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Semi-linearized compressible Navier-Stokes

equations perturbed by noise ∗

Hakima Bessaih

Abstract

In this paper, we study semi-linearized compressible barotropic Navier-
Stokes equations perturbed by noise in a 2-dimensional domain. We prove
the existence and uniqueness of solutions in a class of potential flows.

1 Introduction

We consider the following system of equations with a stochastic perturbation

ρ̄ut +∇p(ρ) = µ∆u+ (µ+ λ)∇ div u+Gt in QT ,

ρt + div(ρu) = 0 in QT ,
(1.1)

where QT = (0, T ) × D, D = (0, 1)2), ρ̄, λ, µ are constants such that ρ̄ > 0,
µ > 0, µ+ λ ≥ 0; while G is a stochastic process in a function space, which we
will precise below, and ut and Gt denote the derivative with respect to t in the
distribution sense. ∇ and div are the gradient and divergence operators with
respect to the space variables, ∆ is the Laplace operator. The space variables
are denoted by x = (x1, x2) and the time by t.

In absence of the random perturbation Gt, (1.1) is reduced to the system

ρ̄ut +∇p(ρ) = µ∆u+ (λ+ µ)∇ div u,
ρt + div(ρu) = 0.

(1.2)

This system can be considered as a semi-linearized approximation of the com-
pressible Navier-Stokes equations of a barotropic viscous fluid

ρ (∂tui + (u · ∇)ui)− ∂ip(ρ) =
n∑
j=1

∂j (µ(∂jui + ∂iuj)) + ∂i(λ div u),

ρt + div(ρu) = 0,

(1.3)

where i = 1, . . . , n; u, ρ, p(ρ) represent respectively the velocity vector, the den-
sity, and the pressure; while µ, λ are viscosity coefficients which according to the
thermodynamic principles should satisfy the inequalities µ > 0 and 3λ+2µ ≥ 0.
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System (1.3) has been investigated mostly for one-dimensional flows (n = 1).
For many-dimensional flows, considerably less is known except for small initial
data or in small time interval. A global existence theorem for the model (1.3) has
been proved by P.L.Lions [9, 10] and Vaigant-Kazhikhov [16]. Notice that in the
first µ and λ are considered constants while some particular requirements on the
growth of the viscosity coefficient λ and the pressure as functions of the density
ρ are imposed for the last result. The semi-linearized system (1.2) is studied
in [15], which proves the existence and uniqueness of the strong solution. As
far as the stochastic equations for incompressible viscous fluids are concerned,
some existence theorems and some results on various aspects are known see [2,
5, 6] etc. . . But in the compressible case, the variation of the fluid density gives
some difficulties. For this reason, only the two dimensional space is considered
here with some other restrictions. In the one dimensional case, the full equation
(1.3) subject to a perturbation is studied in [13] and [14].

We use the standard notation W l,p for the Sobolev spaces consisting in the
functions which are integrable in power p as well as their derivatives up to
the order l and H l = W l,2; C([0, T ];X) denotes the space of the continuous
functions with values in a Banach space X. In this paper, we use the Orlicz
space Lφ(D) associated to the convex function φ(r) = (1+r) log(1+r)−r, r ≥ 0.
We denote by 〈., .〉 the inner product in L2 and by ‖.‖ the corresponding norm.
We use the abbreviated notation

∂j =
∂

∂xj
, ∂2

j =
∂2

∂x2
j

.

The propose of the present paper is to prove the existence (and uniqueness) of a
global solution to (1.1). The solution will be constructed in the class of periodic
and potential flows as in [15], i.e., in the case where u has the form

u = ∇ϕ,

with some function ϕ, which is periodic in x1 and x2. More precisely we suppose
that every function appearing in (1.1) is periodic of period 1 in x1 and x2 and
take the equation of state p(ρ) = cρ, c = const > 0. We also suppose that the
perturbation G is the gradient of a potential i.e. G = ∇W . For simplicity, we
assume that the constants c and ρ̄ are equal to 1 and the constants λ and µ are
respectively equal to 1/4 and 1/2 and impose

∫
D
ϕ(t, x)dx = 0. When∫

D

W (t, x)dx = 0

which will follows from the assumptions of section 2, integrating the momentum
equation (1.1)1, the system acquires the form

dϕ = (∆ϕ+ 1− ρ)dt+ dW in QT ,

ρt + div(ρ∇ϕ) = 0.
(1.4)
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Below, W will be a Wiener process taking values in a particular Hilbert space.
The unknown functions are assumed to take prescribed values at the initial time,

ρ|t=0 = ρ0(x) ≥ 0,
∫
D

ρ0(x)dx = 1,

ϕ|t=0 = ϕ0(x),
∫
D

ϕ0(x)dx = 0.

In addition, we impose the following natural requirement on the solution,

ρ(x, t) ≥ 0 in QT .

2 Main result

Before stating the existence results, we have to precise some conditions on the
noise term appearing in (1.1). We set

D(A) =
{
u ∈ H2(D) : u is periodic of period 1 in x1 and x2,

∫
D

udx = 0
}
.

and define a linear operator

A : D(A)→
{
u ∈ L2(D) : u is periodic of period 1 in x1 and x2

}
,

as Au = −∆u. The operator A is self-adjoint with compact resolvent. We
denote by 0 < λ1 ≤ λ2 . . . (limλj = ∞) the eigenvalues of A and by e1, e2 . . .
the corresponding complete orthonormal system of eigenvectors. As well known,
for the space of periodic functions the eigenvectors are trigonometric functions
and we see easily that

∫
D
ej(x)dx = 0, j = 1, 2 . . . . Let

W (t) =
∞∑
j=1

σjβj(t)ej(x). (2.1)

where {σj}∞j=1 is a sequence of constants satisfying the condition
∞∑
j=1

λδ+2
j σ2

j <∞, (2.2)

with some δ > 0 while β1, β2, . . . are independent standard 1-dimensional Brow-
nian motions defined on a complete probability space (Ω,F ,P) adapted to a
filtration {Ft}t≥0. We denote by E the expectation relative to (Ω,F ,P).

Now, we state the main theorem of this paper.

Theorem 2.1 Let (Ω,F ,P) be a probability space and T a positive number.
Suppose that W is a Wiener process satisfying (2.1) and the condition (2.2),
and that ρ0 and ϕ0 are two Random variables with values respectively in L∞(D)
and W 1,q(D) ∩ H2(D) (q ≥ 1) satisfying respectively the conditions (1.5) and
(1.6) P-a.s. and infx∈D ρ0(x) > 0 and supx∈D ρ0(x) < ∞ P-a.s. Then
there exists a unique solution to (1.4) up to a modification. Besides ρ satisfies
infQT ρ(x, t) > 0 and supQT ρ(x, t) <∞ P-a.s.
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3 Reduction of the problem via the Ornstein-
Uhlenbeck equation

Let us consider an auxiliary problem, the Ornstein-Uhlenbeck equation,

dz(t) +Az(t)dt = dW (t),
z(0) = 0.

(3.1)

This equation has a solution given by the process (see [4])

z(t) =
∫ t

0

e−(t−s)AdW (s), (3.2)

where e−tA denotes a C0-semigroup generated by A. The regularity of z(t)
depends on the regularity of W (t). Indeed, we have for an arbitrary k > 0

Akz(t) =
∞∑
j=1

∫ t

0

λkj e−(t−s)λjσjdβj(s)ej .

E‖z(t)‖2D(Ak) = E‖Akz(t)‖2

= E
( ∞∑
j=1

∫ t

0

λkj e−(t−s)λjσjdβj(s)
)2

=
∞∑
j=1

∫ t

0

|λkj e−(t−s)λjσj |2ds

=
∞∑
j=1

λ2k
j σ

2
j

2λj
(1− e−2tλj ).

According to (2.2), W (t) belongs in D(A(δ+2)/2) for some δ > 0 which yields,
for k = (δ + 3)/2 in the above equality, that z(t) has continuous trajectories
taking values in D(A(3+δ)/2) (as we will need in the next sections), i.e. z(t) ∈
C([0, T ];D(A(3+δ/2)) P-a.s. for some δ > 0.

Following the idea of Bensoussan-Temam [2], we set

y(t) = ϕ(t)− z(t). (3.3)

Using this change of variable in (1.4) and equation (3.1), one obtains the system

yt −∆y = 1− ρ in QT ,

ρt + div(ρ∇(y + z)) = 0 in QT .
(3.4)
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4 Reduced deterministic problem

In this section, we study the following reduced deterministic problem

yt −∆y = 1− ρ in QT ,

ρt + div(ρ∇(y + z)) = 0 in QT ,
(4.1)

where z(t) is a continuous function taking values in H3+δ(D), δ > 0. For this
problem, we state the following existence and uniqueness theorem.

Theorem 4.1 Let T be positive number and suppose that y0 ∈ W 2,s(D) and
ρ0 ∈ Ls(D), s ≥ 2. We suppose also that z ∈ C0([0, T ];H3+δ(D)) (δ > 0)).
Then there exists at least one solution (y, ρ) to Problem (4.1) which satisfies

y ∈ L∞(0, T ;W 1.q(D)) ∩ L2(0, T ;H2(D)),

yt ∈ L∞(0, T ;Ls(D)) ∩ L2(0, T ;H1(D)),
ρ ∈ L∞(0, T ;Lφ(D)) ∩ Ls(QT ),

where q ≥ 2. Moreover, if infx∈D ρ0(x) > 0 and supx∈D ρ0(x) < ∞, then
infQT ρ(x, t) > 0, supQT ρ(x, t) <∞, and (4.1) is uniquely solvable.

The proof follows the lines of Vaigant-Kazhikhov [15], of which we will use
the ideas without quote them explicitly.

4.1 A priori estimates and existence of solutions

In this section, we obtain a priori estimates that permit us to prove the existence
of a solution. The first energy estimate is obtained by multiplying the first
equation in (4.1) by ∆y and the second equation by log ρ, followed by integrating
over D. More precisely, we obtain

d

dt

∫
D

(1
2
|∇y|2 + ρ log ρ− ρ+ 1

)
dx+

∫
D

|∆y|2 ≤ ‖∆z‖L∞ . (4.2)

This relation implies that the solution is bounded in the norms of the spaces

y ∈ L∞(0, T ;H1(D)), ∆y ∈ L2(0, T ;L2(D)), ρ ∈ L∞(0, T ;Lφ(D)).

The following lemma may be derived from the second equation in system (4.1).

Lemma 4.2 If ρ0 ∈ Lp−1(D) then there exists a constant C depending on p
such that the inequality

‖ρ(t)‖p−1
Lp−1(D) +

∫ t

0

‖ρ(τ)‖pLp(D)dτ

≤ C
(
‖ρ0‖p−1

Lp−1(D) +
∫ t

0

‖yτ (τ)‖pLp(D)dτ +
∫ t

0

‖∆z(τ)‖pLp(D)dτ
) (4.3)

holds for any exponent p, 2 < p <∞ and any t ∈ [0, T ].
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Proof: For r > 1 using (4.1)1, the expression (4.1)2 can be rewritten in the
form

∂ρr

∂t
+∇ · (ρr∇(y + z)) + (r − 1)ρr+1 = (r − 1)ρr(yt − 1−∆z). (4.4)

Integrating over D and estimating ρr|yt| and ρr|∆z| by the Young inequality,

ρr|yt| ≤ ε1ρr+1 + C1|yt|r+1,

ρr|∆z| ≤ ε2ρr+1 + C2|∆z|r+1,

with convenient small numbers ε1, ε2, we obtain (4.3) for p = r + 1. �

Lemma 4.3 If ρ0 ∈ Lp−1(D), then there exists a constant C depending on p
such that the inequality

‖y‖W 2,p(QT ) ≤ C(‖ρ0‖Lp−1(D) + ‖yt‖Lp(QT ) + ‖∆z‖Lp(QT )) (4.5)

holds for 2 < p <∞.

The proof of this lemma is is a consequence of (4.3) and the first equation of
(4.1).

Now, to obtain additional a priori estimates, we differentiate (4.1)1 with
respect to x1, x2, t so that we obtain

∇yt −∆∇y = −∇ρ, (4.6)
ytt −∆yt = −ρt = div(ρ∇(y + z)). (4.7)

Lemma 4.4 If ρ0 ∈ L3(D), y0 ∈ W 1,q(D) ∩ H2(D), where q ≥ 4 then there
exists a constant C depending on q such that the inequality

sup
0<τ<t

(∫
D

|∇y|q +
∫
D

|yt|2
)

+
∫ t

0

∫
D

|∇yt|2 ≤ C (4.8)

holds for all t ∈ [0, T ].

Proof: For arbitrary q ≥ 2 and s ≥ 2, we multiply (4.6) by q|∇y|q−2∇y and
(4.7) by s|yt|s−2yt, sum these equations and integrate over D to obtain

d

dt

∫
D

(|∇y|q + |yt|s) + q
2∑
j,k

∫
D

(∂j∂ky)2|∇y|q−2

+ q(q − 2)
2∑

j,k,l

∫
D

(∂j∂ky)(∂j∂ly)(∂ky)(∂ly)|∇y|q−4 + s(s− 1)
∫
D

|∇yt|2|yt|s−2

= q

∫
D

ρ∆y|∇y|q−2 + q(q − 2)
2∑
j,k

∫
D

ρ(∂jy)(∂ky)(∂j∂ky)|∇y|q−4

− s(s− 1)
∫
D

ρ∇(y + z) · ∇yt|yt|s−2.

(4.9)
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By taking q = 4 and s = 2 in (4.9) and substituting ρ = 1 + ∆y − yt, we have

d

dt

∫
D

(
|∇y|4 + |yt|2

)
+ 4

2∑
j,k

∫
D

(∂j∂ky)2|∇y|2 + 2
∫
D

|∇yt|2

= 4
∫
D

∆y|∇y|2 + 4
∫
D

(∆y)2|∇y|2 − 4
∫
D

(∆y)yt|∇y|2

+ 8
2∑
j,k

∫
D

(∂jy)(∂ky)(∂j∂ky) + 8
2∑
j,k

∫
D

∆y(∂jy)(∂ky)(∂j∂ky)

− 8
2∑
j,k

∫
D

yt(∂jy)(∂ky)(∂j∂ky)− 2
∫
D

∇(y + z).∇yt − 2
∫
D

∆y∇(y + z).∇yt

+ 2
∫
D

∇(y + z).∇ytyt − 8
2∑

j,k,l

∫
D

(∂j∂ky)(∂j∂ly)(∂ky)(∂ly)

= I1 + · · ·+ I10 .

The assumption that D is a two-dimensional region is essential for this estimate.

I2 = 4
∫
D

|∇y|2|∆y|2 ≤ ‖∆y‖‖∆y‖L4(D)‖|∇y|2‖L4(D).

On the other hand

‖|∇y|2‖L4(D) ≤ ‖|∇y|2‖1/2‖∇|∇y|2‖1/2.

Then using Young’s inequality twice, we obtain for arbitrary positive small
numbers ε1 and ε2 such that

I2 ≤ ε1‖∆y‖‖∆y‖2L4(D) + ε2‖∇|∇y|2‖2 + C‖∆y‖2‖|∇y|2‖2.

Since

‖∇|∇y|2‖2 =
∫
D

|∇|∇y|2|2 = 2
2∑
j,k

∫
D

|∇y|2(∂j∂ky)2

and
‖|∇y|2‖2 =

∫
D

(|∇y|2)2 =
∫
D

|∇y|4,

one obtains

I2 ≤ ε1‖∆y‖‖∆y‖2L4(D) + ε2

2∑
j,k

∫
D

|∇y|2(∂j∂ky)2 + C‖∇y‖4L4(D)‖∆y‖
2.

By Young’s inequality and for arbitrary small positive constant ε, ε1 and ε2 we
can estimate I1, I3, I4, I5 and I6 as follows:

I1 = 4
∫
D

|∇y|2∆y ≤ εI2 + C

∫
D

|∇y|2,
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I3 = −4
∫
D

∆y|∇y|2yt

≤ ε1
∫
D

|∇y|2||∆y|2 + ε2‖∇yt‖2 + C‖yt‖2‖∇y‖2‖∆y‖2,

I4 = 8
2∑
j,k

∫
D

(∂jy)(∂ky)(∂j∂ky) ≤ ε
2∑
j,k

∫
D

(∂ky)2(∂j∂ky)2 + C

∫
D

|∇y|2,

I5 = 8
2∑
j,k

∫
D

∆y(∂jy)(∂ky)(∂j∂ky) ≤ ε
2∑
j,k

∫
D

(∂ky)2(∂j∂ky)2 + CI2.

I6 = −8
2∑
j,k

∫
D

yt(∂jy)(∂ky)(∂j∂ky)

≤ ε1
2∑
j,k

∫
D

(∂ky)2(∂j∂ky)2 + ε2‖∇yt‖2 + C
2∑
j,k

‖yt‖2‖∇y‖2‖∂j∂ky‖2.

I7 = −2
∫
D

∇(y + z) · ∇yt ≤ ε‖∇yt‖2 + C

∫
D

|∇(y + z)|2.

I8 = −2
∫
D

∆y∇(y + z) · ∇yt ≤ ε‖∇yt‖2 + CI2 + ‖∇z‖2L∞(D)

∫
D

|∆y|2.

I9 = 2
∫
D

∇(y + z) · ∇ytyt ≤ ε‖∇yt‖2 + C‖yt‖2‖∆(y + z)‖2‖∇(y + z)‖2.

I10 ≤
2∑

j,k,l

(∫
D

(∂j∂ky)2
)1/2(∫

D

(∂j∂ly)4
)1/4(∫

D

(∂ky)8
)1/8(∫

D

(∂ly)8
)1/8

≤ε1
2∑

j,k,l

‖∂j∂ky‖‖∂j∂ly‖2L4(D) + ε2‖∇|∇y|2‖2

+ Cε1,ε2
∑
j,k

‖|∇y|2‖2‖∂j∂ky‖2.

We set

α(t) = sup
0<t<T

∫
D

|∇y|4 + |yt|2,

β(t) =
2∑
j,k

∫
D

(∂j∂ky)2|∇y|2 +
∫
D

|∇yt|2.

On the other hand from (4.5) in particular for p = 4 and ρ0 ∈ L3(D), we have

‖y‖2W 2,4(D) ≤ C
(
‖ρ0‖L3(D) + ‖yt‖2L4(D) + ‖∆z‖2L4(D)

)
.



EJDE–2003/02 Hakima Bessaih 9

Consequently, by using Cauchy’s inequality and the energy estimate (4.2) we
obtain

ε

∫ t

0

‖∆y‖‖∆y‖2L4(D) ≤ Cε
(∫ t

0

‖∆y‖4L4(D)

)1/2

.

But in the two-dimensional space we have

‖yt‖4L4(D) ≤ C‖yt‖
2‖∇yt‖2, (4.10)

so that

ε

∫ t

0

‖∆y‖‖∆y‖2L4(D) ≤ Cε
(
α(t)1/2

(∫ t

0

β(τ)dτ
)1/2

+ ‖∆z‖2L4(QT )

)
.

It is the same for ε1
∑2
j,k,l

∫ t
0
‖∂j∂ky‖‖∂j∂ly‖2L4(D).

Set Λ(t) = ‖∆y(t)‖2. Since this is integrable on [0, T ], we have

α(t)+
∫ t

0

β(τ)dτ ≤ α(0)+εα(t)1/2
( ∫ t

0

β(τ)dτ
)1/2+C

(
1+
∫ t

0

(Λ(τ)+1)α(τ)dτ
)
.

Using Gronwall’s lemma we obtain,

sup
0<τ<t)

∫
D

(
|∇y|4 + |yτ |2

)
+
∫ t

0

∫
D

|∇yτ |2 ≤ C. (4.11)

According to this equation,∫ T

0

∫
D

|yt|4 ≤
∫ T

0

‖yt‖2‖∇yt‖2 ≤ C. (4.12)

Hence, using this inequality in (4.3) and (4.5) for p = 4, it follows that∫ t

0

∫
D

ρ4 +
∫ t

0

∫
D

|∆y|4 ≤ C. (4.13)

Now, let us consider the equation (4.9) for q ≥ 4 and s = 2. We obtain the
equality

d

dt

∫
D

(
|∇y|q + |yt|2

)
+ q

2∑
j,k

∫
D

(∂j∂ky)2|∇y|q−2 + 2
∫
D

|∇yt|2

= −2
∫
D

ρ∇(y + z) · ∇yt + q

∫
D

ρ∆y|∇y|q−2

+ q(q − 2)
2∑
j,k

∫
D

ρ(∂jy)(∂ky)(∂k∂jy)|∇y|q−4

− q(q − 2)
2∑

j,k,l

∫
D

(∂j∂ky)(∂j∂ly)(∂ky)(∂ly)|∇y|q−4.

(4.14)
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The first term on the right hand side of (4.14) by Young’s inequality is bounded
by∫ T

0

∫
D

ρ∇(y + z) · ∇yt ≤ ε
∫ T

0

‖∇yt‖2 + C

∫ T

0

‖ρ‖2L4(D)‖∇(y + z)‖2L4(D).

In view of (4.11) and (4.13), ρ and ∇y are bounded respectively in L4(QT ) and
in L∞(0, T ;L4(D)). Hence∫ T

0

∫
D

ρ∇(y + z) · ∇yt ≤ ε
∫ T

0

‖∇yt‖2 + C

∫ T

0

‖∇z‖4L4(D).

Using the Young and the Hölder’s inequality for the second term on the right
hand side of (4.14), one obtains∫

D

ρ∆y|∇y|q−2 ≤ ε

∫
D

|∆y|2|∇y|q−2 + C

∫
D

ρ2|∇y|q−2

≤ ε

∫
D

|∆y|2|∇y|q−2 + C‖ρ‖2L4(D)

(∫
D

|∇y|2(q−2)
)1/2

.

We write the last integral in the above inequality as(∫
D

|∇y|2(q−2)
)1/2

= ‖|∇y|q/2‖2(q−2)/q

L4(q−2)/q .

Using the embedding inequality (see [8], pp 62)

‖f‖L4(q−2)/q ≤ C‖∇f‖a‖f‖1−a, (4.15)

for the function f = |∇u|q/2, where a = (q − 4)/(2(q − 2)), yields∫
D

ρ∆y|∇y|q−2

≤ C‖ρ‖2L4‖∇(|∇y|q/2|)‖(q−4)/q‖|∇y|q/2‖+ ε

∫
D

|∆y|2|∇y|q−2.

Since ‖|∇y|q/2‖ =
( ∫

D
|∇y|q

)1/2

, and

‖∇(|∇y|q/2)‖ =
q

2

(∑
j,k

∫
D

(∂j∂k)2|∇y|q−2
)1/2

,

and in virtue of the Young’s inequality with p = 2q/(q− 4) and p′ = 2q/(q+ 4)
we obtain∫

D

ρ∆y|∇y|q−2 ≤ ε
∑
j,k

∫
D

(∂j∂k)2|∇y|q−2 + C‖ρ‖4q/(q+4)
L4(D)

(∫
D

|∇y|q
)q/(q+4)

.
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By using the same argument for the third term on the right hand side of (4.14)
we obtain, for an arbitrary ε,

2∑
j,k

∫
D

ρ(∂jy)(∂ky)(∂k∂jy)|∇y|q−4

≤ ε
2∑
j,k

∫
D

|∇y|q−2(∂j∂ky) + ‖ρ‖4q/(q+4)
L4(D)

(∫
D

|∇y|q
)q/(q+4)

.

For the last term on the right hand side of (4.14), we use the same arguments
as before, we have

2∑
j,k,l

∫
D

(∂j∂ky)(∂j∂ly)(∂ky)(∂ly)|∇y|q−4

≤ ε
2∑

j,k,l

∫
D

|∇y|q−2(∂j∂ky)2 + Cε

2∑
j,l

‖∂j∂ly‖4q/(q+4)
L4(D)

(∫
D

|∇y|q
)q/(q+4)

Consequently, using (4.5) for p = 4 and (*), we have∫
D

(
|∇y|q + |yt|2

)
+
∫ T

0

∫
D

|∇yt|2

≤ C
(
‖∇y0‖qLq(D) + ‖ρ0‖2 + ‖∆y0‖2 + ‖∆z‖2L4(QT )

)
+
(∫ T

0

‖ρ‖4q/(q+4)
L4(D) + ‖yt‖2q/(q+4)‖∇yt‖2q/(q+4)

+ ‖∆z‖4q/(q+4)
L4(QT ) + ‖ρ0‖4q/(q+4)

L3(D)

)(∫
D

|∇y|q
)q/(q+4)

Now using Gronwall’s lemma, (4.12) and (4.13), we obtain (4.8). �

Lemma 4.5 If ρ0 ∈ Ls(D), y0 ∈W 2,s(D) then the inequality

sup
0<τ<t

∫
D

|yτ |sdx ≤ C (4.16)

holds for s > 2 and t ∈ [0, T ].

Proof: We multiply (4.7) by s|yt|s−2yt, s > 2 and then we integrate over D,
to obtain

d

dt

∫
D

|yt|s + s(s− 1)
∫
D

|yt|s−2|∇yt|2 = −s(s− 1)
∫
D

ρ∇(y + z) · ∇yt|yt|s−2.

(4.17)
Cauchy’s inequality applied to the right hand side of the above quality gives∣∣ ∫

D

ρ∇(y + z) · ∇yt|yt|s−2
∣∣ ≤ ε∫

D

|yt|s−2|∇yt|2 + C

∫
D

ρ2|∇(y + z)|2|yt|s−2.
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According to (4.1)1, with ρ = 1 + ∆y − yt, (4.17) yields

d

dt

∫
D

|yt|sdx+
∫
D

|yt|s−2|∇yt|2

≤ C(
∫
D

|∇(y + z)|2|yt|s−2 + ‖∇(y + z)‖2C(D)

∫
D

(
|yt|s + |∆y|2|yt|s−2

)
).

(4.18)
The first term on the right hand side of (4.18), using Young’s inequality with
p = s/2 and p′ = s/(s− 2), is estimated as∫

D

|∇(y + z)|2|yt|s−2 ≤
(
‖∇y‖2Ls(D) + ‖∇z‖2Ls(D)

)
‖yt‖s−2

Ls(D).

According to (4.5)∫
D

|∇(y + z)|2|yt|s−2 ≤ C
(
‖yt‖sLs(D) + ‖yt‖s−2

Ls(D)‖∇z‖
2
Ls(D)

)
.

Using Hölder’s inequality, the third term on the right hand side of (4.18) yields∫
D

|∆y|2|yt|s−2 ≤ ‖yt‖s−2
Ls(D)‖∆y‖

2
Ls(D).

On the other hand, from the Gagliardo-Nirenberg’s inequality it follows

‖∇y‖C(D) ≤ ‖∆y‖bL4(D)‖∇y‖
1−b
Lq(D).

For b = 4/(q + 4) and by (4.8) and (4.13), we obtain

∫ t

0

‖∇y‖q+4
C(D) ≤

∫ t

0

‖∆y‖4L4(D)‖∇y‖
q
Lq(D) ≤ C. (4.19)

We set βs(t) = sup0<τ<t ‖yτ‖sLs . Then the expression on the right-hand side of
(4.18), after integrating on (0,t), can be estimated as

‖yτ‖sLs(D) +
∫ t

0

∫
D

|yτ |s−2|∇yτ |2

≤ C(‖yτ (0)‖sLs(D) +
∫ t

0

‖yτ‖s−2
Ls(D)‖∇z‖

2
Ls(D)

+
∫ t

0

(
1 + ‖∇(y + z)‖2C(D)

)
‖yτ‖sLs(D)

+
∫ t

0

‖∇(y + z)‖2C(D)‖yτ‖
s−2
Ls(D)‖∆y‖

s
Ls(D)).

(4.20)
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By Young’s inequality (p = s/(s− 2), p′ = s/2), the last term on the right-hand
side of the above inequality can be estimated as∫ t

0

‖∇(y + z)‖2C(D)‖yτ‖
s−2
Ls(D)‖∆y‖

2
Ls(D)

≤ sup
0<τ<t

‖yτ‖s−2
Ls(D)

∫ t

0

‖∇(y + z)‖2C(D)‖∆y‖
2
Ls(D)

≤ (βs(t))(s−2)/s
(∫ t

0

‖∇(y + z)‖2s/(s−2)
C(D)

)(s−2)/s(∫ t

0

‖∆y‖sLs(D)

)2/s

.

From (4.5), we have ∫ t

0

‖∆y‖sLs(D) ≤ C
(

1 +
∫ t

0

βs(τ)dτ
)
.

In view of (4.19) and Young’s inequality it follows that∫ t

0

‖∇(y + z)‖2C(D)‖yτ‖
s−2
Ls(D)‖∆y‖

2
Ls(D)dτ ≤ εβs(t) +

(
1 +

∫ t

0

βs(τ)dτ
)
.

On the other hand the second term of (4.20) can be estimated as∫ t

0

‖yτ‖s−2
Ls(D)‖∇z‖

2
Ls(D) ≤ βs(t)

(s−2)/2

∫ t

0

‖∇z‖2Ls(D)

≤ εβs(t) + Cε

(∫ t

0

‖∇z‖2Ls(D)

)s/2
.

We conclude (4.16) by using Gronwall’s lemma. �
These estimates are sufficient for proving the existence of solutions. One can

use the scheme of constructing solutions given in [1]. According to this scheme,
approximate solutions (yk, ρk) are found by the Galerkin method; yk is sought
as a finite sum of basis and ρk is determined from the transport equation. In
particular ∇yk is compact in L2(QT ). Thus, the passage to the limit in the
nonlinear terms in equations (4.1) is justified.

4.2 Upper and lower bounds for the density, and unique-
ness of the solution

The estimates obtained in the preceding section permit us to establish that the
density ρ is bounded provided that the initial density ρ0 is bounded. To this
end, we write out a special equation for log(ρ). This idea has been used in [8].

Lemma 4.6 If y0 ∈W 2,s(D), s ≥ 2 and ρ0 ∈ L∞(D) then

‖ρ(t)‖L∞(D) ≤M, ∀t ∈ [0, T ]. (4.21)
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Proof: Assuming that ρ(x, t) > 0, let us rewrite the second equation in (4.1)
in the form

∂ log ρ
∂t

+∇(y + z) · ∇ log ρ+ ∆(y + z) = 0.

By adding the above equation to (4.1)1, we obtain

∂

∂t
(log ρ+ y) +∇(y + z) · ∇(log ρ+ y) + ρ = 1−∆z +∇y · ∇(y + z). (4.22)

Set γ = log ρ + y, γ+ = max{0, γ(x, t)}. Considering (4.22) as the transport
equation for γ and taking into account the fact that ρ is nonnegative, we con-
clude that

γ+(x, t) ≤ ‖γ+|t=0‖L∞(D) +
∫ t

0

(
1 + ‖∆z‖2C(D) + ‖∇y‖2C(D)

)
. (4.23)

According to (4.8), ‖y‖L∞(QT ) is bounded; indeed

‖y‖L∞(QT ) ≤ C sup
0<t<T

‖∇y‖Lq(D) ≤ C, q > 2. (4.24)

Hence (4.21) follows by the hypotheses of the lemma and from (4.24) and (4.19)
with the constant

M = exp
(
‖y‖L∞(QT ) + ‖γ+|t=0‖L∞(D)

+
∫ t

0

(
1 + ‖∆z‖2C(D) + ‖∇y‖2C(D)

))
.

�

Lemma 4.7 If the initial density ρ0(x) is strictly positive under the hypotheses
of the lemma 4.6, then ρ(x, t) remains a strictly positive function in QT i.e.

ρ(x, t) ≥ m > 0 a.e. in QT . (4.25)

Proof: Let us change the sign in equation (4.22) and rewrite it for γ. We
wish to find an upper bound for the function γ− = max {0,−γ}. By analogy,
we obtain

γ−(x, t) ≤ ‖γ−|t=0‖L∞(D) +
∫ t

0

(
‖∆z‖2L∞(D) + ‖∇y‖2C(D)‖ρ‖L∞(D)

)
. (4.26)

Hence (4.25) follows with the constant

m = exp
(
− (‖y‖L∞(D) + ‖γ−|t=0‖L∞(D)

+
∫ t

0

(
‖∆z‖2∞ + ‖∇y‖2C(D)

)
+MT )

)
.
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�
If the density ρ is bounded, then the solution of (4.1) is unique. Indeed, if

(ρ′, y′) and (ρ′′, y′′) are two solutions, then their difference ρ = ρ′−ρ′′, y = y′−y′′
is a solution to the linear problem

yt −∆y = −ρ,
ρt + div(ρ∇(y′ + z)) + div(ρ′′∇y) = 0,

(4.27)

with the zero initial conditions. Let us introduce an auxiliary function ψ, which
is a solution to periodic Neumann problem

∆ψ = ρ,

∫
D

ψdx = 0. (4.28)

Since ρ is bounded, |∇ψ| is also bounded i.e.

|∇ψ| ≤M a.e. in QT . (4.29)

We multiply (4.27)1 by y and (4.27)2 by ψ, we sum these equations and integrate
over D, we have

1
2
d

dt

(
‖y‖2 + ‖∇ψ‖2

)
+ ‖∇y‖2

= 〈∇y,∇ψ〉 − 〈ρ′′∇y,∇ψ〉 − 〈∆ψ∇(y′ + z),∇ψ〉.

The first two terms on the right-hand side of this equation are bounded by
2−1‖∇y‖22 + C‖∇ψ‖22 in view of the Cauchy’s inequality, since ρ′ is bounded.
The last term can be trasformed by integrating by parts as follows

〈∆ψ∇(y′ + z),∇ψ〉 = 〈(∇ψ∇) · ∇(y′ + z),∇ψ〉 − 1
2
〈∆(y′ + z), |∇ψ|2〉.

For the other part, by Hölder’s inequality∫
D

|∇ψ|2D2(y′ + z) ≤
(∫

D

|D2(y′ + z)|p
)1/p(∫

D

|∇ψ|2p
′
)1/p′

,

with p = ε−1 > 1 and p′ = 1/(1− ε) where 0 < ε < 1 is arbitrary.∫
D

|∇ψ|2D2(y′ + z) ≤M2ε‖∇ψ‖2(1−ε)‖D2(y′ + z)‖L1/ε .

Thus, for the nonnegative function

Y (t) = ‖y‖2 + ‖∇ψ‖2, Y (0) = 0 ,

expression (4.29) yields the inequality

dY (t)
dt

≤ C1Y (t) +M2ε‖D2(y′ + z)‖L1/εY (t)1−ε.
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Consequently,

Y ε(t) ≤ εM2εe(C1+C)εt

∫ t

0

e−Cετ‖D2(y′ + z)‖L1/εdτ

≤ εCM2εe(C1+C)εt

∫ t

0

e−Cετ
(
‖D2y′‖L1/ε + 1

)
dτ

We apply Hölder inequality to the integral with the exponent p = 1/ε and
p′ = 1/(1− ε); we obtain

Y ε(t) ≤ εCM2εe(C1+C)εt
(∫ t

0

(e−Cετ )p
′
)1/p′(∫ t

0

(‖D2y′‖L1/ε + 1)pdτ
)p

≤ εCM2ε
(
‖D2y′‖L1/ε(QT ) + 1

)(1− ε
Cε

(
eCεt/(1−ε) − 1

))1−ε
.

(4.30)
Considering y′ as a solution to the parabolic equation y′t − ∆y′ = 1 − ρ′ with
bounded right-hand side and using estimates for the higher derivatives in the
L1/ε-norm (see [9]), we obtain

‖D2y′‖L1/ε(QT ) ≤ Cε−1‖1− ρ′‖L1/ε(QT ) ≤ Cε−1.

Therefore, from (4.30) follows that

Y (t) ≤ C1/εM2
(1− ε
Cε

(
eCεt/(1−ε) − 1

))(1−ε)/ε
.

It is easy to check that if t ∈ [0, τ ], where Cτ < 1 on [0, τ ], then the right-
hand side of the last inequality vanishes as ε → 0. Hence Y (t) = 0 on [0, τ ].
Repeating the argument for the interval [τ, 2τ ] and so on, we obtain Y (t) = 0,
which proves the uniqueness of the solution.

Conclusion

The solution of deterministic system of equations (4.1) will allow us constructing
the solution of the stochastic system (1.4).

Proof of Theorem 2.1 We can apply Theorem 4.1 to obtain existence and
uniqueness of solution for problem (3.4) for fixed ω. The measurability is an
obvious fact using the uniqueness of the solution (see [17]). As a consequence,
using (3.3) and the properties (measurability) of z, this theorem is proved. �
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