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An existence theorem for Volterra
integrodifferential equations with infinite delay *

Ferenc Izsdk

Abstract

Using Schauder’s fixed point theorem, we prove an existence theorem
for Volterra integrodifferential equations with infinite delay. As an app-
plication, we consider an n species Lotka-Volterra competitive system.

1 Introduction

Vrabie [10, page 265] studied the partial integrodifferential equation

u(t) = —Au(t) +/ k(t — s)g(s,u(s))ds

u(a) = up,

(1.1)

where u : [a,b] — X, X is a Banach space, A : D(A) C X — X is an M-
accretive operator; ¢t € [a,b], g : [a,b]x X — X, k : [0,a] — L(X) are continuous
functions. The result, existence of solutions on some interval [a, ¢) was obtained
by using the Schauder’s fixed point theorem.

Schauder’s fixed point theorem is a usual tool for proving existence theo-
rems in infinite delay case. In [8], Teng applied it to prove existence theorems
for Kolmogorov systems. Another frequently used method (especially for in-
tegrodifferential equations) is the Leray-Schauder alternative, see [5] and its
references.

Modifying (1.1) we investigate the case when the initial function is given on
(=00, 0], which means infinite delay, moreover in the right-hand side we take
a function of the integral. This form allows us proving existence theorems for
systems. In this case g, k in the right hand side have to be also modified. The
spirit of the proof is similar to [10, pages 265-268] but we need some assumptions
on k and g and additional spaces and operators have to be introduced to carry
out the proof.

In section 3 we apply the result to a system (a competition model arising
from population dynamics); existence of global solution will be proved. In the
compactness arguments we need the following definition.
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Definition A family of functions H C L'([a,b]; X) is 1-equiintegrable if the
following two conditions are satisfied:

e For all € > 0, there exists ¢ such that for all f € H, AM(E) < § —
Jellf@)ldt <e)

e For all € > 0, there exists h > 0 such that for all f € H and all hy < h,
b—ho
[ e+ no) — sy <

In this paper, let X be a Banach space, A : D(A) C X — X an M-accretive
operator [10, page 21]. Further, the spaces equipped with the supremum-norm
are denoted by denoted by C. We study of the abstract Cauchy problem ([7,
page 90], [2, pages 390-398])

w (1) + Aul (t) = f(t) if t>a 12)

u! (a) = u(a). -
Here u/ denotes the f dependence of the solution. We also use the following
theorem [10, page 65] which is the basis of the compactness method employing
in the following section.

Theorem 1.1 Let A: X — X be an M -accretive operator, and (I—\A)~* com-
pact for each A > 0. Let ug € D(A) and K C L'([a,b]; X) be 1-equiintegrable.
Then the set M(K) = {uf : ulis the mild solution of (1.2), f € K} is relatively
compact in C([a,b]; X).

2 An existence result for a class of Volterra-type
integrodifferential equations

A class of Volterra-type integrodifferential equations

Let U be an open subset of X, and Us = U ND(A), with (I — AA)~! compact.
Let b > a and ¢ = (g91,92,---,9,) be Lipschitz-continuous functions in the
second variable, where g; : (—00,b] x Uy — X are bounded and continuous. Let
k = (k1,ke,...,ky) be a function such that k; € L;1([0,00), £(X)) and

k(t)g(s,u(s)) = (k1(t)g1(s, u(s)), ka(t)g2(s, uls)), - - - kn(t)gn(s, u(s))). (2.1)

Let the space X™ be equipped with the maximum norm, ||x|| = maxi<;<n ||zl
where x = (x1,%9,...,%,). Let F: X™ — X be a function such that for some
constant Mp € R,

0
IF@I < Melal| and Mp [ [RCldr<i @)

— 00
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Consider the problem

u(t) = —Au(t) + F([ k(t —s)g(s,u(s))ds) for t>a (2.3)
u(t) =ug(t —a) for t<a, (2.4)

where ug € C((—00,0], X) is a given bounded, equiintegrable function which
fulfills the matching condition

uo(0) = /_OOO K(-s)gla+ s.u0()ds). (2.5)

Theorem 2.1 Under assumptions (2.1) and (2.2), there is a value ¢ in (a,b)
such that (2.3)-(2.4) has a weak solution on (—oo,c|.

Proof: Note that k; € L1([0,00),£(X)) implies k € L1([0,00), L(X™, R"))
and (2.2) makes sense. This is only a technical supposition because (2.3) could
be rewrite with k/M and Mg (instead of k, g, resp.; M € R is sufficiently big)
fulfilled (2.3). Let

P:C((—00,b],U) — C((—00,b],U)
defined by

F(fioo k(t —s)g(s, uf(s))ds) ift>a

£t if t < a, (26)

where u/ is the weak solution of (1.2).
Observe that Pf = f holds if and only if u/ is the weak solution of the
equation (2.3)-(2.4). Let us choose p > 0 such that

B(u(a),p) = {v € X : lv — u(a)]| < p} C U. (2.7)
Since g is bounded there is M € R such that
lg(s,v) <M for  (s,v) € ([-00,b] X [Ua N B(uo, p)])- (2.8)

Denote by S(t) the semigroup generated by —A on D(A). Let us choose further
b > cg > a such that for all ¢ € [a, co]

15t = a)uo — uol| + (co — a)M < p, (2.9)

and ¢ € [a, ¢o] such that
(¢ —a)Mpl|lk|L, <1. (2.10)

Let us define

Cuo ((—00,0],U) = {u € C((—=00,b],U) : u(t) =up(t —a) for t<a}. (2.11)
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Let
H :Cy,((—00,0],U) — C([a,b],U)
be a natural homeomorphism with (H f)(t) = f(t) for t € [a,b] and let
K., ={f €C([-o0,c],X) : [[Hf(t)l[ooc <7 & f(b) =uo(d —a) for d<a}.
(2.12)

Obviously K7,  is nonempty, bounded, closed and convex subset of the space
Cuo([_OO’ C]v X)

Observe that P = Py o Py, where (using the matching condition (2.5)) we
define Py : Cyy ((—00,b],U) — Cyy((—00,b],U) as

Prot) = {F(fjoo k(t — s)g(s,v(s))ds) ift>a (2.13)
v(t) ift<a

and Py : Cy, ((—00,b],U) — Cyy ((—00,b],U) is defined as P, = H~1 Py H, where
Py :C([a, 0], U) — C([a, 8], U)

and Pjg(t) is the weak solution of the abstract Cauchy problem

u(t) + Au(t) = g(t) for t>a
u(a) = g(a) = uo(0).
For details on this problem, we refer the reader to Barbu [1, page 124] and for

some applications of this result to [10, page 35].
Let f,h € Li([a,b], X) and let u, v be solutions, in the weak sense, of

ut) + Au(t) = f(t)
o(t) + Av(t) = () (2.15)

(2.14)

with some initial conditions u(a),v(a). Then for s,t € [a, b] we have

[u(t) = o(@)] < [luls) —v(s)ll +/ 1f(7) = h(7)|dr. (2.16)

From this inequality, it follows that

[P35 (t) = P3ha()|| < [[h1(a) — ha(a)]| +/ [ (7 (r)lldr
< [[h1 = haloo(t —a + 1),

which implies the continuity of Py on C([a,b],U) and so P, on K7, . Using (2.8),
(2.9) and (2.16) for u € K, , t € [a, co] we get

1Pz u(®) = u(@)ll < [Pult) = S = aju(a)]| + ISt - a)u(a) - u(a)l]
< [I5(t = a)u(a) = u(a)| +/ lg(#)lldt (2.17)

< [I5(t = a)u(a) = u(a)|| + (co — a)M < p.
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Then we conclude that Pyu(t) € B(u(a),p) N D(A). Consequently, Pyu(t) €
D(g) for t > a . By (2.2), (2.8), (2.10) and (2.13), for t > a we have

IPu)l =[PPl = [F( [ k(e = s)gls. Pous))ds)]

— 00

0
<M s ol Pou(s)| / k(=) dr
t —00

s€(—o0,

0
< MpM / |k(—r)lldr < M.

and (2.5) implies that
Pu(t) =u(t) fort<a;

i.e., P maps K% into itself. Since

(P = Pro)o)]
=IF ([ = 9lglosol) — gl wls)s) |
= Mell [ k= 9o, o9) — g5l

|
+ [ k(e = $)lg(s.v() - g(s.wls))ds]

< Mplv(a) —w(a)
4 max [g(s, 0(s)) — g(s, w(s)](t — @)kt - 9)l|c.].

s€la,t]
(2.18)
the function P is continuous from C,,((—o0, b]; U) into itself. Using the conti-
nuity of P, we have that P : K% — K% is continuous. Since

/EPf(t)dt < AE) m;cxfo(t) < MNE)||k|| g2 M
and

b—hg
/ IPF(t + ho) — PF@)]dt
t

< ||l la— bl ( / Kt — 5)g(s,uf (3))ds — / Kt — s)g(s,uf (3))ds)

—0o0 — 00

< hollF|| lla = blf [|k[| £, M

t+ho

we get that HP(K}!) is 1-equiintegrable. Let us define
K., := cl(conv P(K%))

Easy calculations shows that H(K,,) = cl(conv HP(K}, )) is equiintegrable
and Theorem 1.1 implies the relative compactness of Py H(K,,) = HPy(Ky,).
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Since H is homeomorphism, P5(K,,) and P(K,,) = P1P(K,,) are relative
compact. Since P(K,,) is a subset of the closed, bounded and convex set K,
the Schauder fixed point theorem ensures the existence of a fixed point of P.

3 Application to an n species Lotka-Volterra
competitive system

We prove local existence of solutions for a system, which is a model of an n
species competition arising in the population dynamics. Let Q@ C R™ be a
bounded domain with smooth boundary. Feng [3] studied the system (i =
1,...,N)

(wi)e = D; [Au; + u;(a; Zn” ] on (0,00) x
i (3.1)
u; =0 in (0,00) x 00
ui(s,z) =ni(s,x) on [—7,0] x Q,

where u;(t, z) denotes the density of the i-th species at time ¢ and position x

(inside a bounded domain © of R?), u”(t,2) = u;(t — 755,2), 715 > 0, T =

max{7;;}, D;,a; are positive, and k;; are nonnegative real numbers. Supposing

the existence of a solution (a sufficient condition for this - using upper and lower

semisolutions - is formulated in [6]) the authors describe the attractors of (3.1).
In [8], Teng studies

YD 0fast) — ult Zcm ~7i(0)

m

_Z[ kij(t,s)Q (xj(t+s))ds], (i=1,...,n)

(3.2)

an n-species Lotka-Volterra competitive system with delays as an application of
existence result for periodic Kolmogorov systems with delay. Detailed study of
the non-autonomous Lotka-Volterra models with delay (focused on existence of
positive periodic solutions) can be found in [9].

We rewrite (3.1) taking into account that a bounded attractor A has a
bounded neighborhood U and B € R such that u(t,z) € U for ¢ < to implies
llu(t, z)|| < B for all t > ty. B can be considered as a bound determined by the
carrying capacity of the territory. Let b : R — R be a bounded, continuous such
that b(x) = z for |z| < B. The new form of (3.1) is

(ui)e = [Auz + b(u;)(a; Z“U T” on (0,00) x Q

u; =0 on (0 ,oo)x@Q
ui(s,z) =ni(s,z) on [—7,0] x Q.
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We reformulate (3.3) again in according to the notations and assumptions of
Theorem 2.1. Let Q C R3 be a bounded open subset, X = [L%(Q)]", u =
(U1, ... up) : R— X u(s)(x) = (ui(s,x),...,un(s,x)) and

D(A) = [CQ(Q)]", A(uy,ug, ... uy) = (D1Auy, ..., DyAuy,).

Let g = (91,92, - - -, gnt1) be such that g; : (—oo,00] x X — X are bounded and
continuous, Lipschitz-continuous in the second variable and gi(s7u(s))|]RX 5=

u(s), where B is an a priori bound of the solutions of (3.3), k = (k1, k2, ..., knt1),
where k; € L1(]0, 00), L(X)).
We rewrite (2.3)-(2.4) in the form

t

(ui(t,x))r = D;Au,(t, x) + Fz(/_ k(t — s)g(s,u(s))ds) on (0,00) x Q (3.4)

ui(s,2) = ni(s,x) on [—7,0] x £,

where we take A as defined above and n + 1 instead of n. In a special case we
get a perturbed version of (3.3), supposed that the right-hand side of (3.4) is
approximated such that

[[ ki(t — s)gi(s, u(s))ds]j ~ fiijb(u;” @) (G,j=1,...,n) (3.5)

and
[/_ Bt = 8)gast (5, 0()ds] 2 b)) (G=1Liooon).  (36)

According to the choice of g requirements (3.5) and (3.6) can be rewritten as

/_OO Ei(t — s)(u1(s),ua(s),...,us(s))ds (3.7)

~ (Kirb(ul™ (1)), ki2b(ud(t)), . . ., Kinb(uri*(t))) (i =1,...,n)

and
/_ Eni1(t — s)(u1(s),...,un(s))ds = (b(ui(t)),...,blus(t))). (3.8)

Obviously k1, ks, ..., knt1 can be chosen such that k; € Lq(]0,00), £(X)) and
approximations (3.7) and (3.8) are sharp; namely, for all €1,€2,...,€6,41 > 0
there are k; € L1([0,00), £L(X)) such that for any bounded (u1,uz, ..., u,) and
for all t > tg,

/ Fa(t — ) (w1 (5), ua(5), - ., un(s))ds

—00

— (kirb(ul (1)), Riab(ug® (1)), . . ., Kinb(ujim (1)) <€ (i=1,...,n)
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and

¢
/ knt1(t — s)(u1(s), ..., un(s))ds — (b(ui(t)), ..., b(un(t))) < €nt1-
Moreover, the terms on the left-hand side of (3.7) and (3.8) lead to a more
precise model than the original equation did (3.1) or (3.3) since the new terms
keep track the past of the population. Finally let F' = (Fi,..., F},) where

[ o= sigtssutsnas € @y

and
Fy s (L@ — 12(0),
° (3.9)

Fi(X1,X2, .+ Xy Xng1) = 63 (Xng1)i — (Xng1)7 — > (Xng1)i(X1)-
i=1

Since k = (k1,k2,...,kny1) and g = (91,92, - - - gn41) fulfill every requirements
listed in Theorem 2.1 we get the following

Theorem 3.1 Let u;(s,x) = n;(s,x) on [—7,0] x Q be an initial condition with
a priori bound B of the possible solutions of (3.4). Let further k, g and F be as
defined by (3.5), (3.6) and (3.9) satisfying the conditions of Theorem 2.1. Then
(3.4) - a modified version of (3.1) - has a global solution.

We have to prove only the existence of a global solution. Observe that the
condition b > ¢y (required in (2.9) and in (2.17)) plays no role here because
we have not restricted the domain of g. By repeating the method for seeking
local solution one can choose a constant ¢ — a in each steps, i.e. we have a local
solution on [a,c] and then [a,2c — a], [a,3c — 2a] and so on, where every local
solution fulfills the conditions of Theorem 2.1 which ensures the existence of a
global solution.
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