\documentclass[twoside]{article} \usepackage{amssymb,amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil A spectral mapping theorem \hfil EJDE--2002/70} {EJDE--2002/70\hfil Constantin Bu\c se \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 70, pp. 1--11. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line % \thanks{ {\em Mathematics Subject Classifications}: 47G10, 47D03, 47A63. \hfil\break\indent {\em Key words}: periodic families, almost periodic functions, exponential stability. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted April 02, 2002. Published July 25, 2002.} } \date{} % \author{Constantin Bu\c se} \maketitle \begin{abstract} We prove that the evolution semigroup on $AAP_0(\mathbb{R}_+, X)$ is strongly continuous. Then we prove some properties of the generator of this evolution semigroup and show some applications in the theory of inequalities. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \numberwithin{equation}{section} \section{Introduction} Let $X$ be a complex Banach space and ${\cal L}(X)$ the Banach algebra of all linear and bounded operators acting on $X$. The norms in $X$ and in ${\cal L}(X)$ will be denoted by $\|\cdot\|$. Let $A$ be a linear and bounded operator acting on $X$. We consider the system \begin{equation} \dot u(t)=A u(t) \quad t\geq 0 \label{A} \end{equation} and the Cauchy problem \begin{equation} \begin{gathered} \dot u(t) =Au(t)+e^{i \mu t}x \quad t\geq 0\\ u(0)=0 \end{gathered} \label{Amux} \end{equation} where $\mu\in\mathbb{R}$ and $x\in X$. It is well-known \cite{DK,Ba} that the system \eqref{A} is exponentially stable; that is, there exist the constants $N>0$ and $\nu >0$ such that $$ \|e^{tA}\|\leq Ne^{-\nu t} \quad \mbox{for all } t\geq 0, $$ if and only if the solution of the Cauchy problem \eqref{Amux} is bounded for every $\mu\in\mathbb{R}$ and any $x\in X$, i.e., if and only if $$ \sup_{t> 0} \|\int^t_0 e^{-i \mu \xi} e^{\xi A} x d\xi\|< \infty, \quad \forall \mu\in\mathbb{R}\mbox{ and } \forall x\in X. $$ For unbounded linear operators, the above result is false, see e.g. \cite[Example 3.1]{RB}. However some weaker results, described as follows, hold. Let ${\bf T}= \{ T(t): t\geq 0\}\subset {\cal L}(X)$ be a strongly continuous semigroup on $X$ and $A:D(A)\subset X\to X$ its infinitesimal generator. It is well-known that the Cauchy problem \begin{equation} \begin{gathered} \dot u(t) = Au(t)\\ u(0)=x\in X \end{gathered} \label{1} \end{equation} is well-posed and the mild solution of \eqref{1} is defined by \begin{equation} u(t)=T(t)x, \quad t\geq 0. \label{2} \end{equation} For well-posedness of equations we refer the reader to \cite{S1,S2} and the references therein. The mild solution of the non-homogeneous Cauchy problem \begin{equation} \begin{gathered} \dot u(t) =Au(t) + f(t) \quad t\geq 0\\ u(0)=x \end{gathered} \label{3} \end{equation} is \begin{equation} u_{f}(t)=T(t)x+\int^t_0 T(t-\xi) f(\xi)d \xi, \quad t\geq 0. \label{4} \end{equation} Particularly for $x=0$, $y\in X$, $\mu\in\mathbb{R}$ and $f(t):= e^{i \mu t}y$, the solution $u_{f}(\cdot)$ can be written as $$ u_{\mu y}(t)=\int^t_0 T(t- \xi)e^{i \mu \xi}y d \xi = e^{i \mu t} \int^t_0 e^{-i \mu \xi} T(\xi) y d \xi. $$ In \cite{RB}, it is shown that if $u_{\mu y}(\cdot)$ is bounded on $\mathbb{R}_+$ for every $\mu\in\mathbb{R}$ and all $y\in X$ then \begin{equation} \sigma(A)\subset\{\lambda\in{\bf C}: Re(\lambda)<0\}. \label{5} \end{equation} Conversely if \eqref{5} holds and ${\bf T}$ is uniformly bounded (i.e. $\sup_{t\ge 0}\|T(t)\|<\infty$) then $u_{\mu y}(\cdot)$ is bounded on $\mathbb{R}_+$ for every $\mu\in\mathbb{R}$ and all $y\in X$. This last result is proven in \cite[Proposition 2]{BB}. Another result of this type is due to Arendt and Batty in \cite{AB}. For $x\in X$, Let $\omega(x)$ the infimum of all $\omega \in \mathbb{R}$ for which there exists $M_{\omega}> 0$ such that $\|T(t)x\|\leq M_{\omega}e^{\omega t}$ for all $t\geq 0$. Let $\omega _1({\bf T})$ the supremum of all $\omega (x)$ with $x\in D(A)$. Frank Neubrander \cite{Neu} proved that $\omega_1({\bf T})$ is the infimum of all $\omega \in \mathbb{R}$ with the property that $$ \{ \mathop{\rm Re}(\lambda) > \omega\}\subset \rho (A) \quad \mbox{and there is} \quad R(\lambda, A)x=\lim_{t\to \infty} \int^t_0 e^{- \lambda s} T(s) x ds $$ for every $\lambda \in {\bf C}$ with $Re(\lambda) > \omega$ and any $x\in X$. Neerven \cite{Ne1,Ne2} has shown that if \begin{equation} \sup_{\mu \in\mathbb{R}}\sup_{t>0} \|\int^t_0 e^{- i \mu \xi} T(\xi)y d \xi \| = M(x) < \infty,\quad \forall \mu \in \mathbb{R} \mbox{ and } \forall x\in X \label{6} \end{equation} then $\omega_1({\bf T}) < 0$; that is, if \eqref{6} holds then every solution of the system \eqref{A}, starting in $D(A)$, is exponentially stable. However, there can be solutions of the system \eqref{A} starting in $X\setminus D(A)$ which are not exponentially stable, even if \eqref{6} holds, see e.g. \cite[Example 2]{B1}. Moreover, in \cite[Corollary 5 and the proof of Theorem 4]{Ne1} it is shown that if \eqref{6} holds then the operator resolvent $R(\lambda, A)$ exists and the function $\lambda\mapsto R(\lambda, A)$ is uniformly bounded on $\{ Re(\lambda)>0\}$. Combining this fact with the Gearhart's famous stability theorem \cite{Ge} (see also Herbst \cite{He}, Howland \cite{Ho}, Huang \cite{Hu}, Pr\"uss \cite{P} Weiss \cite{W}) follows that if $X$ is a complex Hilbert space and \eqref{6} holds then $$ \omega_0 ({\bf T}) :=\lim_{t\to\infty} \frac{\ln \|T(t)\|}{t} $$ is negative, i.e. in these conditions every solution of the system \eqref{A} is exponentially stable. This and related results are explicitly presented in a very recent paper of Phong \cite{Vu}. It seems that the last stability result, having \eqref{6} as hypothesis, cannot be extended for periodic evolution families, but a weaker result holds, see Theorem \ref{thm4} below. For a well-posed, non-autonomous Cauchy problem \begin{equation} \begin{gathered} \dot u(t)=A(t)u(t) \quad t\geq 0\\ u(0)=x\in X \end{gathered} \label{7} \end{equation} with (possibly unbounded) linear operators $A(t)$, the mild solutions lead to an evolution family on $\mathbb{R}_+$, ${\cal U}=\{U(t,s): t\geq s\geq 0\} \subset {\cal L}(X)$; that is: \begin{itemize} \item[(e1)] $U(t, r)=U(t, s)U(s, r)$ for all $t\ge s\ge r\ge 0$ and $U(t,t)=I$ for any $t\ge 0$, (I is the identity operator in ${\cal L}(X))$ \item[(e2)] The maps $(t,s)\mapsto U(t,s)x:\{(t,s):t\geq s\geq 0\}\to X$ are continuous for each $x\in X$. \end{itemize} An evolution family is {\it exponentially bounded} if there exist $\omega\in \mathbb{R}$ and $M_{\omega}>0$ such that \begin{equation} \|U(t,s)\|\leq M_{\omega}e^{\omega (t-s)}, \quad \forall t\geq s\geq 0. \label{8} \end{equation} An evolution family is {\it exponentially stable} if \eqref{8} holds with some negative $\omega$. If the evolution family ${\cal U}$ verifies the condition \begin{itemize} \item[(e3)] $ U(t,s)=U(t-s,0)$ for all $t\geq s\geq 0$, \end{itemize} then the family ${\bf T}=\{U(t,0): t\geq 0\}\subset{\cal L}(X)$ is a strongly continuous semigroup on $X$. In this case the estimate \eqref{8} holds automatically. If the Cauchy problem \eqref{7} is $q$-periodic, i.e. $A(t+q)=A(t)$ for $t\geq 0$, then the corresponding evolution family ${\cal U}$ is $q$-periodic, that is, \begin{itemize} \item[(e4)] $U(t+q, s+q) = U(t,s)$ for all $t\geq s\geq 0$. \end{itemize} Every $q$-periodic evolution family is exponentially bounded \cite[Lemma 4.1]{BP}. For a locally Bochner integrable function $f:\mathbb{R}_+\to X$, the mild solution of the well-posed, inhomogeneous Cauchy problem \begin{equation}\begin{gathered} \dot u(t)=A(t)u(t)+f(t),\quad t\geq 0\\ u(0)=x \end{gathered} \label{9} \end{equation} is \begin{equation} u_{f}(t,x) : = U(t,0)x+\int^t_0 U(t, \tau)f(\tau)d\tau, (t\ge 0). \label{10} \end{equation} We also consider evolution families on the line. We shall use the same notation as in the case of evolution families on $\mathbb{R}_+$ with the mention that variables $s$ and $t$ can take any value in $\mathbb{R}$. For more details about the strongly continuous semigroups and evolution families we refer to \cite{EN}. \smallskip We recall the notion of evolution semigroup. For more details we refer the reader to \cite{CL,CLMR} and references therein. Let us consider the following spaces: \begin{itemize} \item $BUC(\mathbb{R}, X)$ is the space of all $X$-valued, bounded and uniformly continuous functions on the real line endowed with the sup-norm. \item $C_{0}(\mathbb{R}, X)$ is the subspace of $BUC(\mathbb{R}, X)$ consisting of all functions $f$ such that $\lim_{|t|\to\infty} f(t)=0$. \item $AP(\mathbb{R}, X)$ is the space of all almost periodic functions, that is, the smallest closed subspace of $BUC(\mathbb{R}, X)$ containing the functions of the form, \cite{LZ}, $$t\mapsto e^{i\mu t}x,\quad\mu\in\mathbb{R} \mbox{ and } x\in X\,. $$ \end{itemize} Let ${\cal U}=\{U(t, s): t\ge s\in\mathbb{R}\}$ be a strongly continuous and exponentially bounded evolution family of bounded linear operators on $X$. For every $t\ge 0$ and each $F\in C_0(\mathbb{R}, X)$ the function \begin{equation} s\mapsto({\cal T}(t)F)(s):=U(s, s-t)F(s-t):\mathbb{R}\to X \label{11} \end{equation} belongs to $C_0(\mathbb{R}, X)$ and the family ${\cal T}=\{{\cal T}(t): t\ge 0\}$ is a strongly continuous semigroup on $C_0(\mathbb{R}, X)$, \cite{LM}. If ${\cal U}=\{U(t, s): t\ge s\in\mathbb{R}\}$ is a $q$-periodic evolution family, $t\ge 0$, and $G\in AP(\mathbb{R}, X)$ then the function given by \begin{equation} s\mapsto ({\cal S}(t)G)(s):=U(s, s-t)G(s-t):\mathbb{R}\to X, \label{12} \end{equation} belongs to $AP(\mathbb{R}, X)$ and the one-parameter family ${\cal S}=\{{\cal S}(t): t\ge 0\}$ is a strongly continuous semigroup on $AP(\mathbb{R}, X)$, \cite{NM}. ${\cal T}$ and ${\cal S}$ are called evolution semigroups on $C_0(\mathbb{R}, X)$ and $AP(\mathbb{R}, X)$, respectively. In the following we will consider spaces consisting of functions defined on $\mathbb{R}_+$. $AP(\mathbb{R}_+, X)$ and $C_0(\mathbb{R}_+, X)$ are the spaces consisting of all functions $g:\mathbb{R}_+\to X$ for which there exists $G\in AP(\mathbb{R}, X)$, respectively $G\in C_0(\mathbb{R}, X)$, such that $G(s)=g(s)$ for all $s\ge 0$. $C_{00}(\mathbb{R}_+, X)$ is the subspace of $C_0(\mathbb{R}_+, X)$ consisting of all functions $f$ for which $f(0)=0$, and $AAP_0(\mathbb{R}_+, X)$ is the space of all $X$-valued functions $h$ such that $h(0)=0$ and there exist $f\in C_0(\mathbb{R}_+, X)$ and $g\in AP(\mathbb{R}_+, X)$ such that $h=f+g$. For each $h\in AAP_0(\mathbb{R}_+, X)$ and every $t\ge 0$ consider the function $T(t)h$ given by \begin{equation} [T(t)h](s)=\left\{\begin{array}{ll} U(s, s-t)h(s-t), & s\ge t\\ 0, & 0\le s0.$$ \end{theorem} The proof of this theorem follows from Theorem \ref{thm4} using an argument given in \cite[Corollary 2.4]{MRS}. Another application of Theorem \ref{thm4} is the following inequality of Landau's type. For more details about theorems of this form, see \cite{BD}. \begin{theorem} \label{thm6} Let ${\cal U}=\{U(t, s): t\ge s\ge 0\}$ be a $q$-periodic evolution family of bounded linear operators acting on $X$ and let $f\in{\cal X}:=AAP_0(\mathbb{R}_+, X)$. Suppose that the following two conditions are satisfied: \begin{itemize} \item[(i)] $u_f(\cdot, 0)=\int_0^{\cdot}U(\cdot, s)f(s)ds$ belongs to ${\cal X}$ \item[(ii)] $v_f(\cdot):=\int_0^{\cdot}(\cdot-s)U(\cdot, s)f(s)ds$ belongs to ${\cal X}$. \end{itemize} If $\sup\{\|U(t, s)\|: t\ge s\ge 0\}=M<\infty$ then \begin{equation} \|u_f(\cdot, 0)\|_{\cal X}^2\le 4M^2\|f\|_{\cal X}\cdot\|v_f(\cdot)\|_{\cal X}. \label{15} \end{equation} \end{theorem} \paragraph{Proof.} Let ${\bf T}$ the evolution semigroup associated to ${\cal U}$ on the space ${\cal X}$ and $(A, D(A))$ its infinitesimal generator. From Lemma \ref{lm3} results that $u_f(\cdot, 0)$ belongs to $D(A)$ and $Au_f(\cdot, 0)=-f$. Using Fubini's theorem it is easy to see that $v_f(t)=\int_0^tU(t, r)u_f(r, 0)dr$ for every $t\ge 0$. Then from Lemma \ref{lm3} follows that $v_f(\cdot)\in D(A^2)$ and $A^2v_f(\cdot)=f$. Now the inequality \eqref{15} can be easily obtained from Lemma \ref{lm1}. \hfill$\square$ \smallskip For $U(t, s)=I$, Theorem \ref{thm6} can be generalized in the following sense. \begin{proposition} \label{prop7} Let $f$ be a $X$-valued, locally Bochner integrable function on $\mathbb{R}_+$ and $g, h$ the mappings on $\mathbb{R}_+$ given by $$g(t):=\int_0^tf(s)ds \quad\mbox{and}\quad h(t)=\int_0^t(t-s)f(s)ds. $$ If $\sup\{|f(t)|: t\ge 0\}=M_1<\infty$ and $\sup\{|h(t)|: t\ge 0\}=M_3<\infty$ then \begin{equation} |g(r)|^2\le 4M_1M_3, \quad\forall r\ge 0. \label{16} \end{equation} \end{proposition} \paragraph{Proof} For every $t\ge 0$ and any $X$-valued function $F$ on $\mathbb{R}_+$ let us consider the function $F_t$ given by $$ F_t(s)=\left\{\begin{array}{ll} F(s-t), & s\ge t\\ 0, & 0\le s0. \label{18} \end{equation} If $M_1=0$ or $M_3=0$ then $g=0$ and \eqref{16} holds with equality. If $M_1>0$ and $M_3>0$ then \eqref{16} can be obtained from \eqref{18} with $t=\sqrt{4M_3/M_1}$. \hfill$\square$ \paragraph{Remark.} If $f$ is a continuous function then Proposition \ref{prop7} follows directly and easily by \cite{KR}, because $g'(t)=f(t)$ and $h'(t)=g(t)$ for all $t\ge 0$. The author thanks to the referee who brought to the author's attention about this fact. \begin{thebibliography}{00} \frenchspacing \bibitem{AB} V. Arendt, C. J. K. Batty, {\it Tauberian theorems and stability of one parameter semigroups}, Trans. Amm. Math. Soc. {\bf 306}(1998), 837-852. \bibitem{Ba} S. Balint, {\it On the Perron-Bellman theorem for systems with constant coefficients}, Ann. Univ. Timi\c soara, {\bf 21}, fasc. 1-2 (1983), 3-8. \bibitem{BHR} C. J. K. Batty, W., Hutter, F., R\"abiger, {\it Almost periodicity of mild solutions of inhomogeneous Periodic Cauchy problems,} Journal of Differential Equations, {\bf 156}, 309-327(1999). \bibitem{BB} C. Bu\c se, D. Barbu, {\it Some remarks about the Perron condition for strongly continuous semigroups}, Ann. Univ. Timi\c soara, vol {\bf 35}, fasc. 1 (1997), 3-8. \bibitem{B} C. Bu\c se, {\it Exponential Stability for Periodic Evolution Families of Bounded Linear Operators}, Rend. Sem. Univ. Pol. Torino, Vol {\bf 58}(2000), to appear, as preprint in {\it RGMIA, Research Report Collection,} {\bf 3}(3), Article 13, 2000, (user name: {\it rgmia}), (password: {\it vut1999}). \bibitem{B1} C. Bu\c se, {\it On the Perron-Bellman theorem for evolutionary processes with exponential growth in Banach spaces}, New Zeeland Journal of Mathematics, {\bf 27}, (1998), 183-190. \bibitem{BD} C. Bu\c se, S. S. Dragomir, {\it A Kallman-Rota Inequality for Evolution Semigroups}, in press. \bibitem{BJP} C. Bu\c se, O. Jitianu, C. Preda, {\it Exponential Stability for Solutions of Linear Differential Equations with Periodic Coefficients}, International Journal of Differential Equations and Applications, to appear. \bibitem{BP} C. Bu\c se, A. Pogan , {\it Individual Exponential Stability for Evolution Families of Linear and Bounded Operators}, New Zealand Journal of Mathematics, Volume {\bf 30}(2001), 15-24. \bibitem{CL} C. Chicone, Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, {\it Amer. Math. Soc.}, Math. Surv. and Monographs, {\bf 70}, 1999. \bibitem{CLMR} S. Clark, Yu Latushkin, S. Montgomery-Smith and T. Randolph, {\it Stability radius and internal versus external stability in Banach spaces: An evolution semigroup approach,} SIAM J. Contr. and Optim. {\bf 38} (2000), 1757-1793. \bibitem{DK} Ju. L. Daleckij, M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, {\it Amm. Math. Soc}. XXX, Providence RI, 1974. \bibitem{EN} K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, {\it Springer-Verlag}, New-York, 2000. \bibitem{Ge} L. Gearhart, {\it Spectral theory for contraction semigroups on Hilbert Spaces}, Trans. Amer. Math. Soc. {\bf 236}(1978), 385-394. \bibitem{He} I. W. Herbst, {\it The spectrum of Hilbert space semigroups}, J. Operator Theory, {\bf 10}(1983), 87-94. \bibitem{Ho} J. S. Howland, {\it On a theorem of Gearhart}, Integral eq. Operator Theory, {\bf 7}(1984), 138-142. \bibitem{Hu} Huang F., {\it Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces}, Ann. Dif. Eq., {\bf 1}(1983), 43-56. \bibitem{KR} R. R. Kallman and G. C. Rota, On the inequality $\|f^{\prime }\| \leq 4 \|f\|\cdot\|f^{\prime \prime }\| $, {\it Inequalities II}, O. Shisha, Ed., Academic Press, New-York, 1970, pp. 187-192. \bibitem{LM} Yu. Latushkin and S. Montgomery-Smith, {\it Evolutionary semigroups and Lyapunov theorems in Banach spaces,} J. Func. Anal. {\bf 127}(1995), 173-197. \bibitem{LZ} B. M. Levitan and V. V. Zhikov, ``Almost Periodic Functions and Differential Equations", Moscow Univ. Publ. House, 1978. English translation by Cambridge Univ. Press, Camridge U. K., 1982. \bibitem{NM} S. Naito, Nguyen Van Minh, {\it Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations}, J. Differential Equations {\bf 152}(1999), 338-376. \bibitem{MRS} Nguyen Van Minh, Frank R\"abiger and Roland Schnaubelt, {\it Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line}, Integral Equations Operator Theory, {\bf 32},(1998), 332-353. \bibitem{Ne1} J. van Neerven, {\it Individual stability of $C_0$-semigrops with uniformly bounded local resolvent}, Semigroup Forum, {\bf 53} (1996), 155-161. \bibitem{Ne2} J. van Neerven, {\it The Asymptotic Behaviour of Semigroup of Linear Operators}, Birkh\"auser, Basel, 1996. \bibitem{Neu} F. Neubrander, {\it Laplace transform and asymptotic behaviour of strongly continuous semigroups}, Houston J. Math., {\bf 12}(1986), 549-561. \bibitem{Pa} A. Pazy, {\it Semigroups of Linear Operators and Applications to Partial Differential Equations}, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 1983. \bibitem{P} J. Pr\"uss, {\it On the spectrum of $C_0$-semigroup}, Trans. Amer. Math. Soc. {\bf 284} (1984), 847-857. \bibitem{RB} M. Reghi\c s, C. Bu\c se, {\it On the Perron-Bellman theorem for $C_0$- semigroups and periodic evolutionary processes in Banach spaces}, Italian Journal of Pure and Applied Mathematics, Udine, Italy, No. {\bf 4} (1998), 155-166. \bibitem{S1} R. Schnaubelt, {\it Exponential bounds and hyperbolicity of evolution families}, Ph. D. thesis, T\"ubingen, 1996 \bibitem{S2} R. Schnaubelt, {\it Well posedness and asymptotic behaviour of non-autonomous linear evolution equations}, Evolutions Equations and Semigroups {\it preprint} (2001). http://mathematik.uni-halle.de/reports/. \bibitem{Vu} Vu Quoc Phong, {\it On stability of $C_0$-semigroups}, Proceedings of the American Mathematical Society, vol. {\bf 129}, No. 10, 2871-2879 (2002). \bibitem{W} Weis G, {\it Weak $L^p$-stability of linear semigroup on a Hilbert space implies exponential stability}, J. Diff. Equations, {\bf 76}, (1988), 269-285. \end{thebibliography} \noindent\textsc{Constantin Bu\c se}\\ Department of Mathematics\\ West University of Timi\c soara\\ Bd. V. P\^arvan No. 4\\ 1900-Timi\c soara, Rom\^ania \\ e-mail buse@hilbert.math.uvt.ro \end{document}