\documentclass[twoside]{article} \usepackage{amssymb,amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil On the Keldys-Fichera boundary-value problem \hfil EJDE--2002/87} {EJDE--2002/87\hfil Zu-Chi Chen \& Ben-Jin Xuan \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 87, pp. 1--13. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On the Keldys-Fichera boundary-value problem for degenerate quasilinear elliptic equations % \thanks{ {\em Mathematics Subject Classifications:} 35J65, 35J30. \hfil\break\indent {\em Key words:} Keldys-Fichera, existence, uniqueness, maximum principle, \hfil\break\indent comparison principle. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted April 27, 2002. Published October 10, 2002. \hfil\break\indent Supported by grants 10071080 and 10101024 from the NNSF of China } } \date{} % \author{Zu-Chi Chen \& Ben-Jin Xuan} \maketitle \begin{abstract} We prove existence and uniqueness theorems for the Keldys-Fichera boundary-value problem using pseudo-monotone operators. The equation studied here is quasilinear, elliptic, and its set of degenerate points may be of non-zero measure. We also obtain comparison and maximum principles for this problem. \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} This article studies the Keldys-Fichera boundary-value problems (KFBVP) for degenerate quasilinear elliptic equations. For linear elliptic equations with nonnegative characteristic form of second order, the KFBVP is well known and has been summarized in detail by Oleinik and Radkevich \cite{[7]}. However little information is known about this problem for nonlinear equations. Ma and Yu \cite{[6]} discussed the KFBVP for the degenerate quasilinear elliptic equation \begin{equation} \label{e1.1} Lu=D_i[a_{ij}(x,u)D_ju+b_i(x)u]-c(x,u)=f(x), \quad x\in \Omega . \end{equation} In this article, the summation from $1$ to $n$ over repeated indices is understood. They obtained an existence theorem by using the acute angle principle for weakly continuous operators. In this paper we consider the more general degenerate quasilinear elliptic equation \begin{equation} \label{e1.2} Qu=-D_ia_i(x,u,Du)+a(x,u)=f(x), \quad x\in \Omega , \end{equation} in a bounded domain $\Omega \subset R^n$, $n\ge 2 $, with piecewise $C^1$-smooth boundary $\partial \Omega $. We also obtain existence results, different from \cite{[6]}, using the pseudo-monotone operator method. Moreover, in this paper the set of degenerate points may be of non-zero measure, which is different from \cite{[6]}. Also, the comparison principle, the maximum principle and a uniqueness theorem of the solution to the KFBVP for (\ref{e1.2}) are discussed. The article is organized as follows. Section 2 formulates the existence theorem, the main result of this paper, and the preliminaries. Section 3 contains the proof of the main result. In section 4, we prove the comparison principle, the maximum principle and the uniqueness theorem. \section{Main Result} Let $\Omega $ be a bounded domain in $R^n$ ($n\ge 2$) with piecewise $C^1$-boundary $\partial \Omega $ and the Sobolev imbedding theorems are valid for this domain. Assume the following hypotheses: \begin{enumerate} \item[(A1)] $a_i(x,z,p)$, $i=1,2,\dots ,n$, satisfy Carath\'eodory conditions, i.e., they are continuous in $(z,p)\in R\times R^n$ for $x$ a.e. in $\bar \Omega $ and measurable in $x\in \bar \Omega $ for every $(z,p) \in \ R\times R^n$. Moreover, $a_i(x,z,p)$ and $a(x,z)$ possess integrable continuous derivatives in $p_i$ and $z$ \item[(A2)] $a_i(x,0,0)\in W^{1/m, m'}(\partial \Omega )$ for $m\ge 2$, \begin{gather*} |a_i(x,z,p)|\le c(|p|^{m-1}+|z|^{l/m'}+\varphi _1(x)), \quad \varphi _1(x)\in W^{1/m, m'}(\partial \Omega ), \\ |a(x,z)|\le c(|z|^{l-1}+\varphi _2(x)), \quad \varphi _2(x)\in L_{l'}(\Omega ), \end{gather*} for $(x,z,p)\in \bar \Omega \times R \times R^n$, where $c>0$, $2\le l<\bar m=m(n-1)/(n-m)$ if $m0 $, $\beta >0$ and a continuous function $\lambda (x)\ge 0$ such that for all $(x,z,p)\in \bar \Omega \times R \times R^n$ and any $\xi \in R^n$ it holds that \begin{gather} \alpha ^{-1}\frac {\partial a_i}{\partial p_j}(x,0,0)\xi _i \xi _j \le \frac {\partial a_i} {\partial p_j}(x,z,p)\xi _i \xi _j \le \alpha \frac {\partial a_i}{\partial p_j}(x,0,0) \xi _i\xi _j, \label {e2.1} \\ \beta ^{-1}\frac {\partial a_i}{\partial z}(x,0,0)\xi _i\le \frac {\partial a_i} {\partial z}(x,z,p)\xi _i \le \beta \frac {\partial a_i}{\partial z}(x,0,0)\xi _i, \label{e2.2} \\ \frac {\partial a_i}{\partial p_j}(x,0,0)\xi _i \xi _j \ge \lambda (x)|\xi |^2;\label{e2.3} \end{gather} \item[(A4)] There exists a positive function $ \varphi _3(x)\in L^1(\Omega )$ such that \begin{equation} \label{e2.4} a_i(x,z,p)p_i+a(x,z)z \ge h(|p|)|p|^m-\varphi _3(x) \end{equation} for $(x,z,p)\in \bar \Omega \times R \times R^n$, where $h(t)$ with $h(0)=0$ is a bounded, non-decreasing and continuous function on $[0, \infty )$. Without loss of generality, we assume that $\sup h(t)>1$. \end{enumerate} \begin{remark}\label{r2.1} \rm From (\ref{e2.1}) and (\ref{e2.3}) we know that (\ref{e1.2}) may degenerate at the set $\{x\ |\ \lambda (x)=0\}$ which may have positive measure, while in \cite{[6]} the set is of zero measure. \end{remark} \begin{remark} \label{r2.2} \rm Condition (A2) shows the growth orders of $a_i(x,z,p)$ and $a(x,z)$ in $|z|$, $|p|$ and $|z|$ respectively which often used in \cite{[2],[3]} and other related papers. Condition (A3) is an extension of the one in \cite{[6]}. Condition (A4) is a version of the one in \cite{[1]}. \end{remark} We divide $\partial \Omega$ into the parts of the Keldys-Fichera type as follows \begin{equation} \begin{gathered} \Sigma ^0=\big\{x \in \partial \Omega : \frac {\partial a_i}{\partial p_j} (x,0,0)\nu _i \nu _j=0\big\},\\ \Sigma _1=\big\{x \in \Sigma ^0 : \frac {\partial a_i}{\partial z}(x,0,0) \nu _i \le 0\big\}, \\ \Sigma _2=\Sigma ^0 \backslash \Sigma _1 , \quad \Sigma _3=\partial \Omega \backslash \Sigma ^0, \end{gathered} \label{e2.5} \end{equation} where $\vec \nu =(\nu _1, \nu _2,\cdots ,\nu _n)$ is the unit outward normal to $\partial \Omega $. For $m \ge 2$, we denote by $W^{1,m}(\Omega)$ the Sobolev space with the norm $$ \|u\|=(\|u\|_m^m + \|Du\|_m^m)^{1/m}, $$ where $\| \cdot \|_m $ is the $L^m(\Omega )$ norm. For $2\le m0, \mbox{ for } \xi \neq \zeta . \nonumber \end{eqnarray} Using (A4), we have \begin{equation} a_{i\delta}(x,z,p)p_i+a(x,z)z \ge \delta\sum _{i=1}^n|p_i|^m-\varphi _3(x) \ge \delta 2^{(1-m)n}|p|^m-\varphi _3(x). \label{e3.7} \end{equation} Inequalities (\ref{e3.5})-(\ref{e3.7}) show that the operator $B$ in $B(u)=F$ is pseudo-monotone(see Theorem 1 in \cite{[1]}). Moreover, $B$ is coercive. In fact, by (\ref{e3.7}) and the Poincar\'e inequality, we obtain \begin{eqnarray*} \int_\Omega [a_{i \delta}(x,u,Du)D_iu+a(x,u)u]dx &\ge& \delta 2^{(1-m)n}\int_\Omega |Du|^mdx-\int_\Omega \varphi _3(x)dx \\ &\ge& c\| u\| ^m-\int_\Omega \varphi _3(x)dx, \end{eqnarray*} for $u\in \tilde W^{1,m}(\Omega) $, where $c=c(m,n,|\Omega |, \delta)$. Hence, $$(B(u),u)\| u\| ^{-1}\ge c\| u\| ^{m-1}-\| u\| ^{-1} \int_\Omega \varphi _3(x)dx\to +\infty , \ as \ \| u\| \to +\infty, $$ which says that the pseudo-monotone operator $B$ is coercive. Therefore, the equation $B(u)=F$ has a solution, say $u_{\delta}$, in $\tilde W^{1,m}(\Omega) $. This completes the proof of Lemma \ref{le3.1}. \hfill$\square$ Let $A_{\alpha }(x,\eta,\xi),\ |\alpha |\leq m$, be the functions defined in $\Omega \times R^{N_1}\times R^{N_2}$ and satisfy the following conditions: they are continuous in $(\eta,\xi)$ for a.e. $x\in \Omega $ and measurable in $x$ for every $(\eta,\xi)\in R^{N_1}\times R^{N_2}$ where $N_1$ is the number of multi-index $\alpha $ with $|\alpha |\leq m-1$ and $N_2$ is that of $\alpha $ with $|\alpha |=m$. Moreover, $$ |A_{\alpha }(x,\eta,\xi)|\leq C(|\eta|^{p-1}+|\xi|^{p-1}+k(x)), \ k(x)\in L^{p'}(\Omega ), 10 $ is any real number. Similarly, $$ \Big|\int_\Omega |Du_\delta |^mdx+\int_{\Sigma_2}a_i(x,0,0)\nu _iu_\delta ds+\int_\Omega f(x)u_\delta dx \Big|\le \varepsilon \| u_\delta \| _m^m+M_2, $$ where $M_2=M_2(\| f\| _{m'}, \|\varphi _1\| _{m'}, m', |\Omega |, n,\varepsilon )$. Then, from (\ref{e3.9}) we get \begin{equation} \label{e3.10} \int_\Omega h(|Du_\delta |)|Du_\delta |^mdx\le 2\varepsilon \| Du_\delta \| _m^m+M , \end{equation} where $M=M_1+M_2+\| \varphi _3\| _{L^1(\Omega )}$. Let \par $\Omega ( \delta ^{\ast })=\{x\in \Omega \ |\ h(|Du_\delta |)\le \delta ^{\ast }\}, \ \alpha ( \delta ^{\ast })=\displaystyle \sup _{h(\eta )\le \delta ^{\ast }} \eta , \ 0<\delta^{\ast }\le 1.$ \\ Obviously, $|Du_\delta |\le \alpha ( \delta ^{\ast })$ when $x\in \Omega ( \delta ^{\ast })$, then $$ \int _{\Omega ( \delta ^{\ast })}|Du_\delta |^mdx\le \alpha ^m( \delta ^{\ast })| \Omega |. $$ With the aid of (\ref{e3.10}), we have $$ \delta ^{\ast }\int _{\Omega \backslash \Omega ( \delta ^{\ast })}|Du_\delta |^mdx \le 2\varepsilon \| Du_\delta \| _m^m+M. $$ Therefore, $$ \delta ^{\ast }\int_\Omega |Du_\delta |^mdx\le 2\varepsilon \| Du_\delta \| _m^m+ \delta ^{\ast }\alpha^m ( \delta ^{\ast })|\Omega |+M. $$ Choosing $ \delta ^{\ast }=1, \ \varepsilon =1/4$ in above inequality yields $\| Du_\delta \| _m^m \le 2\alpha ^m(1)|\Omega |+2M$. Then, by Poincar\'e inequality, we finally obtain the uniform bound of $\{u_\delta \}$ that \begin{equation} \label{e3.11} \|u_\delta \| \le c, \end{equation} where $c$ is independent of $ \delta $. Hence, there is a subsequence of $\{u_\delta \}$, denoted still by $\{u_\delta \}$, converging weakly to an element $u\in \tilde W^{1,m}(\Omega) $. Replacing $u$ and $v$ in (\ref{e3.1}) by $u_\delta $ and $u_\delta -v$ respectively, then (\ref{e3.1}) reads \begin{multline*} \int_\Omega [a _{i \delta }(x,u_\delta ,Du_\delta )D_i(u_\delta -v)+ a(x,u_\delta )(u_\delta -v)]dx -\int_{\Sigma_1} a_i(x,u_\delta ,0)\nu _i(u_\delta -v)ds \\ = \int_\Omega f(x)(u_\delta -v)dx+\int_{\Sigma_2}a_i(x,0,0)\nu _i(u_\delta -v)ds. \end{multline*} Substituting (\ref{e3.6}) on the above equality yields \begin{multline} \int_\Omega f(x)(u_\delta -v)dx+\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i(u_\delta -v)ds +\int_{\Sigma_2}a_i(x,0,0)\nu _i(u_\delta -v)ds \\ -\int_\Omega a_{i \delta }(x,u_\delta ,Dv)D_i(u_\delta -v)dx -\int_\Omega a(x,u_\delta )(u_\delta -v)dx \\ \ge \delta \int_\Omega (|D_iu_\delta |^{m-1}-|D_iv|^{m-1}) (|D_iu_\delta |-|D_iv|)dx. \label{e3.12} \end{multline} Next, we consider the convergence of the right hand side of (3.12) as $ \delta \to 0$, in three steps. \paragraph{step 1:} Since $u_\delta \to u$ weakly in $\tilde W^{1,m}(\Omega) $ and because of the trace imbedding $W^{1,m}(\Omega) \hookrightarrow L^m(\Sigma _1)$, we can assume, choose a subsequence if necessary, that $u_\delta \to u$ weakly in $L^m(\Sigma _1)$. Therefore, noticing (3.11), we have \begin{gather*} \int_\Omega f(x)(u_\delta -v)dx\to \int_\Omega f(x)(u-v)dx, \\ \int_{\Sigma_2}a_{i \delta }(x,0,0)\nu _i(u_\delta -v)ds\to \int_{\Sigma_2}a_i(x,0,0)\nu _i(u-v)ds. \end{gather*} \paragraph{step 2:} \begin{eqnarray} \lefteqn{\int_\Omega a_{i \delta }(x,u_\delta ,Dv)D_i(u_\delta -v)dx }\nonumber \\ &=&\int_\Omega [a_{i \delta }(x,u_\delta ,Dv)-a_{i \delta }(x,u,Dv)]D_i(u_\delta -v)dx \nonumber \\ &&+\int_\Omega a_{i \delta }(x,u,Dv)D_i(u_\delta -v)dx=I_1+I_2. \label{e3.13} \end{eqnarray} Because $W^{1,m}(\Omega) \hookrightarrow L^m(\Omega )$ is compact, then $u_\delta \to u$ strongly in $L^m(\Omega )$. By lemma \ref{le3.2} and (\ref{e3.11}) we know that $a_{i \delta }(x,u_\delta ,Dv)$ tends to $a_i(x,u,Dv)$ strongly in $L^{m'}(\Omega )$. This and (\ref{e3.11}) show that $$ |I_1|\le \| a_{i \delta }(x,u_\delta ,Dv)-a_{i \delta }(x,u,Dv)\| _{m'}\| D_i(u_\delta -v)\| _m \to 0, $$ then $I_1\to 0$. It is obvious that $I_2\to \int_\Omega a_i(x,u,Dv)D_i(u-v)dx$ since $u_\delta \to u$ weakly in $\tilde W^{1,m}(\Omega) $ and (\ref{e3.11}). Therefore, (\ref{e3.13}) yields $$\int_\Omega a_{i \delta }(x,u_\delta ,Dv)D_i(u_\delta -v)dx\to \int_\Omega a_i(x,u,Dv)D_i(u-v)dx.$$ For the integral $$\int_\Omega a(x,u_\delta )(u_\delta -v)dx=\int_\Omega a(x,u_\delta )(u_\delta -u)dx+\int_\Omega a(x,u_\delta )(u-v)dx=I_3+I_4,$$ by the compact imbedding $W^{1,m}(\Omega) \hookrightarrow L^l(\Omega )$ it holds that $u_\delta \to u$ strongly in $L^l(\Omega )$, then, noticing (\ref{e3.11}), we get \begin{eqnarray} |I_3|& \le & \| a(x,u_\delta )\| _{l'}\| u_\delta -u\|_l \le (\| u_\delta \| _l^{l/l'}+ \| \varphi _2\| _{l'})\| u_\delta -u\| _l \nonumber \\ & \le &(\| u_\delta \|_l^{l/l'}+\| \varphi _2\| _{l'})\| u_\delta -u\| _l\le c\| u_\delta -u\| _l\to 0. \label{e3.14} \end{eqnarray} Because $u_\delta \to u$ strongly in $L^l(\Omega )$, then $u_\delta \to u$ almost everywhere in $\Omega $. On the other hand, we have already know that $\| a(x, u_\delta )\| _{l'} \le c $, and hence $a(x,u_\delta )\to A(x)$ weakly in $L^{l'}(\Omega )$. Then, Based on Lemma 1.3 of Chapter 1 in \cite{[5]}, we have $A(x)=a(x,u)$, and hence $$\int_\Omega a(x,u_\delta )(u-v)dx\to \int_\Omega a(x,u)(u-v)dx. $$ Combining this with (\ref{e3.14}) yields $$ \int_\Omega a(x,u_\delta )(u_\delta -v)dx\to \int_\Omega a(x,u)(u-v)dx. $$ \paragraph{step 3:} \begin{eqnarray} \lefteqn{\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i(u_\delta -v)ds }\nonumber \\ &=&\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu_i(u-v)ds+\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i(u_\delta -u)ds. \label{e3.15} \end{eqnarray} For the first integral in the above equation, based on the compact trace imbedding $W^{1,m}(\Omega) \hookrightarrow L^m(\Sigma _1)$ and $u_\delta \to u$ weakly in $W^{1,m}(\Omega) $ we know that $u_\delta \to u$ strongly in $L^m(\Sigma _1)$. Then, by Lemma \ref{e3.2} and noticing that $a_i(x,u_\delta ,0) \in L^{m'}(\Sigma _1)$, it yields \begin{equation} \label{e3.16} \int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i(u-v)ds\to \int_{\Sigma_1}a_i(x,u,0)\nu _i(u-v)ds. \end{equation} Now, consider the second integral of (\ref{e3.15}). Because the trace imbedding $W^{1,m}(\Omega) \hookrightarrow L^m(\Sigma _1)$ is compact, hence $\| u_\delta -u\| _{L^m(\Sigma _1)}\to 0$. Noticing that $a_i(x,u_\delta ,0)\in L^{m'}(\Sigma _1)$ and (\ref{e3.11}), using H$\ddot o$lder's inequality and the compact trace imbedding $W^{1,m}(\Omega) \hookrightarrow L^l(\Sigma _1)$, it holds that \begin{eqnarray} \lefteqn{\Big|\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i(u_\delta -u)ds\Big|}\nonumber\\ &\le& \| a_i(x,u_\delta ,0)\|_{L^{m'}(\Sigma _1)} \| u_\delta -u\| _{L^m(\Sigma _1)} \nonumber \\ &\le& c(\| u_\delta \| _{L^l(\Sigma _1)}^{l/m'} +\| \varphi \| _{m'})\| u_\delta -u\| _{L^m(\Sigma _1)} \label{e3.17}\\ &\le& c(\| u_\delta \|^{l/m'}+\| \varphi _1\| _{m'})\|u_\delta -u\| _{L^m(\Sigma 1)}\to 0. \nonumber \end{eqnarray} Returning to (\ref{e3.15}), by (\ref{e3.16}) and (\ref{e3.17}), we have $$\int_{\Sigma_1}a_i(x,u_\delta ,0)\nu _i (u_\delta -v)ds\to \int_{\Sigma_1}a_i(x,u,0)\nu _i(u-v)ds. $$ Now, let $ \delta \to 0$ in (3.12), by $\mbox {\it {1), 2), 3)}}$ and (\ref{e3.11}), we obtain that \begin{multline} \lefteqn{\int_\Omega [a_i(x,u,Dv)D_i(u-v)+a(x,u)(u-v)]dx-\int_{\Sigma_1}a_i(x,u,0)\nu_i(u-v)ds} \\ \le \int_\Omega f(x)(u-v)dx+\int_{\Sigma_2}a_i(x,0,0)\nu _i(u-v)ds, \quad \forall v \in \tilde W^{1,m}(\Omega)\,. \label{e3.18} \end{multline} For any real number $\alpha >0$ and any $\zeta (x)\in \tilde W^{1,m}(\Omega) $, choosing $v=u-\alpha \zeta (x)$ in (\ref{e3.18}) and then let $\alpha \to 0$, it yields \begin{multline} \int_\Omega [a_i(x,u,Du)D_i\zeta + a(x,u)\zeta ]dx-\int_{\Sigma_1}a_i(x,u,0) \nu _i\zeta (x)ds \\ \le \int_\Omega f(x)\zeta dx+\int_{\Sigma_2}a_i(x,0,0)\nu _i\zeta ds. \label{e3.19} \end{multline} The inverse inequality of (\ref{e3.19}) holds if $\alpha <0$. This completes the proof of Theorem \ref{th2.1}. \hfill$\square$ \begin{remark} \label{r3.1} \rm If $m>n$ or $n=2$, Assumption (A2) is replaced by the following assumption (A2) $'$ which allows us to use the Sobolev imbedding $W^{1,m}(\Omega) $ to bounded and continuous function space $C_B(\omega)$ (see Chapter 7.7 in \cite{[2]}). So the proof is easier than that of case $m 0,\\ D_i b^i \leq \min \{c,\ 2c\}, \quad \Sigma _1\in C^1, \quad \Sigma _2\cup \Sigma _3\neq \emptyset. \end{gather*} If the minimum of the weak subsolution of $Lu=0$ is nonpositive (or the maximum of the weak supersolution is nonnegative), then it must be achieved on $\overline{\Sigma _2\cup\Sigma _3}$. \end{lemma} \paragraph{Proof} Suppose that $u$ is a weak subsolution of $Lu=0$, by definition \ref{de4.1}, we have \begin{equation} \label{e4.3} \int_\Omega [(a^{ij}D_ju+b^iu)D_iv+cuv]dx-\int_{\Sigma _1}b^i\nu_i uvds\geq 0, \quad \forall v\in C^*. \end{equation} Let $l=\displaystyle \inf_{\Sigma _2 \cup \Sigma _3}u \leq 0$, $$ w=(l-u)^+= \begin{cases} l-u, &\mbox{when } u0$, $D_{x_iz}a_{it}\leq \min\{D_za_t,\ 2D_za_t\}$ and (A3) hold. If $u, v\in C^1(\bar \Omega )\cap \tilde W^{1,m}(\Omega)$ satisfy $Qu\leq Qv$ in $\Omega $ and $u\leq v$ on $\Sigma _2\cup\Sigma _3$, then $u\leq v$ in $\Omega $. \end{theorem} \paragraph{Proof} By the condition $Qu\leq Qv$, for any $\varphi \in C^{*}$, we have \begin{eqnarray} 0&\geq &\int_0^1dt\int_\Omega \{[D_{p_j}a_{it}D_j(u-v)+D_za_{it}(u-v)]D_i \varphi +D_za_t(u-v)] \varphi \}dx \nonumber \\ &-&\int_0^1dt\int_{\Sigma _1}D_za_i(x,u_t,0)(u-v)\nu_i \varphi ds \nonumber \\ &=&\int_\Omega \{[a^{ij}D_j(u-v)+b^i(u-v)]D_i \varphi +c(u-v)\varphi \}dx \label{e4.6} \\ &-&\int_{\Sigma _1}b^i \nu_i(u-v)\varphi ds, \nonumber \end{eqnarray} where $a^{ij}=\displaystyle \int_0^1D_{p_j}a_{it}dt,\ b^i=\displaystyle \int_0^1D_za_{it}dt,\ c=\displaystyle\int_0^1D_za_tdt$. Let $w=u-v$. From (\ref{e4.6}), we have $$ \int_\Omega [(a^{ij}D_jw+b^iw)D_i \varphi + cw \varphi]dx-\int_{\Sigma _1}b^i \nu_i w \varphi ds \geq 0, $$ i.e., $w$ is a supersolution of the liner equation $$ Lu=-D_i(a^{ij}(x)D_j u+b^i(x)u)+cu=0. $$ From the assumptions of this theorem, the assumptions of Lemma \ref{le4.1} are all satisfied, thus Lemma \ref{le4.1} implies that $\sup_{\omega}w \leq \sup_{\Sigma _2\cup \Sigma _3}w\leq 0$, hence $u \leq v$ in $\omega$ which proves Theorem \ref{th4.1}. \hfill$\square$ \begin{theorem}[Uniqueness Theorem] \label{th4.2} Suppose that the coefficients of $Q$ satisfy the conditions in Theorem \ref{th4.1}, then the $C^1(\bar \Omega )\cap \tilde W^{1,m}(\Omega) $-weak solution of problem (\ref{e2.6}) is unique. \end{theorem} \paragraph{Proof} Suppose that $u$ and $v$ are two weak solutions of problem (\ref{e2.6}). By Remark \ref{r4.1}, it holds that $u=v=0$ on $\overline{\Sigma _2\cup \Sigma _3}$. Using Theorem \ref{th4.1}, we find that $u\leq v$ as well as $v\leq u$, hence $u=v$ in $\Omega $. This completes the proof. \hfill$\square$ \begin{thebibliography}{00} \frenchspacing \bibitem{[1]} F. E. Browder, Pseudo-monotone operator and nonlinear elliptic boundary value problem or unbounded domains, Proc. North. Acad. Sci. U.S.A., {\bf 74}(1977), 2659-2661. \bibitem{[2]} D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. \bibitem{[3]} O. A. Ladyzenskaja and N. N. Uralceva, Linear and Quasilinear Equations of Elliptic Type (in Russian), Scince Press, Moscow, 1973. \bibitem{[4]} J. L. Lions, Probl$\grave e$mes Aux Limites Dans Les $\acute E$ quations Aux D$\acute e$riv$\acute e$es Partielles, Les Presses de l'Universit$\acute e$ de Montr$\acute e$al, Montr$\acute e$al, 1967. \bibitem{[5]} J. L. Lions, Quelques m$\acute e$thodes de r$\acute e$solution des probl$\grave e$mes aux limites nonl$\acute e$aires, Dunod and Gauthier-Villars, Paris, 1969. \bibitem{[6]} T. Ma and Y. Q. Yu, The Keldys-Fichera boundary value problem for degenerate quasilinear elliptic equations of second order, Differential and Integral Equations,{\bf 2}(1989), 379-388. \bibitem{[7]} O. A. Oleinik and E. V. Radkevich, Second order equations with nonnegative characteristic form, AMS Rhode Island and Plenum Press, New York, 1973. \end{thebibliography} \noindent\textsc{Zu-Chi Chen} \\ Department of Mathematics\\ University of Science and Technology of China\\ Hefei, Anhui 230026, P. R. China \\ Email: chenzc@ustc.edu.cn \smallskip \noindent\textsc{Ben-Jin Xuan}\\ Department of Mathematics \\ University of Science and Technology of China\\ Hefei, Anhui 230026, P. R. China \\ and \\ Depart. de matematicas, Universidad Nacional\\ Bogota, Colombia\\ Email: wenyuanxbj@yahoo.com \end{document}