\documentclass[twoside]{article} \usepackage{amssymb,amsmath} \pagestyle{myheadings} \markboth{\hfil An embedding theorem for Campanato spaces \hfil EJDE--2002/66} {EJDE--2002/66\hfil Azzeddine El Baraka \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 66, pp. 1--17. \newline ISSN: 1072-6691. URL: or \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % An embedding theorem for Campanato spaces % \thanks{ {\em Mathematics Subject Classifications:} 46E35. \hfil\break\indent {\em Key words:} Sobolev embeddings, BMO, Campanato spaces. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted April 15, 2002. Published July 11, 2002.} } \date{} % \author{Azzeddine El Baraka} \maketitle \begin{abstract} The purpose of this paper is to give a Sobolev type embedding theorem for the spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$. The homogeneous versions of these spaces contain well known spaces such as the Bounded Mean Oscillation spaces (BMO) and the Campanato spaces $\mathcal{L}^{2,\lambda}$. Our result extends some injections obtained by Campanato \cite{c1,c2}, Strichartz \cite{str}, and Stein and Zygmund \cite{sz}. \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of results} The main goal of this work is to give a Sobolev type embedding theorem for the appropriate scaled functions in $\mathcal{L}_{p,q}^{\lambda,s} (\mathbb{R}^{n})$ whose homogeneous version $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ contains some well known spaces as special cases: John and Nirenberg space BMO (Bounded Mean Oscillation) and more generally Campanato spaces $\mathcal{L}^{2,\lambda}$ modulo polynomials \cite{e2}. It is well known that the homogeneous Triebel-Lizorkin $\dot{F}_{p,q}^{s}(\mathbb{R}^{n})$ spaces coincide with BMO modulo polynomials for some values of $p,q$ and $s$. Namely, $BMO=\dot{F}_{\infty,2}^{0}$ \cite[chap.~5]{tr} and thus $I^{s}(BMO)=\dot{F}_{\infty,2}^{s}$, where $I^{s}=\mathcal{F}^{-1}( |\cdot |^{-s}\mathcal{F}) $ is the Riesz potential operator. Strichartz \cite{str} discussed the connexion between $I^{s}(BMO)$ and the homogeneous Besov space $\dot{\Lambda}_{\infty,q}^{s}$ and proved the following injections (Theorem 3.4.) \[ \dot{\Lambda}_{\infty,2}^{s}\subseteq I^{s}(BMO)\subseteq\overset {.}{\Lambda}_{\infty,\infty}^{s} \] Let us mention that others classical embeddings have been obtained respectively by Stein and Zygmund \cite{sz} and Campanato \cite{c1,c2}; they proved that \[ H_{p}^{n/p}\hookrightarrow BMO\quad \text{and}\quad \mathcal{L}^{p,\lambda}\cong C^{\frac{\lambda-n}{p}}\quad \text{if }n<\lambdan+p$. \begin{enumerate} \item[(ii)] The space $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^{n})$ denotes the set of functions $u\in Z'(\mathbb{R}^n)$ such that $\| u\| _{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^{n})}<+\infty$, where \[ \| u\| _{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^{n} )}=\left\{ \begin{array} {ll} \inf_{P\in\mathcal{P}}\| u+P\| _{\mathcal{L}^{p,\lambda }(\mathbb{R}^{n})}&\text{if }u\in L_{loc}^{1}(\mathbb{R}^{n})\\[3pt] +\infty&\text{if }u\in Z'(\mathbb{R}^n) \text{ but}\\ &\text{not locally integrable} \end{array} \right. \] the infimum is taken over the set $\mathcal{P}$ of all polynomials of $\mathbb{R}^{n}$ with complex coefficients. \end{enumerate} \end{definition} \begin{remark}\label{primo} \rm (i) Modulo polynomials, the space $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^{n})$ is the Campanato space $\mathcal{L}^{p,\lambda}(\mathbb{R}^{n})$. For $0\leq \lambda0$ satisfying the following inequality \[ \frac{1}{| B| }\int_B | u-m_B u| dx\leq C \] for all balls $B$ of $\mathbb{R}^{n}$. We show in \cite{e2} that in general $\dot{\mathcal{L}}^{2,\lambda,0}(\mathbb{R}^{n}) \equiv\overset{.}{\mathcal{L}}^{2,\lambda}(\mathbb{R}^{n})$ provided $0\leq\lambda0$ such that \[ {\sum_{j\geq1}}\Big({\sum_{\nu\geq1}} 2^{\nu A}a_{j\nu}\Big)^{p}\leq C\sup_{\nu\geq1} {\sum_{j\geq1}}a_{j\nu}^{p}. \] \end{lemma} \paragraph{Proof} Let $\frac{1}{p}+\frac{1}{q}=1$. Using H\"{o}lder's inequality we get \begin{eqnarray*} {\sum_{j\geq1}} \Big({\sum_{\nu\geq1}}2^{\nu A}a_{j\nu}\Big)^{p} &\leq&{\sum_{j\geq1}}\Big({\sum_{\nu\geq1}} 2^{\frac\nu2A}(2^{\frac\nu2A}a_{j\nu})\Big)^{p}\\ &\leq&{\sum_{j\geq1}}\Big( \Big({\sum_{\nu\geq1}} 2^{\frac\nu2Aq}\Big)^{p/q} {\sum_{\nu\geq1}}2^{\frac\nu2Ap}a_{j\nu}^{p}\Big) \\ &\leq& C{\sum_{j\geq1}}{\sum_{\nu\geq1}} 2^{\frac\nu2Ap}a_{j\nu}^{p}\\ &\leq& C{\sum_{\nu\geq1}}2^{\frac\nu2Ap}{\sum_{j\geq1}} a_{j\nu}^{p}\leq C\sup_{\nu\geq1}{\sum_{j\geq1}}a_{j\nu}^{p} \end{eqnarray*} It is known that $\dot{\Delta}_{l}$ is uniformly bounded on $L^{p}(\mathbb{R}^n) $. On the other hand, on $L^{p}(B) ,B\subset\mathbb{R}^{n}$, we have the following result. We denote $\alpha B$, $\alpha>0$, the ball with the same center $x_{0}$ as $B$ and of radius $\alpha r$, $r$ is the radius of $B$. \begin{lemma} \label{pb} For each integer $M>0$, there exists a constant $C_{M}>0$, such that for any $J\in\mathbb{Z}$, $x_{0}\in \mathbb{R}^{n}$, for any ball $B$ centered at $x_{0}$ and of radius $2^{-J}$, for any $l\in\mathbb{Z}$ and $u\in L^{p}\left( \mathbb{R}^{n}\right) ,1\leq p\leq+\infty$, \[ \| A_{l}u\| _{L^{p}(B)} \leq C_{M}\Big\{ \| u\| _{L^{p}(2B)}+\sum_{\nu\geq-J+1}2^{-(l+\nu)M}\| u\| _{L^{p}(F_{\nu})}\Big\} \] holds with $F_{\nu}=\left\{ x\in\mathbb{R}^{n};2^{\nu}\leq| x-x_{0}| \leq2^{\nu+1}\right\} $ and $A_{l}$ denotes any product of $\Delta_{l}$, $S_{l}$ and the dotted operators. \end{lemma} \paragraph{Proof} We give the proof for $A_l=\dot{\Delta}_{l}$. Remark that \[ u=\chi_{2B}u+\sum_{\nu\geq-J+1}\chi_{F_{\nu}}u \] where $\chi_{\Omega}$ is the characteristic function of the set $\Omega$. Thus \begin{eqnarray*} \| \dot{\Delta}_{l}u\| _{L^{p}(B)} & \leq&\| \dot{\Delta}_{l}\chi_{2B}u\| _{L^{p}(B)}+\sum_{\nu \geq-J+1}\| \dot{\Delta}_{l}\chi_{F_{\nu}}u\| _{L^{p} (B)}\\ & \leq &C\| u\| _{L^{p}(2B)}+\sum_{\nu\geq-J+1}\| \dot{\Delta}_{l}\chi_{F_{\nu}}u\| _{L^{p}(B)}, \end{eqnarray*} where $C$ is a constant independent of $l$ and $B$. Now \[ \dot{\Delta}_{l}\chi_{F_{\nu}}u(x)=2^{nl}\int_{F_{\nu}}u(y)\mathcal{F} ^{-1}\theta(2^{l}(x-y))dy \] For $x\in B$ and $y\in F_{\nu}$, we have $| x-y| \sim| x_{0}-y| \sim2^{\nu}$. Since $\,\theta\in\mathcal{S}\left( \mathbb{R}^{n}\right) $, for every integer $N$, there exists $C_{N}>0$ such that \[ | \mathcal{F}^{-1}\theta\left( 2^{l}\left( x-y\right) \right) | \leq C_{N}2^{-\left( l+\nu\right) N} \] We deduce \begin{eqnarray*} | \dot{\Delta}_{l}\chi_{F_{\nu}}u(x)| &\leq& C_{N}2^{nl}2^{-\left( l+\nu\right) N}\int_{F_{\nu}}| u(y)| dy\\ & \leq& C_{N}2^{nl}2^{-\left( l+\nu\right) N}\| u\| _{L^{p}(F_{\nu})}| F_{\nu}|^{1-\frac{1}{p}}\\ & \leq& C_{N}2^{-\left( l+\nu\right) (N-n)}2^{-\nu\frac{n}{p}}\| u\| _{L^{p}(F_{\nu})} \end{eqnarray*} It follows \begin{equation} \| \dot{\Delta}_{l}\chi_{F_{\nu}}u(x)\| _{L^{p}\left( B\right) }\leq C_{N}2^{-\left( l+\nu\right) (N-n)}2^{-\frac{n}{p}(\nu +J)}\| u\| _{L^{p}(F_{\nu})}\nonumber \end{equation} Therefore \[ \| \dot{\Delta}_{l}u\| _{L^{p}(B)}\leq C\| u\| _{L^{p}(2B)}+C_{N}\sum_{\nu\geq-J+1}2^{-\left( l+\nu\right) (N-n)}\| u\| _{L^{p}(F_{\nu})} \] Put $M=N-n>0$, and the proof is complete. \hfill$\diamondsuit$ \begin{remark} \rm Note that \[ | \mathcal{F}^{-1}\theta\left( 2^{l}\left( x-y\right) \right) | \leq\| \mathcal{F}^{-1}\theta\| _{L^{\infty} (\mathbb{R}^{n})} \] Thus we may improve the statement of the last lemma by replacing the term $2^{-\left( l+\nu\right) M}$ by $inf(1,\,2^{-\left( l+\nu\right) M}).$ \end{remark} Here is a classical lemma \cite{b}. \begin{lemma}\label{2100} Let $\lambda>0$, $1\leq p\leq q\leq+\infty$. For any $u\in L^{p}(\mathbb{R}^n) $ with $\mathop{\rm supp}\mathcal{F}u\subset\{ | \xi| \leq \lambda\} $ and for any multi-index $\alpha$, there exists $C_{\alpha }>0$ such that \[ \| D_{x}^{\alpha}u\| _{L^q (\mathbb{R}^{n})}\leq C_{\alpha }\lambda^{| \alpha| +n(\frac{1}{p}-\frac{1}{q})}\| u\| _{L^{p}(\mathbb{R}^{n})} \] \end{lemma} \begin{lemma}\label{210} Let $R$ be a real $>1$; there exists $C>0$ such that for any $\lambda>0$ and $1\leq p\leq+\infty$, for any $u\in L^{p}\left(\mathbb{R}^{n}\right) $ with $\mathop{\rm supp}\mathcal{F}u\subset$ $\{\lambda\leq|\xi|\leq R\lambda\}$ and for any $k\in\mathbb{N}$ we have \[ \| u\| _{L^{p}(\mathbb{R}^{n})}\leq C^{k}\lambda^{-k} \sup_{| \alpha| =k}\| D_{x}^{\alpha}u\| _{L^{p}(\mathbb{R}^{n})} \] \end{lemma} \paragraph{Proof} The above lemma gives that $D_{x}^{\alpha}u\in L^{p}(\mathbb{R}^{n})$ for all multi-index $\alpha$. Let $\psi\in C_{0}^{\infty}(\mathbb{R}^{n})$, $\psi(\xi)=1$ on a neighbourhood of the annulus $\{1\leq| \xi| \leq R\}$ and $\psi(\xi)=0$ on a neighbourhood of $0$. Setting $\psi_{\lambda}(\xi)=\psi(\frac{\xi}{\lambda})$ and $\psi_{\lambda,j}=\frac{\xi_{j}}{| \xi|^{2}}\psi_{\lambda}$ we obtain $\sum_{j=1}^{n}\xi_{j}\psi_{\lambda,j}(\xi)=1$ on a neighbourhood of $\mathop{\rm supp}\mathcal{F}u$. We deduce \begin{equation} u=\sum_{j=1}^{n}F_{\lambda,j}\ast D_{x_{j}}u\quad \text{where } F_{\lambda,j}=\mathcal{F}^{-1}\psi_{\lambda,j}\in\mathcal{S}(\mathbb{R} ^{n}) \label{8000} \end{equation} We have $F_{\lambda,j}(x)=\lambda^{n-1}F_{1,j}(\lambda x)$, $\| F_{\lambda,j}\| _{L^{1}}=\lambda^{-1}\| F_{1,j}\| _{L^{1} }$ and using (\ref{8000}) we deduce lemma \ref{210} for $k=1$. For the general case we do an induction on $k>1$. \hfill$\diamondsuit$ The following lemma yields the homogeneous decomposition modulo polynomials of a distribution $u\in\mathcal{S}'(\mathbb{R}^{n})$ without taking in account the condition $0\notin \mathop{\rm supp}\mathcal{F}u$ that we have met in remark \ref{ca}. \begin{lemma}\label{2101} For any $u\in\mathcal{S}'(\mathbb{R}^{n})$ we have the decomposition \[ u={\sum_{j\in\mathbb{Z}}} \dot{\Delta}_{j}u \quad \text{in }Z'(\mathbb{R}^{n}). \] \end{lemma} \paragraph{Proof} The series ${\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u$ converges in $\mathcal{S}'(\mathbb{R}^{n})$ for all $k\in\mathbb{Z.}$ It suffices to show that for any $\psi\in Z(\mathbb{R}^{n})$, \[ \lim_{k\to-\infty}\Big\langle {\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u,\check{\psi}\Big\rangle _{\mathcal{S} '\times\mathcal{S}} =\Big\langle u,\check{\psi}\Big\rangle_{\mathcal{S}'\times\mathcal{S}} \] where $\check{\psi}(x)=\psi(-x)$ for $x\in\mathbb{R}^{n}$. Now \[ {\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u\,-u= {\sum_{j=k}^{0}} \dot{\Delta}_{j}u-\Delta_{0}u=\varphi(2^{-k}D_{x})u \] which is a smooth function. Thus \[ (2\pi)^{n}\Big\langle{\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u\,-u,\check{\psi}\Big\rangle _{\mathcal{S} '\times\mathcal{S}}=\left\langle \mathcal{F}u,\varphi(2^{-k} .)\mathcal{F}\psi\right\rangle _{\mathcal{S}'\times\mathcal{S}} \] Since $\mathcal{F}u\in\mathcal{S}'(\mathbb{R}^{n})$, there exists a constant $C>0$ and an integer $N$ such that \begin{eqnarray*} \lefteqn{(2\pi)^{n}\Big| \Big\langle{\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u\,-u,\check{\psi}\Big\rangle _{\mathcal{S} '\times\mathcal{S}}\Big| }\\ &\leq& C\sup_{| \alpha|+| \beta| \leq N}\,\sup_{\xi\in\mathbb{R}^{n}}| \xi^{\alpha}D_{\xi}^{\beta}(\varphi(2^{-k}\xi)\mathcal{F}\psi(\xi))|\\ &\leq& C'\sup_{| \alpha| +| \beta| \leq N}\,\sup_{| \xi| \leq 2^{k+1}} {\sum_{\gamma\leq\beta}} 2^{k(| \alpha| -| \beta-\gamma| )}| (D_{\xi }^{\beta-\gamma}\varphi)(2^{-k}\xi)| | D_{\xi}^{\gamma }\mathcal{F}\psi(\xi)| \end{eqnarray*} By the assumption $\psi\in\mathcal{Z(}\mathbb{R}^{n})$ and Taylor's formula, for all nonnegative large integer $M$ \[ (2\pi)^{n}\Big| \Big\langle{\sum_{j=k}^{+\infty}} \dot{\Delta}_{j}u\,-u,\check{\psi}\Big\rangle _{\mathcal{S} '\times\mathcal{S}}\Big| \leq C2^{k(M-N)}\underset{k\to -\infty}{\longrightarrow}0 \] The proof is complete. \hfill$\diamondsuit$ Now we state the connexion between $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n}) $ and $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) $. \begin{lemma} \label{r} Let $1\leq p,q<+\infty$, $\lambda\geq0$ and $s\in\mathbb{R}$. \begin{enumerate} \item[(i)] If the class of $u$ modulo $\mathcal{P}$ belongs to $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) $ and if $\Delta_{0}u\in L^{p}(\mathbb{R}^n) $, then $u\in \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. \item[(ii)] $L^{p}(\mathbb{R}^{n})\cap\dot{\mathcal{L}}_{p,q}^{\lambda ,s}(\mathbb{R}^n) \subset\mathcal{L}_{p,q}^{\lambda,s}\left( \mathbb{R}^{n}\right) $ with the same meaning as (i). \item[(iii)] $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n) \subset\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ provided $s>0$. \end{enumerate} \end{lemma} \begin{remark} \rm It follows that if $s>0$ then \[ L^{p}(\mathbb{R}^{n})\cap\dot{\mathcal{L}}_{p,q}^{\lambda,s}\left( \mathbb{R}^{n}\right) =L^{p}(\mathbb{R}^{n})\cap\mathcal{L}_{p,q}^{\lambda ,s}(\mathbb{R}^n) . \] \end{remark} \paragraph{Proof of Lemma \ref{r}} (i) If $u\in\dot{\mathcal{L}}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) $, then $u\in\mathcal{S}'(\mathbb{R}^{n})$ and there exists a constant $M>0$ such that for any ball $B$ of $\mathbb{R}^{n}$ with radius $2^{-J}$ with $J\in\mathbb{Z}$, \begin{equation} \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq J}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q \leq M<+\infty\,.\label{cj} \end{equation} Let $J\in\mathbb{Z}$ and $B$ be a ball of $\mathbb{R}^{n}$ with radius $2^{-J}$. If $J\geq1$, then inequality (\ref{cj}) gives \[ \dfrac1{| B|^{\frac\lambda n}} {\sum_{l\geq J^{+}}} 2^{lsq}\| \Delta_{l}u\| _{L^{p}(B)}^q \leq M \] If $J\leq0$, we have \begin{align*} \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq J^{+}}} 2^{lsq}\| \Delta_{l}u\| _{L^{p}(B)}^q & =\frac{1}{| B|^{\lambda/n}}\| \Delta_{0}u\| _{L^{p}(B)}^q +\\ \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq1}} 2^{lsq}\| \Delta_{l}u\| _{L^{p}(B)}^q & \leq C2^{J\lambda }\| \Delta_{0}u\| _{L^{p}(B)}^q +M\\ & \leq C\| \Delta_{0}u\| _{L^{p}(\mathbb{R}^{n})}^q +M \end{align*} Since $\Delta_{0}u\in L^{p}(\mathbb{R}^n) $, we obtain \[ \frac1{| B|^{\frac\lambda n}}{\sum_{l\geq J^{+}}} 2^{lsq}\| \Delta_{l}u\| _{L^{p}(B)}^q \leq C'M \] Hence $u\in\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n) $. \noindent (ii) follows from (i). \noindent(iii) Let $u\in\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. There exists a constant $M>0$ such that for any ball $B$ of $\mathbb{R}^{n}$ with radius $2^{-J}$ and $J\in\mathbb{Z}$, \[ \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq J^{+}}} 2^{lsq}\| \Delta_{l}u\| _{L^{p}(B)}^q \leq M<+\infty\,. \] We have to show (\ref{cj}). Let $J\in\mathbb{Z}$ and $B$ a ball of $\mathbb{R}^{n}$ of radius $2^{-J}$. If $J\geq1$, then $J^{+}=J$ and (\ref{cj}) is valid. If $J\leq0\;($i.e. $J^{+}=0)$. We have \begin{equation} \begin{gathered} \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq J}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q =\frac{1}{| B|^{\lambda/n}} {\sum_{l=J}^{0}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q +\\ \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq1}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q \leq\frac{1}{| B|^{\lambda/n}} {\sum_{l=J}^{0}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q +M \end{gathered} \label{n1} \end{equation} Using the nonhomogeneous decomposition of $u$ we have for $l\leq0$ \[ \dot{\Delta}_{l}u=\sum_{k\geq0}\Delta_{k}\dot{\Delta} _{l}u=\Delta_{0}\dot{\Delta}_{l}u+\Delta_{1}\dot{\Delta}_{l}u \] and then \begin{equation} \| \dot{\Delta}_{l}u\| _{L^{p}(B) } \leq\| \Delta_{0}\dot{\Delta}_{l}u\| _{L^{p}\left( B\right) }+\| \Delta_{1}\dot{\Delta}_{l}u\| _{L^{p}(B) }. \label{n2} \end{equation} Lemma \ref{pb} gives for $M$ large, \[ \| \dot{\Delta}_{l}\Delta_{0}u\| _{L^{p}(B)}^q \leq C_{M}\{\| \Delta_{0}u\| _{L^{p}(2B)}^q + 2^{-(l-J)Mq}[\sum_{\nu\geq1}2^{-\nu M}\| \Delta_{0}u\| _{L^{p}(B_{\nu-J})}]^q \} \] where $B_{\nu-J}=2^{\nu+1}B$. Thus \begin{eqnarray*} \lefteqn{\frac{1}{| B|^{\lambda/n}}{\sum_{l=J}^{0}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}\Delta_{0}u\| _{L^{p} (B)}^q }\\ &\leq&\frac{C}{| B|^{\lambda/n}}\| \Delta_{0}u\| _{L^{p}(2B)}^q {\sum_{l=J}^{0}}2^{lsq}+ \frac{1}{| B|^{\lambda/n}} {\sum_{l=J}^{0}}2^{lsq}\Big( \sum_{\nu\geq1}2^{-\nu M}\| \Delta_{0}u\|_{L^{p}(B_{\nu-J})}\Big)^q \end{eqnarray*} Since $s>0$, ${\sum_{l=J}^{0}}2^{lsq}\leq C$ \begin{equation} \begin{aligned} \frac{1}{| B|^{\lambda/n}} {\sum_{l=J}^{0}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}\Delta_{0}u\| _{L^{p} (B)}^q \leq\frac{C}{| B|^{\lambda/n}}\| \Delta_{0}u\| _{L^{p}(2B)}^q &\\ +C\Big( \sum_{\nu\geq1}2^{\nu(-M+\frac{\lambda}{q})}\frac{1}{| B_{\nu-J}|^{\frac{\lambda}{nq}}}\| \Delta_{0}u\| _{L^{p}(B_{\nu-J})}\Big)^q \\ \leq CM+C\sup_{\nu}\frac{1}{| B_{\nu-J}|^{\lambda/n} }\| \Delta_{0}u\| _{L^{p}(B_{\nu-J})}^q &\leq CM \end{aligned} \label{n3} \end{equation} In the same way we have \begin{equation} \frac{1}{| B|^{\lambda/n}} {\sum_{l=J}^{0}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}\Delta_{1}u\| _{L^{p} (B)}^q \leq CM \label{n4} \end{equation} From (\ref{n1}), (\ref{n2}), (\ref{n3}) and (\ref{n4}) it follows \[ \frac{1}{| B|^{\lambda/n}} {\sum_{l\geq J}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q \leq CM \] and then $u\in\dot{\mathcal{L}}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) $. \hfill$\diamondsuit$ Now we give the differential dimension of $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. \begin{proposition} For any $u\in\dot{\mathcal{L}}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) $ and any $t>0$, we have \[ \| u(t^{-1}\cdot)\| _{\dot{\mathcal{L}}_{p,q}^{\lambda ,s}(\mathbb{R}^n) }\approx t^{d}\| u\| _{\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) } \] where $d=\frac{n}{p}-\frac{\lambda}{q}-s$. \end{proposition} \paragraph{Proof} Let $t=2^{N}$, $N\in\mathbb{Z}$ and set $v(x)=u(\frac{x}{2^{N}})$. From \[ \overset{\cdot}{\Delta}_{l}v(x)=(\overset{\cdot}{\Delta}_{l+N}u)(\dfrac {x}{2^{N}}) \] we get \[ \| \overset{\cdot}{\Delta}_{l}v\| _{L^{p}(B)}=2^{N\frac{n}{p} }\| \overset{\cdot}{\Delta}_{l+N}u\| _{L^{p}(2^{-N}B)} \] where $B$ is a ball of $\mathbb{R}^{n}$ with radius $2^{-J}$, $J\in\mathbb{Z}$. Then we have \begin{align*} \| v\| _{\dot{\mathcal{L}}_{p,q}^{\lambda,s}\left( \mathbb{R}^{n}\right) }^q & \approx\sup_B 2^{J\lambda} {\sum_{l\geq J}} 2^{lsq}2^{N\frac{n}{p}q}\| \overset{\cdot}{\Delta}_{l+N}u\| _{L^{p}(2^{-N}B)}^q \\ & \approx2^{N\frac{n}{p}q}2^{-N\lambda}2^{-Nsq}\sup_B 2^{(J+N)\lambda} {\sum_{l+N\geq J+N}} 2^{(l+N)sq}\| \overset{\cdot}{\Delta}_{l+N}u\| _{L^{p}(2^{-N} B)}^q \\ & \approx2^{(\frac{n}{p}-\frac{\lambda}{q}-s)qN}\sup_B 2^{J\lambda} {\sum_{l\geq J}} 2^{lsq}\| \overset{\cdot}{\Delta}_{l}u\| _{L^{p}(B)}^q \end{align*} \begin{lemma}\label{2102} Let $1\leq p\leq p'<+\infty$, $1\leq q'\leq q<+\infty$ and $s\in\mathbb{R}$. Further, let $\lambda$ and $\mu\geq0$ such that $\frac{n}{p'}-\frac{\mu}{q'}\geq\frac{n}{p}-\frac {\lambda}{q}$. Then we have the continuous embedding \[ \mathcal{L}_{p',q'}^{\mu,s+\frac{n}{p'}-\frac{\mu }{q'}}(\mathbb{R}^{n})\hookrightarrow\mathcal{L}_{p,q}^{\lambda ,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^{n})\,. \] We also have the same result for the dotted spaces $\dot{\mathcal{L}}$. \end{lemma} In particular, if $p=p'$ and $q=q'$ then $\mathcal{L} _{p,q}^{\mu,s-\frac{\mu}{q}}(\mathbb{R}^{n})\hookrightarrow\mathcal{L} _{p,q}^{\lambda,s-\frac{\lambda}{q}}(\mathbb{R}^{n})$ holds for all $\mu \leq\lambda$. Furthermore if $p=p'=q=q'$ we get $\mathcal{L} ^{p,\lambda,s+\frac{\alpha}{p}}(\mathbb{R}^{n})\hookrightarrow\mathcal{L} ^{p,\lambda+\alpha,s}(\mathbb{R}^{n})$ for all $\alpha\geq0$ and $\lambda\geq0$. \paragraph{Proof} Let $u\in\mathcal{L}_{p',q'}^{\mu,s+\frac{n}{p'} -\frac{\mu}{q'}}(\mathbb{R}^{n})$. Let $B$ be a ball of $\mathbb{R} ^{n}$ with radius $2^{-J}$, $J\in\mathbb{Z}$. Since $p\leq p'$ and $\frac{q}{q'}\geq1$ we obtain \begin{eqnarray*} \lefteqn{\frac1{| B|^{\frac\lambda n}} {\sum_{l\geq J^{+}}} 2^{l(s+\frac np-\frac\lambda q)q}\| \Delta_{l}u\| _{L^{p}(B)} ^q }\\ &\leq&\dfrac1{| B|^{\frac\lambda n}} {\sum_{l\geq J^{+}}} 2^{l(s+\frac np-\frac\lambda q)q}\left( \| \Delta_{l}u\| _{L^{p'}(B)}| B|^{\frac1p-\frac1{p'}}\right) ^q \\ &\leq&\frac1{| B|^{\frac\lambda n}} {\sum_{l\geq J^{+}}} \left( 2^{l(s+\frac np-\frac\lambda q)q'}\| \Delta _{l}u\| _{L^{p'}(B)}^{q'}\right)^{q/q'}| B|^{q\left( \frac1p-\frac1{p'}\right) }\\ &\leq&\frac1{| B|^{\frac\lambda n}}\Big({\sum_{l\geq J^{+}}} 2^{l(s+\frac np-\frac\lambda q)q'}\| \Delta_{l}u\| _{L^{p'}(B)}^{q'}\Big)^{q/q'}| B|^{q\left( \frac1p-\frac1{p'}\right) } \end{eqnarray*} Now $| B| \sim2^{-nJ}$, $l\geq J^{+}\geq J$ and the assumption $\frac n{p'}-\frac\mu{q'}\geq\frac np-\frac\lambda q$ yield \begin{eqnarray*} \lefteqn{\Big\{ \dfrac1{| B|^{\frac\lambda n}} {\sum_{l\geq J^{+}}} 2^{l(s+\frac np-\frac\lambda q)q}\| \Delta_{l}u\| _{L^{p}(B)} ^q \Big\}^{1/q}}\\ &\leq&\Big( \dfrac1{| B|^{\frac\mu n}} {\sum_{l\geq J^{+}}} 2^{l(s+\frac np-\frac\lambda q)q'}\| \Delta_{l}u\| _{L^{p'}(B)}^{q'}\Big)^{1/q'}| B|^{\frac1p-\frac1{p'}}| B|^{\frac\mu {nq'}-\frac\lambda{nq}}\\ &\leq& C\Big( \frac1{| B|^{\frac\mu n}} {\sum_{l\geq J^{+}}} 2^{J\left( (\frac n{p'}-\frac\mu{q'})-(\frac np-\frac\lambda q)\right) q'}2^{l(s+\frac np-\frac\lambda q)q'}\| \Delta_{l}u\| _{L^{p'}(B)}^{q'}\Big)^{1/q'}\\ &\leq& C\Big( \dfrac1{| B|^{\frac\mu n}} {\sum_{l\geq J^{+}}}2^{l(s+\frac n{p'}-\frac\mu{q'})q'}\| \Delta _{l}u\| _{L^{p'}(B)}^{q'}\Big)^{1/q'} \end{eqnarray*} The proof of lemma \ref{2102} is complete. \hfill$\diamondsuit$ \begin{lemma} \label{derivation} The derivation $D_{x}^{\alpha}$ is a bounded operator from $\mathcal{L}_{p,q}^{\lambda,s+| \alpha| }\left( \mathbb{R} ^{n}\right) $ to $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n) $ and from $\dot{\mathcal{L}}_{p,q}^{\lambda,s+| \alpha| }(\mathbb{R}^n) $ to $\dot{\mathcal{L}}_{p,q} ^{\lambda,s}(\mathbb{R}^n)$. \end{lemma} \paragraph{Proof} Let $|\alpha|=1$. We have \begin{align*} \| D_{x}u\| _{\mathcal{L}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) }^q & =\| D_{x} {\sum_{l\geq0}} \Delta_{l}u\| _{\mathcal{L}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) }^q \\ & =\sup_B \frac{1}{| B|^{\lambda/n}} {\sum_{j\geq J^{+}}}2^{jsq}\| {\sum_{l=j-1}^{j+1}}D_{x}\Delta_{j}\Delta_{l}u\| _{L^{p}(B)}^q \\ & \leq C\sup_B \frac{1}{| B|^{\lambda/n}} {\sum_{j\geq J^{+}}}2^{jsq} {\sum_{l\sim j}}\| D_{x}\Delta_{j}\Delta_{l}u\| _{L^{p}(B)}^q \end{align*} (in the case of the dotted spaces we use lemma \ref{2101}). Let $B$ a ball of $\mathbb{R}^{n}$ of radius $2^{-J},J\in\mathbf{Z.}$ Set $f_{l}=\Delta_{l}u$. Note that \[ f_{l}=\chi_{2B}f_{l}+\sum_{\nu\geq-J+1}\chi_{F_{\nu}}f_{l} \] and use lemma \ref{2100} to get \begin{equation} \begin{aligned} \| D_{x}\Delta_{j}f_{l}\| _{L^{p}(B) } \leq & \| D_{x}\Delta_{j}\chi_{2B}f_{l}\| _{L^{p}(B) }+\sum_{\nu\geq-J+1}\| D_{x}\Delta_{j}\chi_{F_{\nu}} f_{l}\| _{L^{p}(B) }\\ \leq & C2^{j}\| \Delta_{j}\chi_{2B}f_{l}\| _{L^{p}\left( \mathbb{R}^{n}\right) }+\sum_{\nu\geq-J+1}\| D_{x}\Delta_{j} \chi_{F_{\nu}}f_{l}\| _{L^{p}(B) }\\ \leq & C2^{j}\| f_{l}\| _{L^{p}\left( 2B\right) } +\sum_{\nu\geq-J+1}\| D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}\| _{L^{p}(B) } \end{aligned} \label{2251a} \end{equation} On the other hand, \[ D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}\left( x\right) =2^{(n+1)j}\int_{F_{\nu}}f_{l}\left( y\right) \psi\left( 2^{j}(x-y)\right) dy \] where\ $\psi=D_{x}\mathcal{F}^{-1}\theta$. Therefore, if $x\in B$ and $y\in F_{\nu},\nu\geq-J+1$, then $|x-y|\sim |x_{0}-y|\sim2^{\nu}$. Since $\psi\in\mathcal{S}(\mathbb{R}^{n})$, for each integer $N$ there exists a constant $C_{N}$ such that \begin{align*} | D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}\left( x\right) | & \leq C_{N}2^{j\left( n+1-N\right) }2^{-\nu N} {\int_{F_{\nu}}} |f_{l}(y)|\,dy\\ & \leq C_{N}2^{j\left( n+1-N\right) }2^{-\nu N}\| f_{l}\| _{L^{p}\left( F_{\nu}\right) }|F_{\nu}|^{1-\frac{1}{p}} \end{align*} We deduce \[ \| D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}\| _{L^{p}(B) }\leq C_{N}2^{j\left( n+1-N\right) }| B|^{1/p} 2^{\nu\left( -N+\frac{\lambda}{q}-\frac{n}{p}+n\right) }\frac{1}{| F_{\nu}|^{\frac{\lambda}{nq}}}\| f_{l}\| _{L^{p}\left( F_{\nu}\right) } \] Thus \begin{eqnarray} \lefteqn{\sum_{\nu\geq-J+1}\| D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}\| _{L^{p}(B) } }\nonumber\\ &\leq& C_{N}2^{j\left( n+1-N\right) } 2^{-J\frac{n}{p}}\sum_{\nu\geq-J+1}2^{\nu\left( -N+\frac{\lambda} {q}-\frac{n}{p}+n\right) }\frac{\| f_{l}\| _{L^{p}\left( F_{\nu}\right) }}{| F_{\nu}|^{\frac{\lambda}{nq}}}\label{vb}\\ & \leq & C2^{j}2^{(j-J)(n-N)}2^{-J\frac{\lambda}{q}}\sum_{\nu\geq 1}2^{\nu\left( -N+\frac{\lambda}{q}-\frac{n}{p}+n\right) }\frac{\| f_{l}\| _{L^{p}\left( F_{\nu-J}\right) }}{| F_{\nu-J}| ^{\frac{\lambda}{nq}}}\nonumber \end{eqnarray} Choose $N$ large and use inequalities (\ref{2251a}), (\ref{vb}) and lemma \ref{sup} to deduce \begin{eqnarray*} \lefteqn{\frac{1}{| B|^{\lambda/n}}{\sum_{j\geq J^{+}}} 2^{jsq}{\sum_{l\sim j}} \| D_{x}\Delta_{j}\Delta_{l}u\| _{L^{p}(B)}^q }\\ &\leq& C\frac{1}{| B|^{\lambda/n}}\sum_{j\geq J^{+} }2^{j(s+1)q}\| f_{j}\| _{L^{p}\left( 2B\right) }^q \\ &&+ C_{N}\sum_{j\geq J^{+} }\Big\{ \sum_{\nu\geq1}2^{\nu\left( -N+\frac{\lambda}{q}-\frac{n} {p}+n\right) }\frac{2^{j(s+1)}}{| F_{\nu-J}|^{\frac{\lambda }{nq}}}\| f_{j}\| _{L^{p}\left( F_{\nu-J}\right) }\Big\}^q \\ &\leq& C\frac{1}{| 3B|^{\lambda/n}}\sum_{j\geq (J-2)^{+}}2^{j(s+1)q}\| \Delta_{j}u\| _{L^{p}\left( 2B\right)}^q \\ &&+C_{N}'\sup_{\nu\geq1} \frac{1}{| F_{\nu-J}|^{\lambda/n}} \sum_{j\geq(J-\nu-1)^{+}}2^{j(s+1)q}\| \Delta_{j}u\| _{L^{p}\left( F_{\nu-J}\right)}^q \end{eqnarray*} Finally, \[ \| D_{x}u\| _{\mathcal{L}_{p,q}^{\lambda,s}\left( \mathbb{R} ^{n}\right) }^q \leq C\| u\| _{\mathcal{L}_{p,q}^{\lambda ,s+1}(\mathbb{R}^n) }^q \] which completes the proof of lemma \ref{derivation}. \section{Proof of theorem \ref{221}} For the first embedding, let $u\in\mathcal{L}_{p,q}^{\lambda,s+\frac{n} {p}-\frac{\lambda}{q}}(\mathbb{R}^n) $. Let $j\geq1$ and $x\in\mathbb{R}^{n}$ be fixed. Let $\phi\in\mathcal{S}\left( \mathbb{R} ^{n}\right) $ with $\mathcal{F}\phi$ $=1$ on $\frac{1}{2}\leq|\xi| \leq2$. From $\mathcal{F}\Delta_{j}u(\xi)=\mathcal{F}(\Delta_{j}u)(\xi)\mathcal{F} \phi(2^{-j}\xi)$ we deduce \begin{equation} \Delta_{j}u\left( x\right) =2^{nj}\int_{\mathbb{R}^{n}}\Delta_{j} u(y)\phi(2^{j}(x-y))dy \label{conv} \end{equation} (in the case $j=0$, we assume $\mathcal{F}\phi$ $=1$ on $|\xi|\leq2$). We decompose $\mathbb{R}^{n}$ into disjunctive cubes with the side-length $2^{-j}$, \[ Q_{\nu}=\left\{ y\in\mathbb{R}^{n} : \| y-x-2^{-j}\nu\| _{\infty}\leq2^{-j-1}\right\}, \] $\nu\in\mathbb{Z}^{n}$, and we set $a_{\nu}=\sup_{\| y-\nu\| _{\infty}\leq\frac{1}{2}}| \phi(y)|$ which is a rapidly decreasing sequence. Then, we have \begin{eqnarray*} | \Delta_{j}u\left( x\right) | & \leq & 2^{nj}\sum_{\nu} \int_{Q_{\nu}}| \Delta_{j}u(y)\phi(2^{j}(x-y))| dy\\ & \leq & 2^{nj}\sum_{\nu}a_{\nu}\int_{Q_{\nu}}| \Delta_{j}u(y)|dy\\ & \leq & 2^{nj}\sum_{\nu}a_{\nu}\| \Delta_{j}u\| _{L^{p}\left( Q_{\nu}\right) }| Q_{\nu}|^{1-\frac1p}\\ & \leq & C2^{nj}\sum_{\nu}a_{\nu}\Big( 2^{-j(s+\frac np-\frac\lambda q)}\| u\| _{\mathcal{L}_{p,q}^{\lambda,s+\frac np-\frac\lambda q}(\mathbb{R}^n) }| Q_{\nu}|^{\frac\lambda{nq} }\Big) | Q_{\nu}|^{1-\frac1p}\\ & \leq & C2^{nj}\sum_{\nu}a_{\nu}2^{-j(s+\frac np-\frac\lambda q)}\| u\| _{\mathcal{L}_{p,q}^{\lambda,s+\frac np-\frac\lambda q}\left( \mathbb{R}^{n}\right) }2^{-jn(\frac\lambda{nq}+1-\frac1p)}\\ & \leq & C2^{-js}\| u\| _{\mathcal{L}_{p,q}^{\lambda,s+\frac np-\frac\lambda q}(\mathbb{R}^n) }. \end{eqnarray*} The first embedding is proved. Now let $u\in F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^n) $ and $B$ a ball of $\mathbb{R}^{n}$ centered at $x_{0}$ with radius $2^{-J}$, $J\in\mathbf{Z}$. The assumption $\frac{q}{p}\geq1$ gives \begin{eqnarray*} \lefteqn{\frac{1}{| B|^{\frac{\lambda}{nq}}}\Big\{ {\sum_{j\geq J^{+}}} 2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})}\left( {\int_B }| \Delta_{j}u|^{p}dx\right)^{q/p}\Big\}^{1/q}}\\ &=& \frac{1}{| B|^{\frac{\lambda}{nq}}}\Big\| \Big( {\int_B }2^{jp(s+\frac{n}{p}-\frac{\lambda}{q})}| \Delta_{j}u| ^{p}dx\Big) _{j\geq J^{+}}\Big\| _{l^{\frac{q}{p}}}^{1/p}\\ &\leq& \frac{1}{| B|^{\frac{\lambda}{nq}}}C\Big\{ {\int_{\mathbb{R}^{n}}} \| \left( 2^{jp(s+\frac{n}{p}-\frac{\lambda}{q})}| \Delta _{j}u|^{p}\right) _{j\geq J^{+}}\| _{l^{\frac{q}{p}}}dx\Big\}^{1/p}\\ &\leq& C2^{J\frac{\lambda}{q}}\Big\{ {\int_{\mathbb{R}^{n}}}\Big({\sum_{j\geq J^{+}}} 2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})}| \Delta_{j}u| ^q \Big)^{p/q}\Big\}^{1/p}\\ &\leq& C\Big\{ \int_{\mathbb{R}^{n}}\Big({\sum_{j\geq J^{+}}} 2^{J\lambda}2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})}| \Delta_{j}u| ^q \Big)^{p/q}\Big\}^{1/p} \leq C\|u\| _{F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^n) }. \end{eqnarray*} Therefore the second embedding yields true. For the third embedding, use $\frac pq\geq1$ to obtain \begin{eqnarray*} \dfrac1{| B|^{\frac\lambda n}}{\int_B }{\sum_{j\geq J^{+}}} 2^{jp(s- \frac{\lambda-n}p)}| \Delta_{j}u|^{p}dx &=& \dfrac1{| B|^{\frac\lambda n}} {\int_B }{\sum_{j\geq J^{+}}} \Big( 2^{jq(s- \frac{\lambda-n}p)}| \Delta_{j}u|^q \Big)^{p/q}dx\\ &\leq& C2^{J\lambda}{\int_B }\Big({\sum_{j\geq J^{+}}} 2^{jq(s- \frac{\lambda-n}p)}| \Delta_{j}u|^q \Big)^{p/q}dx\\ &\leq& {\int_B }\Big({\sum_{j\geq J^{+}}}2^{J\lambda\frac qp} 2^{jq(s- \frac{\lambda-n}p)}| \Delta_{j}u|^q \Big)^{p/q}dx\\ &\leq& C{\int_{\mathbb{R}^{n}}}\Big({\sum_{j\geq J^{+}}} 2^{jq(s+\frac np)}| \Delta_{j}u|^q \Big)^{p/q}dx\\ &\leq& C\| u\| _{F_{p,q}^{s+\frac np}(\mathbb{R}^n)}^{p} \end{eqnarray*} Let $B$ be a ball of $\mathbb{R}^{n}$ centered at $x_{0}$ with radius $2^{-J}$ for $J\in\mathbb{Z}$. Let $u\in B_{\infty,q}^{s-\frac np+\frac\lambda q}(\mathbb{R}^{n})$. Then \begin{eqnarray*} \dfrac1{| B|^{\frac\lambda n}}{\sum_{j\geq J^{+}}} 2^{jqs}\| \Delta_{j}u\| _{L^{p}(B)}^q &\leq& C2^{J\lambda} {\sum_{j\geq J^{+}}} 2^{jqs}| B|^{\frac qp}\| \Delta_{j}u\| _{L^{\infty}(B)}^q \\ &\leq& C{\sum_{j\geq J^{+}}}2^{jqs}2^{J(\lambda-n\frac qp)} \| \Delta_{j}u\| _{L^{\infty}(B)}^q \\ &\leq& C{\sum_{j\geq0}}2^{jq(s-\frac np+\frac\lambda q)} \| \Delta_{j}u\| _{L^{\infty}(B)}^q \end{eqnarray*} Therefore the fourth injection is proved. For the last assertion, \begin{eqnarray*} \frac{1}{| B|^{\lambda/n}}{\sum_{j\geq J^{+}}} 2^{jqs}\| \Delta_{j}u\| _{L^q (B)}^q &\leq& C\frac{1}{|B|^{\lambda/n}}{\int_B }{\sum_{j\geq J^{+}}} 2^{jqs}| \Delta_{j}u|^q dx\\ &\leq& C\sup_{x\in\mathbb{R}^{n}}{\sum_{j\geq J^{+}}} 2^{jqs}| \Delta_{j}u(x)|^q | B|^{-\frac{\lambda}{n}+1}\\ &\leq& C\sup_{x\in\mathbb{R}^{n}}{\sum_{j\geq0}} 2^{jq(s+\frac{\lambda-n}{q})}| \Delta_{j}u|^q \end{eqnarray*} and the proof of theorem \ref{221} is complete. \hfill$\diamondsuit$ Now we can state a partial result on the topological dual of $\overset{\circ}{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$, the closure of Schwartz space $\mathcal{S}(\mathbb{R}^{n})$ in $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$. \begin{corollary} \label{cor}Let $s\in\mathbb{R}$, $\lambda\geq 0$, $1\leq p<+\infty$, $1\leq q<+\infty$, $1