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SEMILINEAR PARABOLIC PROBLEMS ON MANIFOLDS AND

APPLICATIONS TO THE NON-COMPACT YAMABE PROBLEM

Qi S. Zhang

Abstract. We show that the well-known non-compact Yamabe equation (of pre-

scribing constant positive scalar curvature) on a manifold with non-negative Ricci
curvature and positive scalar curvature behaving like c/d(x)2 near infinity can not

be solved if the volume of geodesic balls do not increase “fast enough”. Even though

both existence and nonexistence results have appeared in the case when the scalar

curvature is negative somewhere([J], [AM]), or when the scalar curvature is posi-

tive ([Ki], [Zhan5]), the current paper seems to give the first nonexistence result

in the case that the scalar curvature is positive and Ricci ≥ 0, which seems to be
the fundamental part of the noncompact Yamabe problem. We also find some com-

plete non-compact manifolds with positive scalar curvature which are conformal to

complete manifolds with constant and with zero scalar curvature. This is a new

phenomenon which does not happen in the compact case.

1. Introduction

We shall study the global existence and blow up of solutions to the homogeneous
semilinear parabolic Cauchy problem

Hu ≡ H0u+ u
p = ∆u−Ru− ∂tu+ u

p = 0 in Mn × (0,∞),

u(x, 0) = u0(x) ≥ 0 in Mn,
(1.1)

where Mn with n ≥ 3 is a non-compact complete Riemannian manifold, ∆ is the
Laplace-Beltrami operator and R = R(x) is a bounded function.
Equation (1.1) with R = 0 contains the following important special cases. When

the Riemannian metric is just the Euclidean metric, (1.1) becomes the semilinear
parabolic equation which has been studied by many authors. In the paper [Fu],
Fujita proved the following results:
(a) when 1 < p < 1 + 2

n
and u0 > 0, problem (1.1) possesses no global positive

solutions;
(b) when p > 1 + 2

n
and u0 is smaller than a small Gaussian, then (1.1) has

global positive solutions. So 1 + 2
n
is the critical exponent.

For a reference to the rich literature of the subsequent development on the topic,
we refer the reader to the survey paper [Le].
In recent years, many authors have undertaken research on semilinear elliptic

operators on manifolds, including the well-known Yamabe problem (see [Sc] and
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[Yau]). The study of those elliptic problems and others such as Ricci flow lead nat-
urally to semilinear or quasi-linear parabolic problems (see [H] and [Sh]). The first
goal of the paper is to study when blow up of solutions occur and when global pos-
itive solutions exist for equation (1.1) on manifolds. Such an undertaking requires
some new techniques. The prevailing methods of treating the above semi-linear
problems i.e. variational and comparison method seem difficult to apply. The
method we are using is based on new inequalities ( see section 3 and Lemma 7.2)
involving the heat kernels. We are able to find an explicit relation between the
size of the critical exponent and geometric properties of the manifold such as the
growth rate of geodesic balls (see Theorem B).
It is interesting to note that this technique also leads to a non-existence result

of the well-known non-compact Yamabe problem of prescribing positive constant
scalar curvatures; i.e. whether the following elliptic problem has “suitable” positive
solutions on Mn with nonnegative scalar curvature (see Theorems C and D).

∆u−
n− 2

4(n − 1)
Ru+ u(n+2)/(n−2) = 0. (1.1’)

This problem has been asked by J. Kazdan [K] and S. T. Yau [Yau]. The compact
version of the problem was proposed by Yamabe [Yam], proved by Trudinger [Tr]
and Aubin [Au1] in some cases and eventually proved by R. Schoen [Sc] completely.
In the non-compact case, Aviles and McOwen [AM] obtained some existence

results for the problem of prescribing constant negative scalar curvature. Jin [Jin]
gave a nonexistence result when R is negative somewhere. Some existence result
when R is positive was obtained in [Ki]. Recently in [Zhan5] (Theorem A, B),
we constructed complete noncompact manifolds with positive R, which do not
have any conformal metric with positive constant scalar curvature. However those
manifolds, obtained by deformingR3×S1, do not have nonnegative Ricci curvature
everywhere.
Since manifolds with nonnegative Ricci curvature are one of the most basic ob-

jects in geometry. It is the most natural to ask whether the Yamabe equation can
be solved in this case. However, as far as we know, there has been no nonexistence
result on the problem of prescribing constant positive scalar curvature when the
Ricci curvature is nonnegative and R is positive.
WhenMn is Rn with the Euclidean metric, then problem (1.1’) becomes ∆u+

u(n+2)/(n−2) = 0, which does have positive solutions (see [Ni]), that induce incom-
plete metric of constant positive scalar curvature.

uλ(x) = [n(n− 2)λ
2](n−2)/4/(λ2 + |x|2)(n−2)/2, λ > 0.

So it is reasonable to expect that (1.1’) at least has a positive solution which gives
rise to a incomplete metric of scalar curvature one. However Theorem D below
asserts that unlike the compact Yamabe problem, equation (1.1’) can not be solved
in general, regardless of whether one requires the resulting metric is complete or not.
In fact if the existing scalar curvature decays “too fast” and the volume of geodesic
balls does not increase “fast enough”, then (1.1’) does not have any positive solution
at all. This of course rules out the existence of complete or incomplete metric with
constant positive scalar curvature.
Before stating the results precisely, let us list the basic assumptions and some

notations to be used frequently in the paper. For theorems A, B and C in the paper
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we make the following assumptions (i), (ii) and (iii) unless stated otherwise. Instead,
Theorem D is exclusively about manifolds with nonnegative Ricci curvature.

(i). There are positive constants b, C, K, q and Q such that

|B(x, r)| ≤ CrQ; |B(x, 2r)| ≤ C2q|B(x, r)|, r > 0; Ricci ≥ −K. (1.2)

(ii). G, the fundamental solution of the linear operator H0 = ∆−R−∂t in (1.1),
has global Gaussian upper bound. i.e.

0 ≤ G(x, t; y, s) ≤
C

|B(x, (t− s)1/2)|
e−b

d(x,y)2

t−s , (1.3)

for all x, y ∈Mn and all t > s.
(iii). When t− s ≥ d(x, y)2, G satisfies

G(x, t; y, s) ≥ min{
1

C|B(x, (t− s)1/2)|
,

1

C|B(y, (t− s)1/2)|
}. (1.4)

We mention that (1.4) actually is equivalent to G having global Gaussian lower
bound by a well known argument in [FS].

At the first glance, the relation between conditions (1.3), (1.4) and the function
R does not seem transparent. However we emphasize that in general (1.3) and (1.4)
only require R to satisfy some decay conditions such as R−(x) ≤ ε/[1+d2+δ(x, x0)]
for δ > 0 and some ε > 0 and R+(x) ≤ c/[1 + d2+δ(x, x0)] for δ > 0 and an
arbitrary c > 0 as indicated in Lemma 6.1 below and Theorem C in [Zhan5]. More
specifically we have

Theorem (Theorem C [Zhan5]). SupposeM is a complete noncompact manifold
with nonnegative Ricci curvature outside a compact set and R ≥ 0, then (1.4) and
(1.3) hold if and only if supx

∫
Γ0(x, y)R(y)dy < ∞. Here Γ0 is the fundamental

solution of the free Laplacian ∆. In particular (1.4) and (1.3) hold if 0 ≤ R ≤
c/[1 + d2+δ(x, x0)] for δ > 0 and an arbitrary c > 0

In the context of the Yamabe equation, the relation is even more direct. If the
Ricci curvature ofMn is non-negative and R is the scalar curvature, then the upper
bound (1.3) automatically holds by [LY] and the maximum principle since R− = 0.

Definition 1.1. A function u = u(x, t) such that u ∈ L2loc(M
n×(0,∞)) is called

a solution of (1.1) if

u(x, t) =

∫
Mn

G(x, t; y, 0)u0(y)dy +

∫ t
0

∫
Mn

G(x, t; y, s)up(y, s)dyds

for all (x, t) ∈Mn × (0,∞).

G = G(x, t; y, s) will denote the fundamental solution of the linear operator H0
in (1.1). For any c > 0, we write

Gc(x, t; y, s) =

{
1

|B(x,(t−s)1/2)|
exp(−cd(x,y)

2

t−s ), t > s,

0, t < s.
(1.5)
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Let u0 be a positive function in L
∞(Mn) and a > 0, we write

ha(x, t) =

∫
Mn

Ga(x, t; y, 0)u0(y)dy; (1.6)

Given V = V (x, t) and c > 0, we introduce the notation

Nc,∞(V ) ≡supx∈Mn,t>0

∫ ∞
−∞

∫
Mn

|V (y, s)|Gc(x, t; y, s)dyds

+ supy∈Mn,s>0

∫ ∞
∞

∫
Mn

|V (x, t)|Gc(x, t; y, s)dxdt.

(1.7)

We note that Nc,∞(V ) may be infinite for some V . However, the fact that Nc,∞(V )
is finite for some specific functions will play a key role in the proof of the theorems.
When V is time independent, Nc,∞(V )/2 = supx

∫
Mn Γ0(x, y)|V (y)|dy the quantity

appeared in Theorem C of [Zhan5].

The main results of the paper are the next four theorems.

Theorem A. Suppose R = 0 and (1.2), (1.3) and (1.4) hold. Then the critical
exponent of (1.1) is p∗ = 1 + 1

s∗
, where

s∗ = sup{s | lim
t→∞

sup ts||W (., t)||L∞ <∞,

for a non-negative and non-trivial W such that H0W = 0}.

Remark 1.1. Theorem A can be proved by following the proof of Theorem 1
in [Me]. However, this theorem does not provide any estimate of the size of the
exponent. Our main concern is therefore to find an explicit relation between the
critical exponent and geometrical properties of the manifold. This is done in

Theorem B. Let Mn be any Riemannian manifold and R = R(x) be any
bounded function such that (1.2), (1.3) and (1.4) hold, then the following con-
clusions are true.
(a). Suppose, for t > s ≥ 0,

sup
x∈Mn,t

∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(y, s1/2)|p−1
dyds+ sup

y∈Mn,s

∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(x, t1/2)|p−1
dxdt <∞

for some r0 > 0 and a suitable c > 0, then (1.1) has global positive solutions for
some u0 ≥ 0.
(b). Suppose for some x0 ∈Mn,

lim
r→∞

inf
|B(x0, r)|

rα
<∞

then (1.1) has no global positive solutions for any p < 1 + 2
α
and any u0 ≥ 0.

Remark 1.2. In general the integral relation given in part (a) of Theorem B is
necessary since, for fixed s > 0, |B(y, s1/2)| may tend to zero when y approaches∞.
The relation seems complicated at the beginning, however it is actually sharp as
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explained in the two corollaries below, where more specific assumptions are made
on the manifold.

Corollary 1.1. Under the same assumptions as in Theorem B, suppose

∫ ∞
r0

sup
x∈Mn

1

|B(x, r1/2)|p−1
dr <∞

for some r0 > 0, then (1.1) has global positive solutions for some u0 ≥ 0. In
particular if, for α > 0, infx∈Mn |B(x, r)| ≥ Crα when r is sufficiently large, then
for p > 1 + 2

α
, (1.1) has global positive solutions for some u0.

In the next corollary, we show that ifMn has bounded geometry in the sense of
E. B. Davies (see p 172 in [D]), which means there exists a function b(r) and c > 0
such that

c−1b(r) ≤ |B(x, r)| ≤ cb(r) (1.8)

for all x ∈ Mn and r > 0, then the critical exponent of (1.1) can be explicitly
determined.

Corollary 1.2. Suppose (1.2) , (1.3) , (1.4) and (1.8) hold, then p∗, the critical
exponent of (1.1), is given by p∗ = 1 + 2

α∗
, where

α∗ = inf{α > 0 | lim
r→∞

inf
|B(x, r)|

rα
<∞, x ∈Mn}.

The above number α∗ is independent of the choice of x ∈Mn.

Remark 1.3. Under the assumptions of part (a) of Theorem B, (1.1) has global
positive solutions if u0 ≥ 0 satisfies u0 ∈ C2(Mn), limd(x,0)→∞ u0(x) = 0, and
||u0||L∞(Mn) + ||u0||L1(Mn) ≤ b0where b0 is a sufficiently small number and 0 is a
point in Mn. This result, to be proved in section 4, is new even in the Euclidean
case.

Next we turn our attention to the non-compact Yamabe equation of prescribing
constant positive scalar curvatures.

Theorem C. Suppose (1.2), (1.3) and (1.4) hold and

lim
r→∞

inf
|B(x0, r)|

rα
<∞ (1.9)

for some x0 and α < (n− 2)/2, then the Yamabe equation (1.1’) has no solutions.

Examples of manifolds satisfying the conditions in Theorem C will be given in
Corollary 1.3 below.
The next theorem gives a set of manifolds with nonnegative Ricci curvature,

which are not conformal to manifolds with positive constant scalar curvature. The
construction is more difficult since the scalar curvature does not have a rapid decay
when Ricci ≥ 0 everywhere. This theorem marks one of the main differences
between this paper and [Zhan5]. It is not known whether there exists a manifold
with nonnegative Ricci curvature such that the scalar curvature satisfies (1.4). The
scalar curvature G given below does not satisfy (1.4).
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Theorem D. Suppose M is a n(≥ 3) dimensional complete noncompact mani-
fold with nonnegative Ricci curvature and the scalar curvature R = R(x) satisfies
0 ≤ R(x) ≤ C0/[1 + d2(x, x0)], where C0 is an arbitrary positive constant. There
exists a positive integer m such that the manifold M × Πm1 S

1 is not conformal to
manifolds with positive constant scalar curvature. Here the metric is the product of
the metric on M and the usual one on S1.

It is important to know what conditions should be imposed on the Ricci curvature
and the scalar curvature R so that the conditions of Theorem C are met. We have

Corollary 1.3. (a). Suppose the Ricci curvature ofMn is non-negative outside
a compact set and for a suitable c > 0, Nc,∞(R

+) is finite and Nc,∞(R
−) is suffi-

ciently small, then (1.2), (1.3) and (1.4) hold. Hence the Yamabe equation (1.1’)
has no solutions if (1.9) holds.
(b). In particular suppose Mn is a manifold with non-negative Ricci curvature

outside a compact set and |B(x, r)| ∼ rα for 2 < α < (n − 2)/2 and large r > 0.
Then if

0 ≤ R(x) ≤ c/(1 + d2+δ(x, 0))

for an arbitrary c > 0, then the Yamabe problem (1.1’) has no solution. Here 0 is
a point in Mn. An example is

M9 = R3 × S1 × S1 × S1 × S1 × S1 × S1.

Here the metric is the product of the usual ones on S1 and the Euclidean metric
on R3. By Theorem B (a) in [Zhan5], M9 has a complete conformal metric with
positive scalar curvature. But part (a) of Corollary 1.3 shows that M9 has no
conformal metric with constant scalar curvature (α = 4, n = 9).

Remark 1.4. It seems hard if possible to construct the aboveM9 with Ricci ≥ 0
and R > 0 everywhere. On the other hand manifolds required for Theorem D
are well known to exist. Also by Theorem A in [Zhan5], the manifold R3 × S1

(and all its conformal deformations some of which have positive scalar curvature by
Theorem B in [Zhan5]) also has no conformal metric with constant scalar curvature.
The current more lengthy example is here to verify the claims in the announcement
[Zhan4].
Remark 1.5. We would like to point out another fundamental difference between

the non-compact Yamabe problem and the compact one. In the compact case, any
manifold with positive scalar curvature is not conformal to a manifold with zero
scalar curvature. This is reflected from the fact that the equation ∆u − Ru = 0
with R > 0 has no positive solution on compact manifolds. However this is not the
case for non-compact manifolds. The following is a complete non-compact manifold
which is conformal to a complete manifold of constant positive scalar curvature, and
to a complete manifold with zero scalar curvature. LetM = S3×R1 with the metric
being the direct product of the usual ones on S3 and R1. Then R = 6, n = 4 and
hence equation (1.1’) becomes ∆u−u+u3 = 0, which has a solution u = 1. At the
same time the equation ∆u−u = 0has a positive solution u(x1, x2) = ex2+e−x2 ≥ 1,
where x1 ∈ S3 and x2 ∈ R1. Clearly the above solution generates a complete metric
of zero scalar curvature since it is bounded away from zero. Similar phenomenon
is shown in Proposition 6.1 for M × Rk where M is any compact manifold with
positive scalar curvatures.
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Proposition 6.1. Let Mn =M1 ×Rk, where M1 is a compact manifold with
positive scalar curvature and the metric of Mn is the product of that ofM1 and the
Euclidean metric on Rk, k ≥ 1. Then Mn is conformal to a complete non-compact
manifold with positive constant scalar curvature and to a complete manifold with
zero scalar curvature.

Let us briefly discuss the method we are going to adopt. We will use the Schauder
fixed point theorem to achieve existence. This requires us to obtain some new
estimates involving the heat kernel onMn. These estimates are presented in section
three and seven. Theorem A will be proved in section 2. Theorem B part (a) and
part (b) will be proved in sections 4 and 5, Theorem C and Corollary 1.3 in section
6 and Theorem D in section 7. The key idea is to obtain some global bounds
for the fundamental solution of H0 and to show that the parabolic problem (1.1)
with p = n+2

n−2 has no global positive solutions under the assumptions of Theorem

C. Since every positive solution of the Yamabe equation (1.1’) is a global positive
solution of the parabolic problem (1.1), the former can not exist either.
Recently we are able to treat (1.1) when R no longer satisfies (1.3) and (1.4) and

hence belong to the slow decay case. For details please see [Zhan1].

2. Preliminaries

In this section we collect and obtain some preliminary results and prove Theorem
A. Some results which are not new are here for completeness. We remark that C
will always be absolute constants that may change from line to line. For simplicity
we also assume that 0 is a reference point on Mn.

Proposition 2.1. Given 0 < α′ < α, there is a positive constant C such that

1

|B(x, (t− s)1/2)|
e−α

d(x,y)2

t−s ≤
C

|B(x, d(x, y))|
e−α

′ d(x,y)2

t−s .

Proof. If d2(x, y) ≤ t − s, then the inequality is obvious. So we assume that
d2(x, y) ≥ t − s. Let r = (t − s)1/2/d(x, y), then r ∈ (0, 1]. By the doubling
condition in (1.2) there exists a constant C such that

|B(x, (t− s)1/2)| = |B(x, rd(x, y))| ≥ Crq|B(x, d(x, y))|.

Then

Gα(x, t; y, s) =
1

|B(x, (t− s)1/2)|
exp(−α

d(x, y)2

t− s
)

=
C1

|B(x, (t− s)1/2)|
exp(−(α− α′)

d(x, y)2

t− s
) exp(−α′

d(x, y)2

t− s
)

≤
C

rq
exp(−

α− α′

r2
)

1

|B(x, d(x, y))|
exp(−α′

d(x, y)2

t− s
)

≤
C

|B(x, d(x, y))|
exp(−α′

d(x, y)2

t− s
).

q.e.d.
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Proposition 2.2. Given 0 < α′ < α, there is a positive constant C such that

1

|B(x, (t− s)1/2)|
e−α

d(x,y)2

t−s ≤
C

|B(y, (t− s)1/2)|
e−α

′ d(x,y)2

t−s .

Proof. If d2(x, y) ≤ t − s, then the inequality is obvious. This is because the
doubling property implies that |B(x, (t−s)1/2)| and |B(y, (t−s)1/2)| are comparable.
So we assume that d2(x, y) ≥ t− s. Proposition 2.1 gives

1

|B(x, (t− s)1/2)|
e−α

d(x,y)2

t−s ≤
C

|B(x, d(x, y))|
e−α

′ d(x,y)2

t−s .

By the comparability of |B(x, d(x, y))| and |B(y, d(x, y))|, we have

1

|B(x, (t− s)1/2)|
e−α

d(x,y)2

t−s ≤
C

|B(y, d(x, y))|
e−α

′ d(x,y)2

t−s .

Recalling d2(x, y) ≥ t− s, we obtain

1

|B(x, (t− s)1/2)|
e−α

d(x,y)2

t−s ≤
C

|B(y, (t− s)1/2)|
e−α

′ d(x,y)2

t−s .

q.e.d.

Proposition 2.3. Suppose R = 0 and Mn has non-negative Ricci curvature,
then (1.2), (1.3) and (1.4) hold.

Proof. When the Ricci curvature is non-negative, (1.2) is standard. By the
famous paper [LY], the fundamental solution G of H0 satisfies the global Gaussian
bounds

1

C|B(x, (t− s)1/2)|
e−

d(x,y)2

b(t−s) ≤ G(x, t; y, s) ≤
C

|B(x, (t− s)1/2)|
e−b

d(x,y)2

t−s ,

for some b, C > 0 and all x, y ∈Mn and all t > s. Therefore (1.3) is clearly true.
Using Proposition 2.2, we find, for a b′ < b,

1

C|B(y, (t− s)1/2)|
e
− d(x,y)

2

b′(t−s) ≤ G(x, t; y, s).

Hence (1.4) holds when d(x, y)2 ≤ t− s. q.e.d.

Lemma 2.1. Given a > 0, let

ha(x, t) =

∫
Mn

Ga(x, t; y, 0)u0(y)dy, (2.1)

where u0 is a bounded non-negative function. Suppose limd(x,0)→∞ u0(x) = 0, then
limd(x,0)→∞ ha(x, t) = 0 uniformly with respect to t > 0.
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Proof. For any δ > 0, let R > 0 be such that u0(y) < δ/2 when d(y) ≥ R. When
d(x, 0) ≥ 2R we have

ha(x, t) =

∫
d(y)>R

e−a d(x,y)
2/t

|B(x, t1/2)|
u0(y)dy +

∫
d(y)≤R

e−a d(x,y)
2/t

|B(x, t1/2)|
u0(y)dy

≤
δ

2

∫
d(y)>R

1

|B(x, t1/2)|
e−a d(x,y)

2/tdy

+

∫
d(y)≤R

1

|B(x, t1/2)|
e−a d(x,y)

2/(2t)e−a d(x,y)
2/(2t)u0(y)dy.

Note that
1

|B(x, t1/2)|
e−a d(x,y)

2/(2t) ≤ C/|B(x, d(x, y))|

by Proposition 2.1 and d(x, y) ≥ d(x, 0) −R when d(y, 0) ≤ R, we have

ha(x, t) ≤ Cδ/2 +
C

|B(x, d(x, 0) −R)|

∫
d(y)≤R

e−a d(x,y)
2/(2t)u0(y)dy

≤ Cδ/2 + C
|B(0, R)|

|B(x, d(x, 0) −R)|
||u0||L∞

≤ Cδ,

when d(x, 0) is sufficiently large. This proves (b). q.e.d.

Proof of Theorem A. Since the proof follows the lines of Theorem 1 in [Me],
we will be sketchy.
(a). We first show that if p > p∗ then (1.1) has global positive solutions for some

u0. As in the case of [Me], it is enough to show that if there is a non-trivial positive
solution W of H0W = 0 such that∫ ∞

0

||W (., t)||p−1L∞ dt <∞,

then (1.1) has global positive solutions for some u0.
Let a(t) be the solution of the initial value problem

a′(t) = ||W (., t)||p−1a(t)p, a(0) = a0 > 0.

Then u(x, t) ≡ a(t)W (x, t) is a super solution of (1.1) with u0(x) = a0W (x, 0).
Thus it is enough to show that choice of a0 can ensure that a(t) exists for all t > 0
and is uniformly bounded. As

a(t) = [a1−p0 − (p− 1)

∫ t
0

||W (., s)||p−1ds]−1/(p−1),

this follows from the condition. Since 0 is always a subsolution, the standard
comparison theorem shows that (1.1) has a global positive solution.
(b). We want to show that if p < p∗ then all positive solutions of (1.1) blow up

in finite time. Again by [Me], it is enough to show that if

lim
t→∞

sup ||W (., t)||p−1L∞ t =∞ (2.2)
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for all non-trivial and non-negative solutions of H0W = 0, then every positive
solution of (1.1) blows up in finite time.
Define z(t;w) to be the solution of

dz

dt
= zp, z(0, w) = w. (2.3)

For arbitrary initial conditions let w be the solution of H0w = 0. Then it can easily
be seen by using local coordinates and following [Me] that u(x, t) ≡ z(t;w(x, t)) is

a subsolution for (1.1) that blows up in finite time. Indeed let ∆ = aij(x)
∂2

∂xi∂xj
+

bi(x)
∂
∂xi
in a local coordinate system, then by direct computation one has, as in

[Me],

Hu = p
zp

w2p
[zp−1 − wp−1]aijwxiwxj .

Since z ≥ w by construction, we have Hu ≥ 0 and hence u is a sub-solution. By
(2.3),

t =

∫ u
w

ds

sp
=

1

(p − 1)wp−1
−

1

(p− 1)up−1
.

We only need to prove that u blows up in finite time. Suppose the contrary is true,
then

t−
1

(p − 1)wp−1
= −

1

(p− 1)up−1
< 0,

for all t > 0. But this contradicts the assumption (2.2). q.e.d.

Remark 2.1. When the function R = R(x) is not zero, we do not know whether
Theorem A is still valid, except for the case when Mn has bounded geometry (see
Corollary 1.2).

3. Two inequalities

In this section we present some inequalities for the heat kernel, which will play
a key role in both the existence and blow up results. The proof, almost identical
to that of Lemma 4.1 in [Zhan2], is given for completeness.

Lemma 3.1. Suppose 0 < a < b, there exist positive constants Ca,b and c
depending only on a and b such that, for t > τ > s,

(i). Ga(x, t; z, τ)Gb(z, τ ; y, s) ≤ C[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]Ga(x, t; y, s),

(ii). Gb(x, t; z, τ)Ga(z, τ ; y, s) ≤ C[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]Ga(x, t; y, s).

Remark 3.1. The condition a < b is indispensable for Lemma 3.1.

Proof of the lemma. We will only give a proof of (i) since (ii) can be handled
similarly.
Case 1. τ − s ≤ ρ(t − s), where ρ ∈ (0, 1) is to be fixed later. Let us recall the

following inequality that holds for all metric.

d(x, z)2

t− τ
+
d(z, y)2

τ − s
≥
d(x, y)2

t− s
, 0 < s < τ < t. (3.4)
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Using (3.4) we have

Ga(x, t; z, τ)Gb(z, τ ; y, s)

=
1

|B(x, (t− τ)1/2)|

1

|B(z, (τ − s)1/2)|
exp(−a

d(x, z)2

t− τ
) exp(−b

d(z, y)2

τ − s
)

=
1

|B(x, (t− τ)1/2)|
exp(−a[

d(x, z)2

t− τ
+
d(z, y)2

τ − s
])
exp(−(b− a)d(z,y)

2

τ−s )

|B(z, (τ − s)1/2)|

≤
1

|B(x, (t− τ)1/2)|
exp(−a

d(x, y)2

t− s
)
exp(−(b− a)d(z,y)

2

τ−s )

|B(z, (τ − s)1/2)|

≤ CGb−a(z, τ ; y, s)Ga(x, t; y, s).

To reach the last step we used the doubling condition and the fact

t− τ = t− s− (τ − s) ≥ (1− ρ)(t− s)

to get 1/|B(x, (t − τ)1/2)| ≤ C/|B(x, (t − s)1/2)|. Therefore (i) holds in this case.

Case 2. Picking two numbers a′, b′ such that

a < a′ < b′ < b

and using Proposition 2.2 on Gb(z, τ ; y, s), we have

exp(−bd(z,y)
2

τ−s )

|B(z, (τ − s)1/2)|
≤ C

exp(−b′ d(z,y)
2

τ−s )

|B(y, (τ − s)1/2)|

When d(z, y) ≥ d(x, y)(a′/b′)1/2 and τ − s ≥ ρ(t− s), then

exp(−b′ d(z,y)
2

τ−s )

|B(y, (τ − s)1/2)|
≤
exp(−a′ d(x,y)

2

t−s )

|B(y, [ρ(t− s)]1/2)|
.

Therefore

Gb(z, τ, y, s) =
exp(−bd(z,y)

2

τ−s )

|B(z, (τ − s)1/2)|
≤ C

exp(−a′ d(x,y)
2

t−s )

|B(y, [ρ(t− s)]1/2)|
.

Using Proposition 2.2 we get

Gb(z, τ, y, s) ≤ CGa(x, t; y, s).

Case 3. Now we are left with only one case i.e. d(z, y) ≥ d(x, y)(a′/b′)1/2 and
τ − s ≥ ρ(t− s). By Proposition 2.2

Gb(z, τ ; y, s) ≤ C/|B(y, (τ − s)
1/2)| ≤ C/|B(y, (t− s)1/2)|.

Hence

Ga(x, t; z, τ)Gb(z, τ ; y, s) ≤
exp(−ad(x,z)

2

t−τ )

|B(x, (t− τ)1/2)||B(y, (t− s)1/2)|
.
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If d(z, y) ≤ d(x, y)(a′/b′)1/2, then

d(x, z) ≥ d(x, y)− d(z, y) ≥ d(x, y) (1− (a′/b′)1/2).

Hence

exp(−a
d(x, z)2

t− τ
) = exp(−a

d(x, z)2

2(t− τ)
) exp(−a

d(x, z)2

2(t− τ)
)

≤ exp(−a
d(x, z)2

2(t− τ)
) exp(−a

d(x, y)2

2(t− τ)
(1− (a′/b′)1/2)2)

≤ exp(−a
d(x, z)2

2(t− τ)
) exp(−a

d(x, y)2

2(1 − ρ)(t− s)
(1− (a′/b′)1/2)2).

Here we have used the fact that 0 < t− τ ≤ (1 − ρ)(t − s). Now taking ρ ∈ (0, 1)
so that

(1− (a′/b′)1/2)2

4(1 − ρ)
= 1, (3.5)

we obtain,

exp(−a
d(x, z)2

t− τ
) ≤ exp(−a

d(x, z)2

2(t− τ)
) exp(−2a

d(x, y)2

t− s
). (3.6)

Therefore

Ga(x, t; z, τ)Gb(z, τ ; y, s) ≤ C
exp(−ad(x,z)

2

t−τ )

|B(x, (t− τ)1/2)||B(y, (t− s)1/2)|

≤
exp(−ad(x,z)

2

2(t−τ) ) exp(−2a
d(x,y)2

t−s )

|B(x, (t− τ)1/2)||B(y, (t− s)1/2)|
.

Using Proposition 2.2 again we have

exp(−2ad(x,y)
2

t−s )

|B(y, (t− s)1/2)|
≤ C

exp(−ad(x,y)
2

t−s )

|B(x, (t− s)1/2)|

and hence

Ga(x, t; z, τ)Gb(z, τ ; y, s)

≤ C
exp(−ad(x,z)

2

2(t−τ) )

|B(x, (t− τ)1/2)|
Ga(x, t; y, s) = CGa/2(x, t; z, τ)Ga(x, t; y, s).

Now we know the lemma holds for c = min{b− a, a/2}. q.e.d.

Due to the notation Nc,∞(V ) in (1.7), an immediate consequence of Lemma 3.1
is

Lemma 3.2. Suppose 0 < a < b, there exist positive constants Ca,b and c
depending only on a and b such that, for all t > s ≥ 0,

(i).

∫ t
s

∫
Mn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ ≤ Ca,b Nc,∞(V )Ga(x, t; y, s);
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(ii).

∫ t
s

∫
Mn

Gb(x, t; z, τ) |V (z, τ)| Ga(z, τ ; y, s)dzdτ ≤ Ca,b Nc,∞(V )Ga(x, t; y, s).

Proof of Lemma 3.2. We will only give a proof of (i) since (ii) can be handled
similarly. For simplicity we write

J(x, t; y, s) =

∫ t
s

∫
Mn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ.

The desired estimate follows from the main inequality in Lemma 3.1 i.e.

Ga(x, t; z, τ)Gb(z, τ ; y, s) ≤ C[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]Ga(x, t; y, s)

where c is a suitable positive constant. This is because the last inequality implies

J(x, t; y, s) ≤ C

∫ t
s

∫
Mn

[Gc(x, t; z, τ) +Gc(z, τ ; y, s)]|V (z, τ)|dzdτGa(x, t; y, s).

Taking the maximum of the integral the right hand side, we finish the proof of the
lemma. q.e.d.

4. Proof of Theorem B, part (a)

This section is divided into three parts. In the first part we list a number
of notations and symbols, which include an integral operator and an appropriate
function space. In the next part we will prove lemma 4.1 which states that the
integral operator has a fixed point in the function space. Theorem B, part (a), will
be proved in the end of the section.

First we recall and define a number of notations. Given a positive u0 ∈ L∞(Mn),
write

h(x, t) =

∫
Mn

G(x, t; y, 0)u0(y)dy. (4.1)

Here G is the fundamental solution of the operator H0 in (1.1). By (1.3), there are
positive constants C and b such that

G(x, t; y, s) ≤
C

|B(x, (t− s)1/2)|
exp(−b

d(x, y)2

t− s
) = CGb(x, t; y, s),

for all t > s and x, y ∈Mn.

For u ∈ L∞(Mn × [0,∞)), we define T to be the integral operator:

Tu (x, t) = h(x, t) +

∫ t
0

∫
Mn

G(x, t; y, s)up(y, s)dyds. (4.2)

For any constants a > 0, d > 1 and M > 1, the space Sd is defined by

Sd = {u(x, t) ∈ C(M
n × [0, d]) | 0 ≤ u(x, t) ≤Mha(x, t)}

where the function ha is given by (2.1).
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From this moment, we fix the number a to be a positive number strictly less
than b, which is the constant in the Gaussian upper bound for G. This choice of a
is crucial when we prove Lemma 3.1 below. Since a < b we have

G(x, t; y, s) ≤ CGb(x, t; y, s) ≤ CGa(x, t; y, s),

h(x, t) ≤ Chb(x, t) ≤ Cha(x, t).

Next we present a Lemma which will lead to a proof of Theorem B. The idea is
to show that the operator T has a fixed point in Sd.

Lemma 4.1. Under the assumption of Theorem B, part (a), there exist constants
M > 1 and b0 > 0 independent of d such that the integral operator (4.2) has a fixed
point in Sd, provided that

u0 ∈ C
2(Mn), lim

d(x,0)→∞
u0(x) = 0, and, ||u0||L∞(Mn) + ||u0||L1(Mn) ≤ b0.

Proof. step 1. We want to use the Schauder fixed point theorem. To this end
we need to check the following conditions.
(i). Sd is nonempty, closed, bounded and convex.
(ii). TSd ⊂ Sd.
(iii). TSd is a compact subset of Sd in L

∞ norm.
(iv). T is continuous.

step 2. Condition (i) is obviously true. So let’s verify (ii), which requires us to
show that 0 ≤ Tu ≤Mha when 0 ≤ u ≤Mha.
Since 0 ≤ u ≤Mha we have

up(y, s) ≤Mphp−1a (y, s)ha(y, s) =M
php−1a (y, s)

∫
Mn

Ga(y, s; z, 0)u0(z)dz. (4.3)

Recalling the definition of ha and using the fact that u0 ∈ L1(Mn) we obtain

hp−1(y, s) = [

∫
Mn

Ga(y, s; z, 0)u0(z)dz]
p−1

=
1

|B(y, s1/2)|p−1
[

∫
Mn

u0(z)dz]
p−1 ≤

1

|B(y, s1/2)|p−1
||u0||

p−1
L1(Mn).

(4.4)

Therefore

up(y, s) ≤Mp||u0||
p−1
L1(Mn)

1

|B(y, s1/2)|p−1
.

Substituting (4.3) into (4.2) and using Fubini’s theorem we obtain

Tu(x, t) ≤ h(x, t)

+ CMp
∫
Mn

∫ t
0

∫
Mn

G(x, t; y, s)hp−1a (y, s)Ga(y, s; z, 0)dyds u0(z)dz,
(4.5)

Remembering that

G(x, t; y, s) ≤
C

|B(x, (t− s)1/2)|
exp(−b d(x, y)2/(t− s)) = CGb(x, t; y, s),
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we have

∫ t
0

∫
Mn

G(x, t; y, s)hp−1a (y, s)Ga(y, s; z, 0)dyds

≤ C

∫ t
0

∫
Mn

Gb(x, t; y, s)h
p−1
a (y, s)Ga(y, s; z, 0)dyds

At this stage we quote Lemma 3.2 which was first proved in [Zhan3] for the
Euclidean case. Given b > a,

∫ t
0

∫
Mn

Gb(x, t; y, s)h
p−1
a (y, s)Ga(y, s; z, 0)dyds ≤ CCa,bNc,∞(h

p−1
a )Ga(x, t; z, 0),

(4.6)
for all t > 0 and some positive c and Ca,b. We claim that Nc,∞(h

p−1
a ), which

is defined in (1.7), is a finite number. The proof is as follows. Since s > 0 and
ha(x, t) = 0 when t < 0, we have

Nc,∞(h
p−1
a ) ≡supx,t>0

∫ t
0

∫
Mn

|hp−1a (y, s)|Gc(x, t; y, s)dyds

+ supy,s≥0

∫ ∞
s

∫
Mn

|hp−1a (x, t)|Gc(x, t; y, s)dxdt.

By (4.4) and the fact that ha(x, t) ≤ C||u0||L∞ we have

∫ t
0

∫
Mn

|hp−1a (y, s)|Gc(x, t; y, s)dyds

=

∫ t
r0

∫
Mn

|hp−1a (y, s)|Gc(x, t; y, s)dyds +

∫ r0
0

∫
Mn

|hp−1a (y, s)|Gc(x, t; y, s)dyds

≤ ||u0||
p−1
L1(M)

∫ t
r0

∫
Mn

1

|B(y, s1/2)|p−1
Gc(x, t; y, s)dyds + C||u0||

p−1
L∞ r0.

Similarly

∫ ∞
s

∫
Mn

|hp−1a (x, t)|Gc(x, t; y, s)dxdt

≤ C||u0||
p−1
L1(M)

∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(x, t1/2)|p−1
dxdt+ C||u0||

p−1
L∞ r0.

Using C0 to denote

sup
x∈Mn,t>0

∫ t
r0

∫
Mn

Gc(x, t; y, s)

|B(y, s1/2)|p−1
dyds+ sup

y∈Mn,s>0

∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(x, t1/2)|p−1
dxdt,

we have

Nc,∞(h
p−1
a ) ≤ CC0||u0||

p−1
L1(M) + C||u0||

p−1
L∞ r0 <∞,

which proves the claim.
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Combining (4.6) with (4.5), we reach

Tu(x, t) ≤ h(x, t) + CCa,bM
pNc,∞(h

p−1
a )

∫
Mn

Ga(x, t; z, 0)u0(z)dz,

which yields
Tu(x, t) ≤ (C +CCa,bM

pNc,∞(h
p−1
a ))ha(x, t) (4.7)

Since p > 1, by taking M > 2C and ||u0||L1(M)+ ||u0||L∞(M) suitably small we find
that

0 ≤ Tu(x, t) ≤Mha(x, t). (4.8)

Thus condition (ii) is satisfied.

step 3. Now we need to check condition (iii). We note that the local regularity
theory for solutions of uniformly parabolic equations can be transplanted to the
operator H0 in (1.1). By our choice, functions u in Sd are uniformly bounded and
therefore, Tu is equicontinuous and in fact Hölder continuous. This is because Tu
actually satisfies, in the weak sense, H0(Tu) = −up in Mn × (0, d) and Tu(x, 0) =
u0(x) and u0 ∈ C2(Mn). Taking into account that

0 ≤ lim
d(x,0)→∞

Tu(x, t) ≤ C lim
d(x,0)→∞

ha(x, t) = 0

uniformly (by Lemma 2.1 ), we know that

lim
d(x,0)→∞

Tu(x, t) = 0

Hence TSd is a relatively compact subset of Sd. This is an easy modification of the
classical Ascoli-Arzela theorem (see [Zhao]). Hence we have verified (iii).

step 4. Finally we need to check condition (iv).
Given u1 and u2 in Sd, we have, by (3.2),

(Tu1 − Tu2)(x, t) =

∫ t
0

∫
Mn

G(x, t; y, s)) [up1(y, s)− u
p
2(y, s)]dyds. (4.9)

Next we notice that

|up1(y, s)− u
p
2(y, s)| ≤ pmax{u

p−1
1 (y, s), up−12 (y, s)}|u1(y, s)− u2(y, s)|.

Since u1 and u2 are bounded from above by Mha, we have

|up1(y, s)− u
p
2(y, s)| ≤ CM

p−1hp−1a (y, s)|u1(y, s)− u2(y, s)|.

Substituting the last inequality to (4.9) we obtain

||Tu1 − Tu2||L∞ ≤ CM
p−1||u1 − u2||L∞

∫ t
0

∫
Mn

G(x, t; y, s)hp−1a (y, s)dyds

≤ CMp−1||u1 − u2||L∞Nc,∞(h
p−1
a ).
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Here c is a suitable constant. Since Nc,∞(h
p−1
a ) is a finite constant we have proved

the continuity of T and the lemma. q.e.d.

Now we are ready to give the

Proof of Theorem B, part (a).
For any d > 1, let ud be a fixed point of T in the space Sd as given in Lemma

3.1. Define

Ud(x, t) =

{
ud(x, t), t ≤ d;

ud(x, d), t > d.

Then from the proof of Lemma 4.1 ( (4.8) e.g.), we know that {Ud} is uniformly
bounded and equicontinuous. Hence there is a subsequence {Udm |m = 1, 2, ..}
which converges uniformly to a function u in any compact region of Mn × [0,∞).
For any fixed (x, t) ∈Mn × [0,∞) and m sufficiently large, we know that

Udm(x, t) = h(x, t) +

∫ t
0

∫
Mn

G(x, t; y, s)Updm (y, s)dyds.

This is because Udm is a fixed point of T in Sdm . Now by the dominated convergence
theorem, u satisfies

u(x, t) = h(x, t) +

∫ t
0

∫
Mn

G(x, t; y, s)up(y, s)dyds,

for all (x, t) ∈Mn × [0,∞). Moreover, by (4.8) We know

0 < u(x, t) ≤Mha(x, t)

for all (x, t) ∈ Mn × [0,∞). Clearly u is a global positive solution of (1.1). This
finishes the proof. q.e.d.

Next we give

Proof of Corollary 1.1. Note that∫
Mn

Gc(x, t; y, s)dx,

∫
Mn

Gc(x, t; y, s)dy ≤ C,

for all t > s, we have∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(y, s1/2)|p−1
dyds+

∫ ∞
r0

∫
Mn

Gc(x, t; y, s)

|B(x, t1/2)|p−1
dxdt

≤ C

∫ ∞
r0

sup
y∈M

1

|B(y, r1/2)|p−1
dr <∞.

Now suppose infx∈Mn |B(x, r)| ≥ Crα when r > r0, then, for p > 1 +
2
α
,

∫ ∞
r0

sup
y∈M

1

|B(y, r1/2)|p−1
dr ≤ C

∫ ∞
r0

1

rα(p−1)/2
<∞,

since α(p− 1)/2 > 1. Therefore (1.1) has a global positive solution for some u0 > 0
by Theorem B, part (a). This proves the corollary. q.e.d.
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Proof of Corollary 1.2. Suppose p < p∗, then p < 1 + 2
α
for some α such that

lim
r→∞

inf
|B(x, r)|

rα
<∞

Hence clearly (1.1) has no global positive solution by Theorem B, part (b), which
will be proved in the next section.
If p > p∗ = 1 + 2

α∗
, then there exists ε > 0 such that 2

p−1 + ε < α
∗ and hence

lim
r→∞

inf
|B(x, r)|

r
2
p−1+ε

=∞.

Therefore, for some r0 > 0 and all r ≥ r0,

1/|B(x, r1/2)|p−1 ≤ C/r1+ε(p−1)/2.

By assumption (1.8), we have∫ ∞
r0

sup
y∈M

1

|B(y, r1/2)|p−1
dr ≤

∫ ∞
r0

1

r1+ε(p−1)/2
dr <∞.

Theorem B, part (a) shows that (1.1) has global positive solutions for some u0 > 0.
q.e.d.

5. Proof of Theorem B, part (b)

Proof. Without loss of generality we take x0 = 0.
Suppose u is a global positive solution of (1.1), by Definition 1.1, we know that

u solves the integral equation

u(x, t) =

∫
Mn

G(x, t; y, 0)u0(y)dy +

∫ t
0

∫
Mn

G(x, t; y, s)up(y, s)dyds, (5.1)

for all (x, t) ∈Mn × [0,∞).
Given t > 0, choosing T > t, multiplying G(x, T ; 0, t) on both sides of (5.1) and

integrating with respect to x, we obtain∫
Mn

G(x, T ; 0, t)u(x, t)dx ≥ C

∫
Mn

∫
Mn

G(x, T ; 0, t) G(x, t; y, 0)dx u0(y)dy+

+ C

∫ t
0

∫
Mn

∫
Mn

G(x, T ; 0, t) G(x, t; y, s)dx up(y, s)dyds.

(5.2)
Even though H0 is an operator with variable coefficients, the fundamental solution
G still enjoys the symmetry

G(x, T ; y, t) = G(y, T ;x, t)

for all x, y ∈Mn and T > t (see [D]). Therefore by the reproducing property of the
heat kernel, we reach∫

Mn

G(x, T ; 0, t) G(x, t; y, 0)dx = CG(0, T ; y, 0) = CG(y, T ; 0, 0),
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Mn

G(x, T ; 0, t) G(x, t; y, s)dx = CG(0, T ; y, s) = CG(y, T ; 0, s).

Substituting the last two equalities into (5.2), we see that∫
Mn

G(x, T ; 0, t)u(x, t)dx

≥ C

∫
Mn

G(y, T ; 0, 0)u0(y)dy +C

∫ t
0

∫
Mn

G(y, T ; 0, s)up(y, s)dyds.

(5.3)

By (1.3),
∫
Mn G(y, T ; 0, s)dy ≤ C. Using Hölder’s inequality, we obtain∫

Mn

G(y, T ; 0, s)u(y, s)dy =

∫
Mn

G1/q(y, T ; 0, s)G1/p(y, T ; 0, s)u(y, s)dy

≤ [

∫
Mn

G(y, T ; 0, s)dy]1/q [

∫
Mn

G(y, T ; 0, s)up(y, s)dy]1/p

≤ C[

∫
Mn

G(y, T ; 0, s)up(y, s)dy]1/p,

where 1/p+ 1/q = 1. Inequality (5.3) then implies∫
Mn

G(x, T ; 0, t)u(x, t)dx

≥ C

∫
Mn

G(y, T ; 0, 0)u0(y)dy + C

∫ t
0

[

∫
Mn

G(y, T ; 0, s)u(y, s)dy]pds.

(5.4)

Without loss of generality we assume that u0 is strictly positive in a neighborhood
of 0. Using the lower bound in (1.4) for G, we can then find a constant C > 0 so
that, for T > 1,∫

Mn

G(y, T ; 0, 0)u0(y)dy ≥

∫
d(y,0)2≤1

C

|B(0, T 1/2)|
u0(y)dy ≥

C

|B(0, T 1/2)|
. (5.5)

Going back to (5.4) and writing J(t) ≡
∫
Mn G(x, T ; 0, t)u(x, t)dx, we have

J(t) ≥ C/|B(0, T 1/2)|+ C

∫ t
0

Jp(s)ds, T > t, T > 1. (5.6)

Using the notation g(t) ≡
∫ t
0
Jp(s)ds, we obtain,

g′(t)/(|B(0, T 1/2)|−1 + g(t))p ≥ C. (5.7)

Integrating (5.7) from 0 to T and noticing g(0) = 0, we have

−
1

(|B(0, T 1/2)|−1 + g(t))p−1
∣∣T
0
≥ (p− 1)CT (5.8)

and therefore
|B(0, T 1/2)|p−1 ≥ (p − 1)CT,
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for all T > 1. This is possible only when

|B(0, T )| ≥ CT 2/(p−1) (5.9)

when T is large. Under the assumption of part (b) of Theorem B,

lim
r→∞

inf
|B(x, r)|

rα
<∞

and p < 1 + 2
α
. Therefore

lim
r→∞

inf
|B(x, r)|

r2/(p−1)
= 0.

This contradicts (5.9). Hence no global positive solutions exist for such p. q.e.d.

6. Proof of Theorem C: non-existence

result for the non-compact Yamabe problem

Proof of Theorem C. Since the properties (1.2), (1.3) and (1.4) hold, we can
apply part (b) of Theorem B, which says, for any p < 1 + 2

α
, equation (1.1) has no

global positive solutions. Since

α < (n− 2)/2, (6.1)

we know that equation (1.1) has no global positive solutions for p = n+2
n−2 . Therefore

the Yamabe equation can not have solutions. This is so because any solution
u = u(x) of the Yamabe equation is a stationary and hence global positive solution
of (1.1). Following the arguments in Lemma 1 of [P], which can be easily generalized
to manifolds with Ricci bounded from below, we know that

u(x) ≥

∫
Mn

G(x, t; y, 0)u(y)dy +

∫ t
0

∫
Mn

G(x, t; y, s)up(y)dyds.

By Theorem B, part (b), such a u does not exist in this case. q.e.d.

To prove Corollary 1.3 we need to show that the Green’s function G of the
operator ∆−R− ∂t have global bounds (1.3) and (1.4). Due to the presence of R,
we need much more effort. This is done in the next

Lemma 6.1.Let G0 be the fundamental solution of the unperturbed operator
∆− ∂t. Suppose there are constants b, C > 0 such that

1

C|B(x, (t− s)1/2)|
e−

d(x,y)2

b(t−s) ≤ G0(x, t; y, s) ≤
C

|B(x, (t− s)1/2)|
e−b

d(x,y)2

t−s , (6.2)

for all x, y ∈Mn and all t > s. Let G be the fundamental solution of the operator
∆−V −∂t where V = V (x) is a bounded function. Suppose Nc,∞(V −) is sufficiently
small and Nc,∞(V

+) is finite then properties (1.3) and (1.4) hold for G.

Proof. This essentially follows from combining Theorem C in [Zhan5] with the
proof of Theorem A part (b) in [Zhan2]. For the sake of completeness we include
the proof here.



EJDE–2000/46 Semilinear parabolic problems 21

First we show that (1.3) holds. Without any loss of generality we assume that
V + = 0 otherwise the maximum principle gives the desired result.
We pick a number a such that 0 < a < b, where b is given in (6.2). Let B be the

smallest positive number such that

G(x, t; y, s) ≤ BGa(x, t; y, s), (6.3)

for all x, y ∈ Mn and s < t. We claim that such a B does exist by our extra
assumption that V (x, t) = 0 if t > T . The claim can be checked easily by using the
reproducing formula

G(x, t; y, 0) =

∫
Mn

G(x, t; z, T )G(z, T ; y, 0)dz, t > T,

and the fact that G(x, t; z, T ) = G0(x, t; z, T ) for t > T . The main task is to show
that B depends on V only in the form of Nc,∞(V ).
From the Duhamel’s principle and (6.3) we have

G(x, t; y, s) ≤ G0(x, t; y, s) +BC0

∫ t
s

∫
Mn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ,

G(x, t; y, s) ≥ G0(x, t; y, s)−BC0

∫ t
s

∫
Mn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ,

where x, y ∈Mn and s < t. Lemma 3.2 then implies

G(x, t; y, s) ≤ C0Gb(x, t; y, s) +BC0Ca,bNc,∞(V ) Ga(x, t; y, s), (6.4)

G(x, t; y, s) ≥ C0G1/b(x, t; y, s) −BC0Ca,bNc,∞(V ) Ga(x, t; y, s), (6.4’)

for all x, y ∈Mn and s < t. Since a < b we know that

G(x, t; y, s) ≤ [C0 +BC0Ca,bNc,∞(V )] Ga(x, t; y, s)

for all x, y ∈Mn and s < t. Hence, by the definition of B, we obtain,

B ≤ C0 +BC0Ca,bNc,∞(V ). (6.5)

When C0Ca,bNc,∞(V ) < 1/2 we have

B ≤ 2C0.

This together with (6.3) proves that the upper bound (1.3) holds.
The lower bound (1.4) is an immediate consequence of the maximum principle

and Theorem C in [Zhan5]. Here we note that Theorem C in that paper was stated
for manifolds with nonnegative Ricci curvature. However it is still valid under the
current assumptions. The proof is identical. �
Remark 6.1. In fact Theorem C in [Zhan5] states: if V + = 0, then the lower

bound (1.4) in Lemma 6.1 holds if and only if Nc,∞(V ) is finite. In contrast for the
upper bound (1.3) to hold some smallness of V + is necessary.
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Proof of Corollary 1.3. (a). Since Mn has non-negative Ricci curvature
outside a compact set, by [CS-C], (6.2) is true. By choosing V = −R(x) in Lemma
6.1, we know that (1.2), (1.3) and (1.4) are satisfied.
(b). In this case, by [LY], the Green’s function Γ of ∆ exists and

Γ(x, y) ∼

∫ ∞
d(x,y)2

1

|B(x, t1/2)|
dt ∼

1

d(x, y)α−2
, d(x, y) ≥ c > 0.

Moreover, since R is independent of time,

Nc,∞(R) = sup
x,t

∫ ∞
0

∫
Mn

Gc(x, t; y, s)R(y)dyds ≤ C sup
x∈Mn

∫
Mn

Γ(x, y)|R(y)|dy

≤ sup
x∈Mn

∫
Mn−B(x,c)

Γ(x, y)|R(y)|dy + sup
x∈Mn

∫
B(x,c)

Γ(x, y)|R(y)|dy.

Therefore

Nc,∞(R) ≤ sup
x∈Mn

∫
Mn

C

1 + d(y, 0)2+δ
ε

d(x, y)α−2
dy + Cε

= sup
x∈Mn

∫
d(x,y)≥d(y,0)

C

1 + d(y, 0)2+δ
ε

d(x, y)α−2
dy

+ sup
x∈Mn

∫
d(x,y)≤d(y,0)

C

1 + d(y, 0)2+δ
ε

d(x, y)α−2
dy + Cε

≤ sup
x∈Mn

∫
d(x,y)≥d(y,0)

C

1 + d(y, 0)2+δ
ε

d(y, 0)α−2
dy+

sup
x∈Mn

∫
d(x,y)≤d(y,0)

C

1 + d(x, y)2+δ
ε

d(x, y)α−2
dy + Cε

≤

∫
Mn

C

1 + d(y, 0)2+δ
ε

d(y, 0)α−2
dy + sup

x∈Mn

∫
Mn

C

1 + d(x, y)2+δ
ε

d(x, y)α−2
dy + Cε

≤ Cε

∫ ∞
0

r

1 + r2+δ
dr + Cε.

Since δ > 0, by taking ε sufficiently small, we have Nc,∞(V ) is sufficiently small.
It is clear that the size of ε can be chosen to depend only on n since the Ricci
curvature is nonnegative. Now we can use part (a) of the Corollary to conclude
that the non-compact Yamabe problem (1.1’) has no solution. This proves (b).
Finally, for M9 = R3 × S1 × S1 × S1 × S1 × S1 × S1 with the metric tensor

being the direct sum of the usual ones on R3 and S1, we know Ricci = 0, R = 0,
n = 9 and (1.9) holds for α = 3. Therefore (1.1’) has no solution. By Theorem B
(a) in [Zhan5], M9 has a complete conformal metric with positive scalar curvature.
But part (a) of Corollary 1.3 shows thatM9 has no conformal metric with constant
scalar curvature (α = 4, n = 9)
As a comparison, on another Ricci flat manifold Rn with Euclidean metric,

problem (1.1’) has infinitely many solutions (see [Ni])

uλ(x) =
[n(n− 2)λ2](n−2)/4

(λ2 + |x|2)(n−2)/2
, λ > 0.
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q.e.d.

In the next Proposition, we shall give examples of a complete non-compact man-
ifold with positive scalar curvature, which is not only conformal to a complete
non-compact manifold with positive constant scalar curvature but also to a com-
plete manifold with zero scalar curvature. It is well known that this situation does
not exist in the compact case.

Proposition 6.1. Let Mn =M1 ×Rk, where M1 is a compact manifold with
positive scalar curvature and the metric of Mn is the product of that ofM1 and the
Euclidean metric on Rk, k ≥ 1. Then Mn is conformal to a complete non-compact
manifold with positive constant scalar curvature and to a complete manifold with
zero scalar curvature.

Proof. (i). Mn is conformal to a complete non-compact manifold with positive
constant scalar curvature.
Let (x1, x2) ∈ M1 × Rk. It is clear that the scalar curvature of Mn is only a

function of x1. Let ∆, ∆1 and ∆2 be the Laplace-Beltrami operators on M
n, M1

and Rk respectively, then ∆ = ∆1 + ∆2. Moreover 0 < R(x) = R1(x1) where R
and R1 are the scalar curvature of M

n and M1 respectively. Since the exponent
(n + 2)/(n − 2) is subcritical for the lower dimensional manifold M1, we know,
by the standard variational technique (see [Au2] Theorem 5.5), that the following
equation has a positive solution u1 = u1(x1) on M1.

∆1u1 −
n− 2

4(n− 1)
R1u1 + u

(n+2)/(n−2)
1 = 0.

Define u(x) = u(x1, x2) = u1(x1), then clearly u is a positive solution of equation
(1.1’), i.e.

∆u−
n− 2

4(n − 1)
Ru+ u(n+2)/(n−2) = 0.

Since u is bounded away from zero, we know that the metric it generates is com-
plete. ThereforeMn is conformal to a complete non-compact manifold with positive
constant scalar curvature.
(ii). Mn is conformal to a complete non-compact manifold with zero constant

scalar curvature.
Without any loss of generality we take k = 1. It is enough to show that following

linear equation has a positive solution that is bounded away from zero.

∆u−Ru = ∆1u+∆2u−R1u = 0. (6.6)

Suppose −λ < 0 is the first eigenvalue of the Schrödinger operator ∆1−R1 onM1.
At this moment we notice that by the manifold version of the well-known node
theorem (see [GJ], Corollary 3.3.4, which can be easily generalized to compact
manifolds), the eigenfunctions corresponding to −λ do not change sign. Therefore
we can find u1 = u1(x1) ≥ c > 0 on the compact M1 such that

∆1u1 −R1u1 = −λu1.

Now let
u2 = u2(x2) = e

λ1/2x2 + e−λ
1/2x2 ,
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then ∆2u2 = λu2 and u2 ≥ 1. We claim that u ≡ u1(x1)u2(x2) is a solution of
(6.6), which is also bounded away from zero. This can be seen from the following
calculation.

∆u−Ru = u2∆1u1 + u1∆2u2 −R1(x1)u1u2 = u2(∆1u1 + λu1 −R1(x1)u1) = 0.

It is obvious that the metric u generates has zero scalar curvature. Since u ≥ c > 0,
we know that the new metric is also complete. q.e.d.

7. Proof of Theorem D: a non-existence result when Ricci ≥ 0

In order to prove Theorem D we need to obtain some lower bound on the fun-
damental solution G. Since the decay of the scalar curvature is quadratic, more
efforts are needed. However this task is well worth doing for two reasons. One, it is
very easy to construct nonparablic manifolds with nonnegative Ricci curvature and
with scalar curvature decaying like 1/d2(x, 0). Second, the lower bound estimates
seems interesting in its own right as quadratic decay is the borderline between long
range and short range potentials.
The key estimate of the section is Lemma 7.2 below where we show that the

heat kernel of ∆ + V has at most polynomial (on diagonal) decay provided V has
quadratic decay.

Lemma 7.1. Assume that Ricci ≥ 0 and |V (x, t)| ≤ C0/[1 + d2(x, x0)] for an
arbitrary positive constant C0. Suppose that u is a nonnegative solution of

∆u− V u− ut = 0, t > 0, (7.1)

and d(x, x0) = t
1/2, then exist positive constants α and C1 depending on V such

that

u(x0, 2t) ≥ C1t
−αu(x, t), t ≥ 1.

Moreover α is a linear function of C0.

Proof. Let γ be a shortest geodesic connecting x0 and x, which is parameter-
ized by length. For i = 0, 1, ..., k, we write yi = γ(2

i), where k is the greatest
integer smaller than or equal to log2 d(x, x0). Clearly yi, yi+1 ∈ B(yi+1, 2

i) ⊂
B(yi+1, 2

i11/10). For any y ∈ B(yi+1, 2i11/10), we have

d(y, x0) ≥ d(x0, yi+1)− d(yi+1, y) ≥ 2
i+1 − 2i11/10 = 2i9/10.

Therefore, there is C > 0 such that

βi ≡ sup
B(yi+1,2i11/10)×(0,∞)

|V (x, t)| ≤ CC0/2
2i.

By the Harnack inequality stated in Corollary 5.3 of [Sa1], we have for y, y′ ∈
B(yi+1, 2

i) and s > s′,

ln[u(y′, s′)/u(y, s)] ≤ C[
d2(y, y′)

s− s′
+ (βi +

1

s′
)(s − s′)].
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It follows, for a C2 = e
c(1+C0) > 0,

u(yi+1, 2t− 2
2(i+1)) ≤ C2u(yi, 2t− 2

2i),

u(y0, 2t− 1) ≤ C2u(x0, 2t).

Hence

u(x, t) ≤ Ck+12 u(x0, 2t) ≤ C
2+log2 t

1/2

2 u(x0, 2t) = C
2
22
log2 C2 log2 t

1/2

u(x0, 2t).

Taking α = (log2 C2)/2 we have

u(x0, 2t) ≥ Ct
−αu(x, t). (7.1’)

Noting that C2 ∼ ec(1+C0) we know that α is a linear function of C0. �
Lemma 7.2. Assume that Ricci ≥ 0 and |V (x, t)| ≤ C0/[1 + d2(x, x0)] for an

arbitrary positive constant C0. Suppose that G is the fundamental solution of (7.1),
then exist positive constants α1 and C3 depending on V such that

G(x0, t; y, 0) ≥
C3

tα1 |B(x0, t1/2)|
, for t ≥ 1, d(x0, y) ≤ 1.

Moreover α1 is a linear function of C0.

Proof. Since d(x0, y) ≤ 1 and t ≥ 1, by Harnack inequality and the doubling
condition of the balls, it is enough to prove, for t ≥ 1, that

G(x0, t;x0, 0) ≥
C3

tα1 |B(x0, t1/2)|
. (7.2)

To this end, we pick a point x1 such that d(x0, x1) = t
1/2.

Let φ ∈ C∞0 (B(x1, t
1/2/2)) be such that φ(x) = 1 when x ∈ B(x1, t1/2/4) and

0 ≤ φ ≤ 1 everywhere. Consider the function

u(x, t) =

∫
M

G(x, t; y, 0)φ(y)dy. (7.3)

As in [Sa1], we extend u by assigning u(x, t) = 1 when t < 0 and x ∈ B(x1, t1/2/4),
then u is a positive solution of (7.1) in B(x1, t

1/2/4) × (−∞,∞). Here we take
V (x, t) = 0 when t < 0 and we note that no continuity of V is needed. For any
y ∈ B(x1, t1/2/2), we have

d(y, x0) ≥ d(x0, x1)− d(x1, y) ≥ t
1/2 − t1/2/2 = t1/2/2.

Hence, by the decay condition on V , there is a constant C > 0 such that

β ≡ sup
B(x,t1/2/2)

|V (y, s)| ≤ C/t.

Using twice the Harnack inequality as stated in Theorem 5.2 in [Sa1], we obtain

u(x1, 0) ≤ Ce
βtu(x1, t/4) ≤ Cu(x1, t/4),
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G(y, t/4;x1, 0) ≤ Ce
βtG(x1, t;x1, 0) ≤ CG(x1, t;x1, 0),

for y ∈ B(x1, t1/2/2). Hence

1 = u(x1, 0) ≤ Cu(x1, t/4) = C

∫
B(x1,t1/2/2)

G(x1, t/4; y, 0)φ(y)dy

= C

∫
B(x1,t1/2/2)

G(y, t/4;x1, 0)φ(y)dy ≤ CG(x1, t;x1, 0)

∫
B(x1,t1/2/2)

φ(y)dy

≤ CG(x1, t;x1, 0)|B(x1, t
1/2)|.

The doubling property implies that |B(x0, t1/2)| and |B(x1, t1/2)| are comparable
since d(x0, x1) = t

1/2 by choice. Therefore

G(x1, t;x1, 0) ≥
C

|B(x0, t1/2)|
. (7.4)

Using Lemma 7.1, we have for some α > 0,

G(x0, 2t;x1, 0) ≥ Ct
−αG(x1, t;x1, 0),

which is, by (7.4),

G(x1, 2t;x0, 0) ≥ Ct
−αG(x1, t;x1, 0) ≥

C

tα|B(x0, t1/2)|
,

By the doubling condition

G(x1, t;x0, 0) ≥
C

tα|B(x0, t1/2)|
.

Using Lemma 7.1 again

G(x0, 2t;x0, 0) ≥ Ct
−αG(x1, t;x0, 0) ≥

C

t2α|B(x0, t1/2)|
.

The lemma is proved by the doubling condition again. q.e.d.

Lemma 7.3. Suppose
(a). M1 is a n dimensional complete noncompact manifold with nonnegative

Ricci curvature and the function V = V (x) satisfies 0 ≤ R(x) ≤ C0/[1 + d2(x, x0)],
where C0 is an arbitrary positive constant and x ∈M1;
(b). M2 ≡ M1 ×M0 is equipped with the product metric, where M0 is a m

dimensional compact manifold;
(c). G2 is the fundamental solution of

∆2u− V u− ut = 0, (7.5)

on M2 × (0,∞), where ∆2 is the Laplace-Beltrami operator on M2.
Then for some δ > 0, there exist a constant α independent of M0 and Cδ such

that, when t ≥ 1, d1(x0, x) ≤ δ and d0(ξ0, ξ) ≤ δ,

G2(x0, ξ0, t;x, ξ, 0) ≥ Cδ/t
α+(n/2).
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Here x, x0 ∈M1 and ξ, ξ0 ∈M0; d1, d0 are the distances on M1 and M0 respec-
tively.

Proof. Let ∆1 and ∆0 be the Laplace-Beltrami operator on M1 andM0 respec-
tively. Let G1 be the fundamental solution of

∆1u− V u− ut = 0

on M1 × (0,∞) and G0 be the fundamental solution of

∆0u− ut = 0

on M0 × (0,∞). It is easy to see that

G2(x, ξ, t;x0, ξ0, 0) = G1(x, t;x0, 0)G0(ξ, t; ξ0, 0). (7.6)

By Lemma 7.2, there exist α and C3, which are independent of M0 such that

G1(x, t;x0, 0) ≥
C3

tα|B(x0, t1/2)|
. (7.7)

Since G0 is the free heat kernel of M0, we have

G0(ξ0, t; ξ, 0) =

∫
M0

G0(ξ0, t; η, 1)G(η, 1; ξ, 0)dη.

As M0 is a compact manifold, we know that minη,ξ∈M0
G(η, 1; ξ, 0) ≥ C4 > 0,

which shows, for t ≥ 1,

G0(ξ0, t; ξ, 0) ≥ C4

∫
M0

G0(ξ0, t; η, 1)dη = C4. (7.8)

Combining (7.6)-(7.8) and using the fact that |B(x0, t1/2)| ≤ Ctn/2, we obtain

G2(x0, ξ0, t;x, ξ, 0) ≥ Cδ/t
α+(n/2). q.e.d.

Now we are ready to give the

Proof of Theorem D. For a positive integer m, let M2 = M × S1 × ... × S1

equipped with the metric prescribed in the theorem. Here there are m S1 in the
product. Then the dimension of M2 is n +m and the exponent in the nonlinear
term of the Yamabe equation is n+m+2

n+m−2 . Let us consider the following semilinear

parabolic equation on M2 × (0,∞).

∆2u−
n+m− 2

4(n+m− 1)
Ru+ up − ut = 0. (7.9)

Note that R is also the scalar curvature of M2 since S
1 × ...× S1 is Ricci flat. By

our assumption on the scalar curvature, we have, for x ∈M,

0 ≤
n+m− 2

4(n +m− 1)
R(x) ≤

1

4
R(x) ≤

C0
1 + d2(x, x0)

.
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By Lemma 7.3 (taking V = n+m−2
4(n+m−1)R(x)) , we can find a constant α, which is

independent of m and another constant Cδ, such that when t ≥ 1, d(x0, x) ≤ δ and
d0(ξ0, ξ) ≤ δ,

G2(x0, ξ0, t;x, ξ, 0) ≥ Cδ/t
α+(n/2). (7.10)

Here x, x0 ∈M and ξ, ξ0 ∈ S1 × ... × S1. We emphasize that the independence of
α with respect to m is crucial since we will select a large m in the end. Obviously
G2 has a Gaussian upper bound since R ≥ 0. Now we can follow the proof of
Theorem B part (b) to show the following: if p < 1+ 2

2α+n then (7.9) does not have

global positive solutions. The only change in the proof is to replace |B(0, T 1/2)| in
(5.5)-(5.8) by Tα+(n/2). Indeed, if u = u(x, ξ, t) is a solution of (7.9), then

u(x, t)

≥

∫
M2

G2(x, ξ, t; y, η, 0)u0(y, η)dydη +

∫ t
0

∫
M2

G2(x, ξ, t; y, η, s)u
p(y, η, s)dydηds,

for all (x, ξ, t) ∈M2 × [0,∞).
Since R ≥ 0 we know that ,

∫
M2
G2(y, η, T ;x0, ξ0, s)dydη ≤ C. As in section 5,

using the above inequality, the symmetry of the heat kernel and Hölder’s inequality,
we obtain, for T > 1 and T > t,∫

M2

G2(x, ξ, T ;x0, ξ0, t)u(x, ξ, t)dxdξ ≥ C

∫
M2

G2(y, η, T ;x0, ξ0, 0)u0(y, η)dydη

+ C

∫ t
0

[

∫
M2

G2(y, η, T ;x0, ξ0, s)u(y, η, s)dydη]
pds.

(7.11)
Without loss of generality we assume that u0 is strictly positive in a neighborhood

of (x0, ξ0). Using the lower bound in (7.10) for G2, we can then find a constant
C > 0 so that, for T > 1,∫

M2

G(y, η, T ;x0, ξ0, 0)u0(y, η)dydη ≥
C

Tα+(n/2)
.

Going back to (7.11) and writing J(t) ≡
∫
M2
G(x, ξ, T ;x0, ξ0, t)u(x, ξ, t)dxdξ, we

have J(t) ≥ C/Tα+(n/2) + C
∫ t
0
Jp(s)ds, T > t, T > 1. Using the notation g(t) ≡∫ t

0
Jp(s)ds, we obtain, as in section 5,

g′(t)/(T−α−(n/2) + g(t))p ≥ C. (7.12)

Integrating (7.12) from 0 to T and noticing g(0) = 0, we have |Tα+(n/2)|p−1 ≥
(p − 1)CT, for all T > 1. Therefore global positive solutions can not exist if
p < 1 + 2

2α+n .

Since α is independent of m we can choose m sufficiently large so that

n+m+ 2

n+m− 2
< 1 +

2

2α + n
.

Hence the Yamabe equation

∆2u−
n+m− 2

4(n +m− 1)
Ru+ u

n+m+2
n+m−2 = 0
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can not have global positive solution. q.e.d.

We conclude by pointing out another impact of the nonexistence result on the
noncompact Yamabe problem. Since we have shown that there are noncompact
manifolds with positive scalar curvature, which are not conformal to manifolds with
positive constant scalar curvature, the problem of prescribing zero scalar curvature
should now be considered seriously. Some progress has been made in [ZZ].
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