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A note on the saddle conic of quadratic planar

differential systems ∗

D. Boularas

Abstract

We give some properties of the saddle conic of quadratic differential
systems. We also deduce semi-algebraic conditions for the existence of
one, two or three saddle points (in terms of affine invariants).

1 Motivations and introduction

As shown in the report by Reyn [12], many publications are devoted to the
qualitative analysis of the planar quadratic differential system

dx
dt
= a0,0 + a1,0x+ a0,1y + a2,0x

2 + a1,1xy + a0,2y
2 (1)

dy
dt = b0,0 + b1,0x+ b0,1y + b2,0x

2 + b1,1xy + b0,2y
2,

where ai,j and bi,j are real-valued coefficients. Note that these systems form
a 12-dimensional linear space, denoted by A, and that a complete qualitative
study requires determining the partition of the phase plane into trajectories.
Following Leontovitch & Maier [1], this partition is completely defined by the
number and the nature of critical points, the separatrix structure, and the loca-
tion of closed trajectories (the famous 16th Hilbert problem). This work deals
with the first of these three questions.
In [14, 15], Baltag and Vulpe established a complete tableau of the number

and multiplicity of the critical points in the plane, including those at infinity.
Their conditions are algebraic and semi-algebraic (equalities and inequalities)
given in terms of center-affine invariants and covariants. From the symbolic
computation point of view, this approach is very interesting since it provides
a simple algorithm giving the number and the multiplicity of critical points
without solving (with radicals) algebraic equations.
The research on the nature of critical points falls into two different cate-

gories. The first direction concerns the famous center-focus problem. Based on
Dulac’s early work (1908) and on Kapteyn’s work (1912), a series of contribu-
tions has been presented (see [4] for the evolution of this question). Finally,

∗Mathematics Subject Classifications: 34C05, 34C20.
Key words and phrases: nonlinear differential systems, saddle points,
qualitative theory of ordinary differential systems, critical points, invariant theory.
c©2000 Southwest Texas State University and University of North Texas.
Submitted December 16, 1999. Published March 28, 2000.

1



2 saddle conic of quadratic planar differential systems EJDE–2000/23

explicit conditions (in terms of invariants and covariants) for finding systems
(1) with one or two centers were obtained in [6]. The second direction is cen-
tered around the question of the coexistence of critical points of different types.
It was initiated by Berlinskii [2] who established, among others, Theorem 1
below. However, he did not characterize the possible situations by algebraic or
semi-algebraic conditions on the coefficients of (1). P. Curtz gave the first set
of sufficient conditions expressed in terms of coefficients of systems (1) for the
existence of saddle points.
The study of the second direction problem leads us to consider the determi-

nant of the Jacobian of the vector field associated to the system (1),

q(x, y) =

∣∣∣∣ a1,0 + 2a2,0x+ a1,1y a0,1 + a1,1x+ 2a0,2y
b1,0 + 2b2,0x+ b1,1y a0,1 + b1,1x+ 2b0,2y

∣∣∣∣ .
It is clear that a critical point (x0, y0) is a saddle point if and only if q(x0, y0) < 0.
We call the algebraic curve q(x, y) = 0 the saddle conic because it induces a
partition of the phase plane into three regions characterized by the relations
q(x0, y0) < 0, q(x0, y0) > 0 and q(x0, y0) = 0 and the first one contains the
saddle points and the second one, the anti-saddle points.
In this note, we establish some algebraic and geometric properties of the

polynomial q(x, y) and give affine conditions for the existence of one, two, or
three saddle points for system (1). All computations are made with Maple and
the package SIB [7] which contains minimal systems of generators of center-
affine and affine covariants of systems (1).

2 Review of invariants and covariants of differ-

ential systems

Planar quadratic differential systems with real coefficients form a R-vector-space
of dimension 12 (precisely, isomorphic to R2 ⊕ R2

⊗
(R2)? ⊕ S2

⊗
(R2)? where

(R2)? is the dual of R2 and S2 the space of algebraic quadratic forms). Using
Einstein notation, they can be written in the condensed form

dxj

dt
= aj + ajαx

α + ajαβx
αxβ (j, α, β = 1, 2). (2)

where x = (x1, x2)T ∈ R2 (the letter T means transposed) and ajαx
α = aj1x

1 +

aj2x
2, ajαβx

αxβ = aj11(x
1)2+2aj12x

1x2+aj22(x
2)2. The Einstein notation will be

adopted in the whole paper: We suppress the symbol
∑
(sum) in all contrac-

tions.
In addition, let Aff(2,R) be the group of affine transformations

x 7→ y = P−1(x− p) (3)

with

P =

(
p11 p12
p21 p22

)
, det(P ) 6= 0 and p = (p1, p2)T .



EJDE–2000/23 D. Boularas 3

It acts rationally over A following the rational representation

ρ : G 7→ GL(A)

where GL(A) is the group of automorphisms of A. Putting ρ(P, p)(a) = b, this
representation is defined by the formulae:

bj = qji (a
i + aiαp

α + aiαβp
αpβ),

bjα = q
j
i p
β
α(a

i
β + 2a

i
βγp

γ),

bjαβ = q
j
i p
γ
αp
δ
βa
i
γδ,

where Q = (qji ) is the inverse matrix of P .

Let R[a, x] denote the algebra of polynomials whose indeterminates are com-
ponents of a generic vector a of A × R2: a1, a2, a11, a

1
2, . . . , a

1
22, a

2
22, x

1, x2. The
representation of the group Aff(2,R) on GL(A × R2) is the direct sum of ρ
and Aff(2,R). It is denoted r.

Definition. A polynomial function K ∈ R[a, x] is said to be a Aff(2,R)-
covariant of A if there exists a function λ : Aff(2,R)→ R such that

∀g ∈ G, (K ◦ r) (g) = λ(g).K .

If λ(g) ≡ 1, then the invariant is said absolute. Otherwise, it is said relative.
An Aff(2,R)-invariant is an Aff(2,R)-covariant which does not depend on x.

It can be proved [3] that the function λ is a character group of Aff(2,R)
and equal to det(Q)−κ, where the integer κ is called the weight of the covariant
(or invariant).

The above definitions hold for any subgroup of Aff(2,R), in particular for
the center-affine group denoted Gl(2,R) (put in the affine group p ≡ 0) or the
special group denoted Sl(2,R) (det(P ) = 1 and p ≡ 0).
The sets of Sl(2,R)-covariants or invariants and homogeneous Gl(2,R)-

covariants (called also center-affine covariants) or Gl(2,R)-invariants (center-
affine invariants) are the same. The algebras of Sl(2,R)-invariants and Sl(2,R)-
covariants are finitely generated.

In [7] a package denoted SIB is elaborated with Maple. It contains mini-
mal systems of generators of the algebras of center-affine (denoted J1, . . . , J36,
K1, . . . ,K33) and affine covariants (denoted by Q1, . . . , Q36).

3 Algebraic Properties of the Saddle Conic

Let us introduce, for the systems (2), the following quantities:

A00 =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ , Ai0 =
∣∣∣∣ a11i a12a21i a

2
2

∣∣∣∣ , A0i =
∣∣∣∣ a11 a12i
a21 a22i

∣∣∣∣ , Aij =
∣∣∣∣ a11i a12ja21i a

2
2j

∣∣∣∣ .
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The saddle conic of (2) has the expression (we represent here by x the previous
vector (x, y)):

q(x) = A00 + 2(A10 +A01)x
1 + 2(A20 +A02)x

2

+4[A11(x
1)2 + (A12 +A21)x

1x2 +A22(x
2)2] .

It contains all the information about the distribution of saddles and antisaddles
in the phase plane. Following [7], the polynomial q(x, y) is an affine absolute
covariant,

q(x, y) =
1

2
(Q21 −Q2) =

1

2
[(J21 − J2) + 4(J1K1 −K3) + 4(K

2
1 −K7)],

where Q1 and Q2 are affine covariants. Let us consider its two discriminants,

4δ1 =

∣∣∣∣ 4A11 2(A12 +A21)
2(A12 +A21) 4A22

∣∣∣∣ , (4)

2δ2 =

∣∣∣∣∣∣
4A11 2(A12 +A21) A01 +A10

2(A12 +A21) 4A22 A02 +A20
A01 +A10 A02 +A20 A00

∣∣∣∣∣∣ . (5)

With the help of package SIB, we obtain the affine invariants

2δ1 = 2J7 − J8 − J9,

δ2 = 4J1(J12−J11)−J
2
1 (J8+J9−2J7)+2J2(J9−J7)+2(J4−J5)(2J3−J4−J5).

The total degree of δ1 is 4 and that of δ2 is 6.

Lemma 1 ([5], p. 56) The quadratic homogeneous parts of the equations (2)
have a common factor if, and only if, δ1 = 0.

Proof. The resultant of the polynomials a111(x
1)2 + 2a112x

1x2 + a122(x
2)2 and

a211(x
1)2 + 2a212x

1x2 + a222(x
2)2 is equal to δ1.

Lemma 2 The differential system (2) can be reduced by a rotation into the
form

dx1

dt
= a1 + a1αx

α,

dx2

dt
= a2 + a2αx

α + a2αβx
αxβ

if, and only if, A11(x
1)2 + (A12 +A21)x

1x2 +A22(x
2)2 = K21 −K7 = 0.

Proof. The necessary condition is trivial. Suppose that A11(x
1)2 + (A12 +

A21)x
1x2 +A22(x

2)2 = 0. That means that∣∣∣∣ a111 a112
a211 a212

∣∣∣∣ (x1)2 +
∣∣∣∣ a111 a122
a211 a222

∣∣∣∣ x1x2 +
∣∣∣∣ a112 a122
a212 a222

∣∣∣∣ (x2)2 = 0.
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Consequently, there exists two real constants k1 and k2 such that k
2
1 + k

2
2 = 1

and k1a
1
αβx

αxβ + k2a
2
αβx

αxβ = 0. Then the rotation X1 := k1x
1 + k2x

2,

X2 := −k2x1 + k1x2 leads the initial system to the sought form.
From this lemma it follows the proposition:

Proposition 1 If the system (2) has four isolated critical points (real or com-
plex), then K21 −K7 6= 0.

4 Geometric Properties of the Saddle Conic

Suppose that(2) has four isolated critical points. By [8], any three of these
points are never into the same straight line. Then it is possible to find an
affine transformation of the plane, denoted Φ such that the points (0, 0)T = O,
(0, 1)T = A, (1, 0) = B, and (c, d) = D become critical for the transformed
system

dyi

dt
= bi + biαy

α + biαβy
αyβ (i, α, β = 1, 2) (6)

whose coefficients verify the relations:

bi = 0 , bi1 = −b
i
11 , b

i
2 = −b

i
22 , (i = 1, 2) (7)

bi11c(c− 1) + 2b
i
12cd+ b

i
22d(d− 1) = 0, (i = 1, 2).

Moreover, cd 6= 0 and c+ d− 1 6= 0.
Let Bij , (i, j = 1, 2) be the transformed quantities of Aij and δ̃1, δ̃2 the

expressions of δ1 and δ2 where the Aij are replaced by Bij . Since the affine
invariants δ1 and δ2 are relative and of weight 2, we have

δ̃1 = ∆
−2δ1 and δ̃2 = ∆

−2δ2 ,

where ∆ is the determinant of the linear part of Φ.

Remark The signs of the affine invariants δ1 and δ2 do not change under the
affine transformation of the plane.
We have arrived at the interesting geometrical fact.

Lemma 3 The quadrilateral whose vertices are the four isolated singular points
of the quadratic system (2) is convex (resp. not convex) if and only if δ1 =
2J7 − J8 − J9 < 0 (resp. δ1 > 0).

Proof. Note that the quadrilateral is not convex if, and only if, one vertex
lies in the triangle formed by other vertices. For systems (6 -7), the vertices
O, A, B being fixed, the quadrilateral is convex if and only if (c+ d− 1)cd > 0.
Taking into account the relations (7) we obtain

δ̃1 = −2
(c+ d− 1)(b111b

2
22 − b

2
11b
1
22)
2

cd
.
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Moreover, B12 = b
1
11b
2
22− b

2
11b
1
22 6= 0, because K

2
1 −K7 6= 0. This completes the

proof.

A saddle point is an elementary critical point whose corresponding linearized
system admits real eigenvalues of opposite signs. Its geometrical index is equal to
−1. All other elementary critical points (nodes, center and foci) of geometrical
index +1 are called anti-saddles.
To know whether a given critical point x0 is a saddle or not we have to

compute the determinant of the linearized part around the considered point,
i.e., q(x0): x0 is a saddle if and only if q(x0) < 0. In the case of four isolated
critical points we get the following result which was established the first time
by Berlinski [2].

Theorem 1 Suppose that there are four real critical points. If the quadrilateral
with vertices at the points is convex then two opposite critical points are saddles
and the other two are antisaddles. But if the quadrilateral is not convex then
either the three exterior vertices are saddles and the interior antisaddle or the
exterior vertices are antisaddles and the interior vertex a saddle.

�
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�
�

�
�
�

�
�
�

�
�
�

anti-saddle

anti-saddle

Figure 1: Case with two anti-saddle points

Proof [8]. After substitution x0 by critical points O, A, B and D in (6 - 7),
we obtain:

q(0) = B12, q(A) = −
(c+ d− 1)B12

d
,

q(B) = −
(c+ d− 1)B12

c
, q(D) = (c+ d− 1)B12 .
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Figure 2: Case with one and with three saddle points

Consequently,

q(0)q(A)q(B)q(D) =
(c+ d− 1)3B412

cd
.

If δ̃1 < 0, the quadrilateral OABD is convex and q(0)q(A)q(B)q(D) > 0. There
are three possibilities: zero, two, or four saddles. We shall show that the first
and third cases cannot hold.
If c + d − 1 < 0, q(0) and q(D) have opposite sign. Then, there exists at

least one saddle point and one anti-saddle point. If c + d − 1 > 0 and taking
into account the inequality (c + d − 1)/(cd) > 0, we have necessarily cd > 0.
Because c + d− 1 > 0, this implies that c > 0 and d > 0. Thus, the quantities
q(0) and q(A) are of opposite signs. If δ̃1 > 0, then the quadrilateral OABD
is not convex and q(0)q(A)q(B)q(D) < 0. This implies that there exists either
one or three saddle points.

Using the Poincaré’s index of vectors fields around critical points another sim-
plified proof of this theorem was proposed in [13].
Actually, the second discriminant of the saddle conic may distinguish between
the cases of one and three saddle points.

Theorem 2 Suppose that the differential system (2) admits four real isolated
critical points. Then

• (2) has one saddle point if, and only if, δ1 > 0 and δ2 < 0,

• (2) has two saddle points if, and only if, δ1 < 0,

• (2) has three saddle points if, and only if, δ1 > 0 and δ2 > 0.
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Proof. For the systems (6), (7), we have

δ̃2 =
(c+ d− 1)(c+ d)(c − 1)(d− 1)(b111b

2
22 − b

2
11b
1
22)
3

c2d2
.

Suppose that δ̃1 > 0; i.e., (c+ d− 1)/(cd) < 0 and 0 is a saddle point: if q(D) is
of negative sign, then c+d−1 > 0 and c and d are of opposite sign. Thus, one of
the points A or B is of saddle type. Without loss of generality, we can suppose
that A is a saddle point. Then c < 0, d > 1 and c + d > 1 > 0. Necessarily,
δ̃2 > 0.
Suppose that q(D) is of positive sign, then c + d − 1 < 0 and c and d have

the same sign. If c and d are of negative sign, then there are three antisaddle
points and δ̃2 < 0. If c and d are of positive sign, then A and B are of saddle
type and 0 < c < 1, 0 < d < 1. There are three saddle points and δ̃2 > 0. This
result is partially obtained in [9, 10].
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