‖(P1v − P1w)(t)‖

= ‖F
( ∫ t

−∞
k(t− s)[g(s, v(s))− g(s, w(s))]ds

)
‖

= MF ‖
∫ a

−∞
k(t− s)[g(s, v(s))− g(s, w(s))]ds

+
∫ t

a

k(t− s)[g(s, v(s))− g(s, w(s))]ds‖

≤MF [v(a)− w(a)
+ max
s∈[a,t]

[g(s, v(s))− g(s, w(s))](t− a)‖k(t− s)‖L1 ],

(2.18)
the function P1 is continuous from Cu0((−∞, b];U) into itself. Using the conti-
nuity of P2 we have that P : KM

u0
→ KM

u0
is continuous. Since∫

E

Pf(t)dt ≤ λ(E) max
t
Pf(t) ≤ λ(E)‖k‖L1M

and∫ b−h0

a

‖Pf(t+ h0)− Pf(t)‖dt

≤ ‖F‖ ‖a− b‖
( ∫ t+h0

−∞
k(t− s)g(s, uf (s))ds−

∫ t

−∞
k(t− s)g(s, uf (s))ds

)
≤ h0‖F‖ ‖a− b‖ ‖k‖L1M

we get that HP (KM
u0

) is 1-equiintegrable. Let us define

Ku0 := cl(convP (KM
u0

)).

Easy calculations shows that H(Ku0) = cl(convHP (Kr
u0

)) is equiintegrable
and Theorem 1.1 implies the relative compactness of P ∗2H(Ku0) = HP2(Ku0).
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Since H is homeomorphism, P2(Ku0) and P (Ku0) = P1P2(Ku0) are relative
compact. Since P (Ku0) is a subset of the closed, bounded and convex set Ku0 ,
the Schauder fixed point theorem ensures the existence of a fixed point of P .

3 Application to an n species Lotka-Volterra
competitive system

We prove local existence of solutions for a system, which is a model of an n
species competition arising in the population dynamics. Let Ω ⊂ R

n be a
bounded domain with smooth boundary. Feng [3] studied the system (i =
1, . . . , N)

(ui)t = Di

[
∆ui + ui(ai − ui −

N∑
j 6=i

κiju
τij
j )
]

on (0,∞)× Ω

ui = 0 in (0,∞)× ∂Ω
ui(s, x) = ηi(s, x) on [−τ, 0]× Ω,

(3.1)

where ui(t, x) denotes the density of the i-th species at time t and position x
(inside a bounded domain Ω of R3), uτijj (t, x) = uj(t − τij , x), τij > 0, τ =
max{τij}, Di, ai are positive, and κij are nonnegative real numbers. Supposing
the existence of a solution (a sufficient condition for this - using upper and lower
semisolutions - is formulated in [6]) the authors describe the attractors of (3.1).

In [8], Teng studies

dxi(t)
dt

=xi(t)[ai(t)− gi(t, xi(t))−
m∑
j=1

cijPj(x(t− τi,j(t)))

−
m∑
j=1

∫ 0

−σij
κij(t, s)Qj(xj(t+ s))ds], (i = 1, . . . , n)

(3.2)

an n-species Lotka-Volterra competitive system with delays as an application of
existence result for periodic Kolmogorov systems with delay. Detailed study of
the non-autonomous Lotka-Volterra models with delay (focused on existence of
positive periodic solutions) can be found in [9].

We rewrite (3.1) taking into account that a bounded attractor A has a
bounded neighborhood U and B ∈ R such that u(t, x) ∈ U for t ≤ t0 implies
‖u(t, x)‖ < B for all t > t0. B can be considered as a bound determined by the
carrying capacity of the territory. Let b : R→ R be a bounded, continuous such
that b(x) = x for |x| < B. The new form of (3.1) is

(ui)t = Di

[
∆ui + b(ui)(ai − b(ui)−

N∑
j=1

κijb(u
τij
j ))

]
on (0,∞)× Ω

ui = 0 on (0,∞)× ∂Ω
ui(s, x) = ηi(s, x) on [−τ, 0]× Ω.

(3.3)
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We reformulate (3.3) again in according to the notations and assumptions of
Theorem 2.1. Let Ω ⊂ R

3 be a bounded open subset, X = [L2(Ω)]n, u =
(u1, . . . , un) : R→ X u(s)(x) = (u1(s, x), . . . , un(s, x)) and

D(A) = [C2(Ω)]n, A(u1, u2, . . . , un) = (D1∆u1, . . . , Dn∆un).

Let g = (g1, g2, . . . , gn+1) be such that gi : (−∞,∞]×X → X are bounded and
continuous, Lipschitz-continuous in the second variable and gi(s,u(s))

∣∣
R×B =

u(s), whereB is an a priori bound of the solutions of (3.3), k = (k1, k2, . . . , kn+1),
where ki ∈ L1([0,∞),L(X)).

We rewrite (2.3)-(2.4) in the form

(ui(t, x))t = Di∆ui(t, x) + Fi
( ∫ t

−∞
k(t− s)g(s,u(s))ds

)
on (0,∞)× Ω

ui(s, x) = ηi(s, x) on [−τ, 0]× Ω,
(3.4)

where we take A as defined above and n+ 1 instead of n. In a special case we
get a perturbed version of (3.3), supposed that the right-hand side of (3.4) is
approximated such that

[ ∫ t

−∞
ki(t− s)gi(s,u(s))ds

]
j
≈ κijb(u

τij
j (t)) (i, j = 1, . . . , n) (3.5)

and [ ∫ t

−∞
kn+1(t− s)gn+1(s,u(s))ds

]
j
≈ b(uj(t)) (j = 1, . . . , n). (3.6)

According to the choice of g requirements (3.5) and (3.6) can be rewritten as∫ t

−∞
ki(t− s)(u1(s), u2(s), . . . , un(s))ds

≈ (κi1b(uτi11 (t)), κi2b(uτi22 (t)), . . . , κinb(uτinn (t))) (i = 1, . . . , n)
(3.7)

and ∫ t

−∞
kn+1(t− s)(u1(s), . . . , un(s))ds ≈ (b(u1(t)), . . . , b(un(t))). (3.8)

Obviously k1, k2, . . . , kn+1 can be chosen such that ki ∈ L1([0,∞),L(X)) and
approximations (3.7) and (3.8) are sharp; namely, for all ε1, ε2, . . . , εn+1 > 0
there are ki ∈ L1([0,∞),L(X)) such that for any bounded (u1, u2, . . . , un) and
for all t > t0,∫ t

−∞
ki(t− s)(u1(s), u2(s), . . . , un(s))ds

− (κi1b(uτi11 (t)), κi2b(uτi22 (t)), . . . , κinb(uτinn (t))) < εi (i = 1, . . . , n)
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and ∫ t

−∞
kn+1(t− s)(u1(s), . . . , un(s))ds− (b(u1(t)), . . . , b(un(t))) < εn+1.

Moreover, the terms on the left-hand side of (3.7) and (3.8) lead to a more
precise model than the original equation did (3.1) or (3.3) since the new terms
keep track the past of the population. Finally let F = (F1, . . . , Fn) where∫ t

∞
k(t− s)g(s,u(s))ds ∈ [L2(Ω)]n×(n+1)

and

Fi : [L2(Ω)]n×(n+1) → L2(Ω),

Fi(x1,x2, . . . ,xn,xn+1) = ai(xn+1)i − (xn+1)2
i −

n∑
j=1

(xn+1)i(xi)j .
(3.9)

Since k = (k1, k2, . . . , kn+1) and g = (g1, g2, . . . gn+1) fulfill every requirements
listed in Theorem 2.1 we get the following

Theorem 3.1 Let ui(s, x) = ηi(s, x) on [−τ, 0]×Ω be an initial condition with
a priori bound B of the possible solutions of (3.4). Let further k, g and F be as
defined by (3.5), (3.6) and (3.9) satisfying the conditions of Theorem 2.1. Then
(3.4) - a modified version of (3.1) - has a global solution.

We have to prove only the existence of a global solution. Observe that the
condition b > c0 (required in (2.9) and in (2.17)) plays no role here because
we have not restricted the domain of g. By repeating the method for seeking
local solution one can choose a constant c− a in each steps, i.e. we have a local
solution on [a, c] and then [a, 2c − a], [a, 3c − 2a] and so on, where every local
solution fulfills the conditions of Theorem 2.1 which ensures the existence of a
global solution.
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