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Basis properties of eigenfunctions of nonlinear

Sturm-Liouville problems ∗

P. E. Zhidkov

Abstract

We consider three nonlinear eigenvalue problems that consist of

−y′′ + f(y2)y = λy

with one of the following boundary conditions:

y(0) = y(1) = 0 y′(0) = p ,

y′(0) = y(1) = 0 y(0) = p ,

y′(0) = y′(1) = 0 y(0) = p ,

where p is a positive constant. Under smoothness and monotonicity con-
ditions on f , we show the existence and uniqueness of a sequence of eigen-
values {λn} and corresponding eigenfunctions {yn} such that yn(x) has
precisely n roots in the interval (0, 1), where n = 0, 1, 2, . . .. For the first
boundary condition, we show that {yn} is a basis and that {yn/‖yn‖} is
a Riesz basis in the space L2(0, 1). For the second and third boundary
conditions, we show that {yn} is a Riesz basis.

1 Introduction

We consider three eigenvalue problems which consist of the nonlinear equation

−y′′ + f(y2)y = λy on (0, 1) (1)

with one of the following three boundary conditions:

y(0) = y(1) = 0 y′(0) = p , (2a)

y′(0) = y(1) = 0 y(0) = p , (2b)

y′(0) = y′(1) = 0 y(0) = p . (2c)

Hereafter all quantities are real, including λ which is a spectral parameter and p
which is an arbitrary constant. However, we consider only p > 0, because when
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p < 0 the substitution of y(x) by −y(x) leads to a positive p. We assume that
f is a continuously differentiable function on R; so that the standard theorems,
such as local existence, uniqueness, and continuous dependence on parameters
are valid for (1).
A pair (λ, y) with λ real and y = y(x) twice continuously differentiable for

all x ∈ [0, 1], that satisfies (1) and one of the boundary conditions (2) is called
an eigenvalue and corresponding eigenfunction. Since each of the boundary con-
ditions (2) contains Cauchy data and an additional condition, by the standard
uniqueness theorem to each value λ there corresponds at most one eigenfunction.
By the spectrum we mean the set of all eigenvalues for each problem defined

by (1)-(2). For any g ∈ L2 = L2(0, 1), by the normalized function g we mean
the normalization of this function to 1 in the above space.
In the present paper, we investigate the properties of the eigenvalues and

eigenfunctions of each problem defined by (1)-(2). In particular, we prove that
for problems (1)-(2b) and (1)-(2c) the eigenvectors form Riesz bases, and that
the normalized eigenvectors of problem (1)-(2a) also form a Riesz basis. For
problem (1)-(2b), these questions have already been considered in [8]. The
proof that eigenfunctions form a Riesz basis was done using Bary’s theorem.
In the present paper the author establishes a direct proof (not based on Bary’s
theorem) of the result in [8], and then studies problems (1)-(2a) and (1)-(2c).
According to Bary’s theorem [1, 2, 3, 7], a linearly independent system of

functions {hn} which is L2(a, b) quadratically close to a Riesz basis in this space
is a Riesz basis in L2(a, b). This result in [1, 2] is presented in a weaker form.
However the proof in [2] applies without modifications to the above statement.
Note that an orthonormal basis in L2(a, b) is also a Riesz basis in L2 (see

definitions in Section 2). A Riesz basis that is quadratically close to an orthonor-
mal basis is called Bary basis [3]. Important properties of Riesz and Bary bases
are presented in [1, 2, 3].
In the present paper, we shall prove linear independence and quadratic close-

ness of the normalized eigenfunctions of all problems (1)-(2) to orthonormal
bases in the space L2. We also obtain estimates of the form c < ‖yn‖L2 < C for
the eigenfunctions of problems (1)-(2b) and (1)-(2c) with constants 0 < c < C
independent of n. Thus, eigenfunctions of problems (1)-(2b) and (1)-(2c) and
normalized eigenfunctions of the problem (1)-(2a) are Riesz bases. Moreover,
the latter system is a Bary basis in L2. We present a direct simple and short
proof, not based on Bary’s theorem, of these systems being Riesz bases in L2.
Several papers have presented proofs of completeness, of being a basis, and

of other properties for eigenfunctions of nonlinear boundary-value problems; see
for example [7]. In [9], the main result consists of proving that the eigenfunc-
tions of a nonlinear Sturm-Liouville-type problem form a basis in L2. These
results are also announced (without proofs) in [10]. However, [9] contains errors
which have been corrected in [11], where also an analog of the Fourier transform
over eigenfunctions of nonlinear Sturm-Liouville-type problems on a half-line is
considered. An independent (and shorter) proof based on the Bary’s theorem
of the result from [9] is done in [12]. Lately, in [13] it is shown that the eigen-
functions form a basis in Hs, where s is a negative constant. This is done for
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a boundary-value similar to (1), without the spectral parameter, and with zero
Dirichlet boundary conditions.
Concerning the applications of our results, the author hopes that once de-

veloped our results be used in Galerkin and Fourier methods. In addition, our
results could be applied in those numerous areas of quantum physics where
various modifications of the nonlinear Schrödinger equation arise.

2 Main results

First we introduce some notation. Let L2 = L2(0, 1) (or L2(a, b) where a < b) be
the standard Lebesgue space consisting of real-valued functions that are square
integrable over the interval (0, 1) (resp. over (a, b)). In this space let the scalar

product be 〈u, v〉 =
∫ 1
0
u(x)v(x) dx and let the corresponding norm be defined

by ‖u‖2 = 〈u, u〉. For an arbitrary Banach space B, with a norm ‖ · ‖B, let
L(B;B) denote the Banach space of linear bounded operators defined from B
to B. In this space, the standard norm is

‖A‖ = sup{‖Au‖ : u ∈ B, ‖u‖B = 1} .

Definition. A family of functions {hn} in L2(a, b) is called a basis of the space
L2(a, b) if for an arbitrary function h ∈ L2(a, b) there exists a unique sequence
of real numbers {an} such that

∑∞
n=0 anhn = h.

Definition. (see [1, 2]) A basis {hn} in L2(a, b) is called the Riesz basis of this
space if the series h =

∑∞
n=0 anhn converges in L2(a, b) when and only when∑∞

n=0 a
2
n <∞. Here {an} is a sequence of real numbers.

Definition. A system of functions {hn} in L2(a, b) is called linearly indepen-
dent in the space L2(a, b) if

∑∞
n=0 anhn = 0 in L2(a, b) only when 0 = a0 =

a1 = a2 . . ..

Definition. Two systems of functions {en} and {hn} in L2 are called quadrat-
ically close in L2 if

∑∞
n=0 ‖en − hn‖

2 <∞.
In what follows, we assume f satisfies the condition

(F) The function f(y2)y is continuously differentiable for all y ∈ R, and f is
monotonically nondecreasing and continuous on [0,+∞).

As an example of a function that satisfies this assumption, we have f(r) = |r|q

for positive q.
The first result of the present paper is technical, and is stated as follows.

Theorem 1 Assume that (F) holds. Then

(a) For each of the problems in (1)-(2) there exist sequences of eigenvalues
{λn} and corresponding eigenfunctions {yn} such that yn(x) has precisely
n roots in (0, 1).



4 Basis properties of eigenfunctions EJDE–2000/28

(b) For each integer n ≥ 0 the eigenfunction with n roots in (0, 1) is unique.

(c) Every eigenfunction as a solution of (1) can be uniquely continued on the
whole line. In what follows, by eigenfunctions of problems (1)-(2) we mean
eigenfunctions continued on the whole real line R.

(d) For each problem in (1)-(2), the system of eigenfunctions {yn} from the
above statements (a) and (c) is uniformly bounded in R.

(e) For each integer n ≥ 0, the roots of yn are the points k/(n+1) for problem
(1)-(2a), and the points (2k+1)/(2n+1) for problem (1)-(2b). For problem
(1)-(2c), the function yn with n > 0 has the points 1/(2n) + k/n as roots;
while y0 is identically equal to p, thus it has no roots. In each of these
three cases k = 0,±1,±2, . . ..

(f) For any eigenfunction y of problems (1)-(2) and for all x ∈ R, y(c+ x) =
−y(c− x) if y(c) = 0, and y(d− x) = y(d+ x) if y′(d) = 0.

(g) The eigenvalues of problems (1)-(2) satisfy λ0 < λ1 < λ2 < . . ..

Parts of Theorem 1 are known (see, for example, [4]) but the author does
not know a reference for all of this theorem. The author does not know of any
function g that is an eigenfunction of a problem (1)-(2) and is representable as
a superposition of elementary functions.
The main result of the paper is stated as follows.

Theorem 2 Under Assumption (F) the eigenfunctions of problems (1)-(2b) and
(1)-(2c) form Riesz bases in L2. Also under Assumption (F), the eigenfunctions
of problem (1)-(2a) form a basis in L2 and they form a Riesz basis after being
normalized.

Remark 1. It follows from (17) in the proof of Theorem 2 that for problem
(1)-(2a), ‖yn‖ → 0 as n→∞. Therefore, this sequence of eigenfunctions is not
a Riesz basis in L2.

3 Proofs

First we prove the statement of Theorem 1 for problem (1)-(2a). Consider the
Cauchy problem

−y′′ + f(y2)y = λy (3)

y(0) = 0, y′(0) = p . (4)

Since p > 0, for any λ ∈ R the solution y satisfies y′(x) > 0 in a neighborhood
of zero. It is well known that equation (3) can be solved by quadratures and our
proof of Theorem 1 is based on this fact (see below). Clearly, if a solution y(x)
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of the problem (3)-(4) can be continued onto a segment [0, d], and if y′(x) > 0
for x ∈ [0, d), then the inverse function x(y) with domain [0, y(d)] has the form

x(y) =

∫ y
0

dr√
U(λ, r2)

, (5)

where U(λ, r2) = p2+F (r2)−λr2, F (r) =
∫ r
0 f(t) dt, y ∈ [0, y(d)], and x(y(d)) =

d. Note that if y′(d) = 0, then x′(y(d)−0) = +∞. If there exists λ such that for
λ > λ the function U(λ, r2) is positive in a half-open interval r ∈ [0, b), where
b > 0, then the solution y is defined on the closed interval [0, x(b)]. In this case
y(x(b)) = b, y′(x) > 0 for x ∈ [0, x(b)) and the function x(y) with the domain
[0, b] is inverse of y(x) on [0, x(b)]. In addition, y′x(x(b)) = 0 if x(b) < +∞ and
x′(b− 0) = +∞.
We denote by Λ the set of values λ for which there exists r > 0 such that

U(λ, r2) = 0. In view of condition (F), inf Λ ≥ f(0). It is clear that if λ ∈ Λ
and λ̃ > λ then λ̃ also belongs to Λ. Therefore, either Λ = (λ,+∞) (the case
A) or Λ = [λ,+∞) (the case B) for some λ ≥ f(0).
For each λ ∈ Λ we denote by z(λ) the greatest lower bound of the set of

values r > 0 for which U(λ, r2) = 0. Clearly, z(λ) > 0 and U(λ, z2(λ)) = 0.
Furthermore, z(λ) is a monotonically decreasing function. Therefore, if λ > λ,
then

[U(λ, r2)]′r
∣∣
r=z(λ)

= 2z(λ)f(z2(λ))− 2λz(λ) < 2z(λ)(f(z2(λ′))− λ′) ≤ 0

for any λ′ ∈ (λ, λ) (because 0 ≥ U ′r(λ
′, r2)

∣∣
r=z(λ′)

= 2z(λ′)(f(z2(λ′)) − λ′),

where z(λ′) > 0); hence by the implicit function theorem z(λ) is a continu-
ously differentiable function and z′(λ) < 0 for λ > λ. Also, in the case B
limλ→λ+0 z(λ) = z(λ).

Let us prove now that for any d > 0 there exists λ > λ such that

J(λ) =

∫ z(λ)
0

dr√
U(λ, r2)

= d , (6)

where the integral in the right-hand side is understood as improper in a neigh-
borhood of the point r = z(λ). Note that as indicated above, [U(λ, r2)]′r

∣∣
r=z(λ)

<

0 for λ > λ; thus for λ > λ the improper integral in the right-hand side of (6)
converges, and J(λ) is a continuous function.
Let us consider the case A: when Λ = (λ,+∞). It is clear that z(λ + 0) =

+∞, because otherwise in view of the continuity of the function U(λ, r2) of the
argument (λ, r) we should get that λ ∈ Λ, and that z(+∞) = 0. This easily
implies that λ = limr→∞ f(r

2) < +∞ and the latter fact yields that

lim
λ→λ+0

J(λ) = +∞ and lim
λ→+∞

J(λ) = 0 . (7)

Therefore, in case A the existence of λ > λ such that (6) holds is proved.
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Let us consider the case B: when Λ = [λ,+∞). We have as in the case
A limλ→+∞ J(λ) = 0. Hence, in view of the continuity of the function J(λ),
we have only to prove that limλ→λ+0 J(λ) = +∞. It follows from the implicit

function theorem that [U(λ, r2)]′r
∣∣
r=z(λ)

= 0 (because otherwise by this theorem

there exist values of λ smaller than λ and belonging to Λ). This fact implies
the required property because limλ→λ+0 J(λ) ≥ J(λ) (indeed, U(λ, r

2) > 0 for

r ∈ (0, z(λ)) and it is clear that for any y ∈ (0, z(λ))∫ y
0

dr√
U(λ, r2)

→

∫ y
0

dr√
U(λ, r2)

as λ→ λ+ 0 and also, U(λ, r2) = O((z(λ)− r)2) as r → z(λ)− 0).
In view of the above arguments, it is proved that for any d > 0 there exists

λ ∈ R such that the corresponding solution y(x) of the problem (3)-(4) can be
continued on the segment [0, d], y′(x) > 0 for x ∈ [0, d) and y′(d) = 0 where
y(d) = z(λ). Let us prove that for any d > 0 there exists precisely one value λ
possessing this property. On the contrary, suppose that for some d > 0 there
exist two values λ1 < λ2 such that the corresponding solutions y1(x) and y2(x)
of the problem (3)-(4) can be continued on the segment [0, d], y′i(x) > 0 for
x ∈ [0, d) and y′i(d) = 0 (i = 1, 2). In view of the above arguments λ1 > λ.
Multiply equation (3), with y(x) = y1(x), by y2(x). Multiply equation (3), with
y(x) = y2(x), by y1(x). Then subtract these equalities from each other and
integrate over the segment [0, d]. In view of the initial data (4), applying the
integration by parts, we get

0 =

∫ d
0

y1(x)y2(x)[λ1 − λ2 − f(y
2
1(x)) + f(y

2
2(x))]dx . (8)

By (5) the inverse functions x1(y) and x2(y) of y1(x) and y2(x) respectively,
satisfy x1(y) < x2(y) for all y ∈ (0,min{y1(d); y2(d)}]. Hence y1(x) > y2(x)
for all x ∈ (0, d]. Then, in view of the assumption (F), the right-hand side in
(8) is negative, which is a contradiction. Thus, it is proved that for any d > 0
there exists a unique λ such that the corresponding solution y(x) of the problem
(3)-(4) satisfies y′(x) > 0 if x ∈ [0, d) and y′(d) = 0.
Finally, in view of the autonomy of the equation (3) and its invariance with

respect to the changes of variables y(x)→ −y(x) and x→ c− x, where c is an
arbitrary constant, we obtain that if a solution y(x) of the problem (3)-(4) can
be continued onto the segment [0, d] and satisfies the conditions y′(x) > 0 for
x ∈ [0, d) and y′(d) = 0, then it can be continued onto the whole real line, and
y(d + x) = y(d − x) (in particular y(2d) = 0) and y(2kd + x) = −y(2kd − x)
for all x ∈ R and for k = 0,±1,±2, . . .. Therefore, Theorem 1, except the
statements (d) and (g), for the problem (1)-(2a) is proved. The statement (d)
follows from the fact that the function z(λ) for λ > λ, coinciding with y(d),
decreases monotonically. Since, as it is proved earlier, for any d > 0 there
exists a unique λ ∈ R (where λ > λ) such that y′(x) > 0 for x ∈ [0, d) and
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y′(d) = 0, where y(x) is the solution of the problem (3)-(4) corresponding to
this value of the parameter λ, and since d > 0 continuously depends on λ
(because d = J(λ)), by the properties (7), which, as it is proved earlier, hold
in each of the cases A and B, the value d > 0 is a monotonically decreasing
function of the argument λ ∈ (λ,+∞). The statement (g) of Theorem 1 for the
problem (1)-(2a) immediately follows from this fact and the above arguments.
For problems (1)-(2b) and (1)-(2c) the proof of the statements of Theorem

1 can be made by analogy. Thus, Theorem 1 is proved. ♦

Next, we turn to the proof of Theorem 2. We associate with three problems
(1)-(2), respectively, the following three linear eigenvalue problems:

−u′′ = µu, x ∈ (0, 1), u = u(x), u(0) = u(1) = 0, (9a)

−u′′ = µu, x ∈ (0, 1), u = u(x), u′(0) = u(1) = 0, (9b)

−u′′ = µu, x ∈ (0, 1), u = u(x), u′(0) = u′(1) = 0, (9c)

where all quantities are real and µ is the spectral parameter. For each of the
problems (9) by {en} (n = 0, 1, 2, . . .) we denote the orthonormal basis consist-
ing of its normalized eigenfunctions. More precisely, en(x) =

√
2 sinπ(n + 1)x

for problem (1)-(2a), en(x) =
√
2 cos π(2n+1)x2 for problem (1)-(2b) (with n =

0, 1, 2, . . .), and e0(x) ≡ 1, en(x) =
√
2 cosπnx (with n = 1, 2, 3, . . .) for the

problem (1)-(2c). The corresponding eigenvalues are the numbers µn = (π(n+
1))2 for problem (9a), the numbers µn = (π(2n+ 1)/2)

2 for problem (9b), and
the numbers µn = (πn)

2 for problem (9c) (n = 0, 1, 2, . . .). For each of the
problems (1)-(2) we set vn(x) = yn(x)/‖yn‖.

Lemma 1 For each of the problems (1)-(2) and an arbitrary integer n ≥ 0 the
following expansion in the Fourier series, understood in the sense of the space
L2, takes place

vn(x) =

∞∑
k=0

dn,kek,

where coefficients dn,k are real, dn,0 = . . . = dn,n−1 = 0 and dn,n > 0.

Proof. For arbitrary integers n ≥ 0 consider the spaces L2(0, In), where In =
1/(n+ 1) for problem (1)-(2a), and In = 1/(2n+ 1) for problem (1)-(2b) (i. e.,
In is the smallest positive root of vn(x), see Theorem 1(e)). It is clear that in
each of these two cases functions from the system {ek} equal to zero at the point
x = In (k = 0, 1, . . .) form an orthogonal basis of the space L2(0, In). We also
note that for any integer n ≥ 0 the minimal integer k ≥ 0, for which ek(In) = 0,
is k = n. Hence,

vn(x) =
∞∑
k=0

dn,kek, n = 0, 1, 2, . . . (10)

in L2(0, In), where dn,k = 0 if ek(In) 6= 0, and in view of the above arguments
dn,0 = . . . = dn,n−1 = 0. In addition, dn,n > 0 because vn(x) > 0 and en(x) > 0
for x ∈ (0, In). We also note that in the case of the problem (1)-(2b) the
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functions vn(x) and ek(x) are even with respect to the point x = 0, therefore
the expansions (10) also hold in the space L2(−In, In). Further, one can easily
verify that if ek(In) = 0 for some value of the index k, then this function ek(x),
continued for all x ∈ R, is equal to zero at all points of the real line which
are roots of the function vn(x). Therefore, since clearly any function ek(x) is
odd with respect to an arbitrary its root, by Theorem 1(f) we easily get that
expansions (10) of the functions vn(x) (n = 0, 1, 2, . . .) take place in each space
L2(I), too, where I is the interval between two arbitrary nearest roots of the
function vn(x). Hence, the expansions (10) are also valid in the space L2.
For problem (1)-(2c) using the same procedure, one can obtain vn(x) =∑∞
k=0 dn,kek(x), n = 1, 2, 3, . . ., in the space L2, where dn,0 = . . . = dn,n−1 = 0

and dn,n > 0, and, in addition, that v0(x) = pe0(x). Thus, Lemma 1 is proved.
♦

Remark 2. An example of expansions of the form as in Lemma 1 is given in
[13]. In that example the matrix D = (dn,k) is upper-triangular with positive
elements on the main diagonal, which shows that, generally speaking, the com-
pleteness (in particular, the property of being a basis) of the system of functions
{vn} does not follow from the indicated properties of the matrix D.

Lemma 2 There exists a positive constant C such that

‖vn − en‖ ≤ C(n+ 1)
−1, n = 0, 1, 2, . . .

for each of the problems (1)-(2).

Proof. Let tn(x) = pen(x)/(
√
2π(n+ 1)) for problem (1)-(2a),

tn(x) = pen(x)/
√
2 for the problem (1)-(2b) (with n = 0, 1, 2, . . .), and t0(x) =

pe0(x), tn(x) = pen(x)/
√
2 (with n = 1, 2, 3, . . .) for problem (1)-(2c). We note

that by the standard comparison theorem [5], Theorem 1(d) immediately implies
the existence of C1 > 0 such that

|λn − µn| ≤ C1 (11)

for n = 0, 1, 2, . . . for each of three problems (1)-(2). Therefore, by Theorem
1(d), for each of three problems (1)-(2) we get for un(x) = yn(x)− tn(x)

−u′′n =Wn(x) + µnun, x ∈ (0, 1) . (12)

In addition, for problems (1)-(2a) and (1)-(2c) by Theorem 1(f),

un(0) = u
′
n(0) = un(1) = u

′
n(1) = 0 (13)

where Wn(x) = (λn − µn)yn(x) − f(y2n(x))yn(x) is a sequence of continuous
functions uniformly bounded with respect to x ∈ [0, 1].
For problem (1)-(2a) or (1)-(2c) for each number n we multiply the equality

(12) by 2xu′n(x) and integrate over the segment [0, 1] with the application of
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the integration by parts. Then, in view of (13) and the obvious inequality
2ab ≤ a2 + b2 we get

µn‖un‖
2 = 2

∫ 1
0

xWn(x)u
′
n(x)dx −

∫ 1
0

[u′n(x)]
2dx ≤

∫ 1
0

W 2n(x)dx. (14)

Hence, there exists C2 > 0 such that

µn‖un‖
2 ≤ C2 (15)

for all integer n ≥ 0. Since in problem (1)-(2c) we have ‖t0‖ = p, ‖tn‖ =
p√
2
,

where n = 1, 2, 3, . . ., it follows from (15) that
∣∣∣ ‖yn‖ − p√

2

∣∣∣ ≤ C′2(n+1)−1 for
some C′2 > 0 independent of n. Therefore, taking into account (15), we get the
statement of Lemma 2 for problem (1)-(2c).
For problem (1)-(2a) we have

‖tn‖ =
p

√
2π(n+ 1)

(n = 0, 1, 2, . . .); (16)

therefore, (15) implies the existence of C3 > 0 such that

‖yn‖ ≤ C3(n+ 1)
−1 (17)

for all integer n ≥ 0. In view of Theorem 1(d), (17) yields the existence of
C4 > 0 such that ‖Wn‖ ≤ C4(n + 1)−1 for all n = 0, 1, 2, . . .. So, in problem
(1)-(2a) we get from the latter estimate and (14) that

‖un‖ ≤ C5(n+ 1)
−2

with a constant C5 > 0 independent of the number n = 0, 1, 2, . . .. The state-
ment of Lemma 2 for problem (1)-(2a) follows from this estimate together with
(16) as for problem (1)-(2c).
For problem (1)-(2b) the proof of the statement in Lemma 2 can be done

as for problem (1)-(2c). One should only take into account the estimate for the
eigenfunctions of the problem (1)-(2b)

|y′n(1)− t
′
n(1)| ≤ C6

with a constant C6 > 0 independent of n = 0, 1, 2, . . . (this estimate follows from
(11), the properties of the function tn(x), Theorem 1(e), and the identities

−[y′n(x)]
2 + F (y2n(x)) − F (p

2) = λny
2
n(x)− λnp

2 (n = 0, 1, 2, . . .) .

These identities can be obtained by multiplying (1), with y(x) = yn(x), by
2y′n(x), and then integrating from 0 to x). Thus, Lemma 2 is proved. ♦

Lemma 3 For each of the problems (1)-(2) the system of functions {vn} is
linearly independent in the space L2.
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Proof. On the contrary suppose that

∞∑
n=0

cnvn = 0 (18)

in the space L2 where cn are real coefficients, c0 = . . . = cl−1 = 0 and cl 6= 0 for
a number l. Multiply (18) in the space L2 by the function el(x). Then, in view
of Lemma 1, we get dl,lcl = 0. But according to Lemma 1 dl,l > 0, which is a
contradiction that proves the present lemma. ♦

Remark 3. In view of Lemmas 2 and 3, it follows from Bary’s theorem that
for each of the problems (1)-(2) the system of functions {vn} is a Riesz basis in
the space L2. Moreover, since {en} is an orthonormal basis in L2, the functions
{vn} form a Bary basis in L2 for each case. As stated in the introduction, we
shall establish a direct proof of this fact without using Bary’s theorem.
In what follows, unless otherwise stated, all three problems (1)-(2) are con-

sidered simultaneously. For an arbitrary number N ≥ 0, denote by LN the clo-
sure in L2 of the set of all finite linear combinations of the functions {en}n≥N .

Denote by A the linear operator defined by the rule Aen = (dn,n)
−1
vn. Then A

is defined for the linear combinations of {en}. In view of Lemma 1, it is clear that
A maps the subspace LN into itself, and that A is defined on dense subsets of L2
and of the subspaces LN . Let AN denote the restriction of the operator A to the
subspace LN (N = 0, 1, 2, . . .). Then, in view of Lemma 1 AN = ΛN+GN where
ΛN is the identity operator in L

N and GN is an operator defined on all finite
linear combinations of {en}n≥N . In addition, GNen = (dn,n)

−1∑
k>n dn,kek so

that ANen = (dn,n)
−1
vn for n = N,N + 1, N + 2, . . .. In view of Lemma 2, the

inequality dn,n > 0, and the condition ‖vn‖ = 1 for n = 0, 1, 2, . . ., there exists
d ∈ (0, 1) such that for n ≥ 0,

d ≤ dn,n ≤ 1 . (19)

Let ‖GN‖ = sup{‖GNg‖ : g =
∑M
n=N cnenand ‖g‖ = 1}, where supremum is

taken over all numbers M = N,N + 1, N + 2, . . . and all real coefficients cn.

Lemma 4 For each of three problems (1)-(2), ‖GN‖ < ∞ for all numbers
N ≥ 0 and limN→∞ ‖GN‖ = 0.

Proof. Let g =
∑∞
n=N cnen where only finitely many coefficients cn are non-

zero, and ‖g‖ = 1. It follows from Lemma 2 and (19) that
∑∞

n,k=0
n 6=k
(dn,n)

−2
d2n,k <

∞. Therefore,

‖GNg‖
2 =

∞∑
k=N+1

[ k−1∑
n=N

cn(dn,n)
−1
dn,k

]2

≤
∞∑

k=N+1

[ k−1∑
n=N

c2n
]
×
[ k−1∑
n=N

(dn,n)
−2
d2n,k

]
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≤ ‖g‖2
∞∑

n,k=N
n 6=k

(dn,n)
−2
d2n,k → 0 as N →∞,

and the proof of Lemma 4 is complete. ♦

Let N be a positive integer such that ‖GN‖ < 1/2. As shown in [6], the
linear operator GN can be uniquely extended to the whole space L

N . For this
extension we keep the same symbol GN , and we have ‖GN‖ < 1/2. In view of
the latter fact, the linear operator AN = ΛN + GN , with GN ∈ L(LN ;LN))
belongs to L(LN ;LN) and possesses a bounded inverse:

A−1N = ΛN +

∞∑
m=1

(−1)m(GN )
m .

The proof of this statement can be found in [6].
The following statement is in fact proved in [2, 3]. However, since its proof

is simple and short, we present it here.

Lemma 5 Let N be the number fixed above. Then for each of the problems
(1)-(2), the functions {vn}n≥N form a Riesz basis in LN .

Proof. Obviously, the functions {en}n≥N form an orthonormal basis in LN .
Take an arbitrary function u ∈ LN and let v = A−1N u =

∑∞
n=N cnen in the

space LN where cn are real coefficients. We have u = ANv =
∑∞
n=N cnANen =∑∞

n=N cn(dn,n)
−1
vn where all series converge in L

N . Therefore, in view of
Lemma 3, the system of functions {vn}n≥N is a basis in the space LN . Further,
with the same notation,

∑∞
n=N c

2
n <∞ because the series

∑∞
n=N cnen converges

in the space LN . Hence, if
∑∞
n=N c

2
n < ∞, then the series

∑∞
n=N cn(dn,n)

−1
vn

converges in the space LN . Conversely, let the series
∑∞
n=N cnvn converge in

LN . Then, A−1N
∑∞
n=N cnvn =

∑∞
n=N cnA

−1
N vn =

∑∞
n=N cndn,nen in the space

LN , therefore,
∑∞
n=N c

2
nd
2
n,n <∞. So, in view of the estimates (19), Lemma 5

is proved. ♦

Lemma 6 For each of the three problems (1)-(2) the functions {vn}n=0,1,2,...
form a Riesz basis in L2.

Proof. Let N be the number fixed above, and LN⊥ be the finite-dimensional
subspace in L2 spanned by e0, . . . , eN−1, and PN be the orthogonal projector in
the space L2 onto the subspace L

N
⊥ . We set wn = PNvn, with 0 ≤ n ≤ N − 1.

Then

wn = vn −
∞∑
k=N

dn,kek . (20)

Further, the dimension of the subspace LN⊥ is obviously equal to N and, in view
of Lemma 1, the system of functions {wn}0≤n≤N−1 is linearly independent in
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L2, therefore, it is a basis in L
N
⊥ . Hence, in view of Lemma 5, the system of

functions {wn}0≤n≤N−1 ∪ {vn}n≥N is a basis in L2.
For an arbitrary u ∈ L2,

u =

N−1∑
n=0

cnwn +

∞∑
n=N

cnvn (21)

in L2 where cn are real coefficients. Substituting the expressions for functions
wn from (20) into (21), we get

u =

N−1∑
n=0

cnvn +

∞∑
n=N

(
cn −

N−1∑
m=0

cmdm,n

)
en

in L2, hence the functions {vn}n=0,1,2,... form a basis for L2. Finally, that these
functions form a Riesz basis in L2 follows from Lemma 5, and concludes the
present proof. ♦

For problem (1)-(2c), the estimate (15) and the arguments following the
estimate imply the existence of constants 0 < c < C such that c ≤ ‖yn‖ ≤ C
for all n = 0, 1, 2, . . .. For problem (1)-(2b), a similar statement can be proved
by analogy (see the proof of Lemma 2). The statement of Theorem 2 follows
¿from Lemma 6 and these estimates.
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