\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1998/15\hfil Stability estimate for strong solutions \hfil\folio} \def\leftheadline{\folio\hfil Tadashi Kawanago \hfil EJDE--1998/15} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol.\ {\eightbf 1998}(1998), No.~15, pp.~1--23.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp (login: ftp) 147.26.103.110 or 129.120.3.113\bigskip} } \topmatter \title Stability estimate for strong solutions of the Navier-Stokes system and its applications \endtitle \thanks {\it 1991 Mathematics Subject Classifications:} 35Q30, 76D05.\hfil\break\indent {\it Key words and phrases:} Navier-Stokes system, strong solutions, stability, uniqueness, \hfil\break\indent non-blowup condition. \hfil\break\indent \copyright 1998 Southwest Texas State University and University of North Texas.\hfil\break\indent Submitted February 17, 1998. Published June 3, 1998. \endthanks \author Tadashi Kawanago \endauthor \address Tadashi Kawanago \hfill\break Department of Applied Mathematics \hfill\break Faculty of Engineering, Shizuoka University \hfill\break Hamamatsu 432, Japan\endaddress \email tstkawa\@eng.shizuoka.ac.jp \endemail \abstract We obtain a `stability estimate' for strong solutions of the Navier--Stokes system, which is an $L^\alpha$-version, $1< \alpha <\infty$, of the estimate that Serrin [Se] used in obtaining uniqueness of weak solutions to the Navier-Stokes system. By applying this estimate, we obtain new results in stability and uniqueness of solutions, and non-blowup conditions for strong solutions. \endabstract \endtopmatter \def\e{\varepsilon} \def\; {\,;\,} \def\del {\partial} \def\ddt {\frac {d}{dt}} \def\tmax {t_{\text{max}}} \def\glons {C_0([0,\infty) \, ; \, PL^N)} \document \head 1. Introduction \endhead We consider the Navier-Stokes system in ${\Bbb R}^N$ ($N\ge 2$), $$ \gathered u_t-\Delta u + (u\cdot \nabla)u +\nabla \pi =0 \quad \text{in }{\Bbb R}^N\times{\Bbb R}^+, \\ \nabla\cdot u =0 \quad\text{in }{\Bbb R}^N\times {\Bbb R}^+,\\ u(x,0)=u_0 (x) \quad\text{in }{\Bbb R}^N\,, \endgathered \tag NS $$ where $u(x,t) =(u_1,\cdots,u_N)$ is the velocity field and $\pi(x,t)$ is the scalar pressure. Let $P$ be the Helmholtz projection, and let $\|\cdot\|_p$ denote the $L^p({\Bbb R}^N)$ norm. Kato [K] showed that for any $u_0\in PL^{N}$ the problem (NS) has a unique local mild solution $$u(t \; u_0)\in C([0,T) \; PL^{N}) \cap L^r((0,T) \; PL^{q})\,,$$ where $q, r > N$ and $N/q + 2/r=1$. He also proved in [K, the end note] that if $\|u_0\|_N$ is sufficiently small then $$u(t;u_0) \in\glons:= \{u\in C([0,\infty) \; PL^N) \ \; \lim_{t\to \infty} \, \|u(t)\|_N=0 \}\,,$$ (see Theorem 2.1 below). See Section 2 for the definition of mild solution. This unique (local) mild solution also has the smoothing effect and is regular (see Remark 2.3). Therefore, we call it {\it strong solution} of (NS) for the remaining of this paper. Our main result is Theorem 3.1 which establishes the `stability estimate' (which we call) for strong solutions just mentioned. This estimate leads us to corollaries on uniqueness and stability, and to a non-blowup condition for strong solutions. First, we state a new uniqueness result. \proclaim {Corollary 1.1. (Uniqueness)} Mild solutions of (NS) are unique in the space $C([0,T) \; PL^N) \cap L^r_{\text{loc}}((0,T) \; PL^q)$ with a pair of numbers $(q,r)$ that satisfies $$ NN$ were given in [VS, Theorem A], [Wi, Theorem 2]. Global $H^1$-stability results for $N=3$ can be found in [PRST]. We remark that our estimates (1.2) and (1.3) are simpler than those in the previous works, and we clarify that the $L^{\alpha}$-estimate holds if the $L^N$-norm of $v_0 - u_0$ is small. In Section 4 we give another version of Corollary 1.2 for non-global solutions (see Corollary 4.1). We also have the following result. Let $[0, \tmax (u_0))$ be the maximal interval in which the strong solution $u(t;u_0)$ exists. \proclaim{Corollary 1.3 (Non-blowup condition) } Let the strong solution $u(t;u_0)$ exist on $[0,T)$ with $T< \infty$. Then, we have $\tmax (u_0) > T$ if and only if $ u(t;u_0) \in L^{r} ( (0,T) \; PL^{q})$. Here, $(q,r)$ is a pair of numbers that satisfies (1.1). \endproclaim This result has a `global'-version (see Proposition 2.2). For example, we can apply Corollary 1.3 to obtain that $u(t;u_0) \in C_0([0,\infty) \; PL^2)$ for any $u_0\in PL^2$ when $N=2$ (see Proposition 4.1). The contents of this paper is presented as follows. In Section 2, preliminary results; In Section 3, statement and proof of main result; In Section 4, applications of our stability estimate and proofs of Corollaries 1.1-1.3. Notice that part of the contents of this paper was announced in [Ka3] and [Ka4]. \subhead Notation \endsubhead \item{1.} ${\Bbb R}^+:=(0,\infty)$. \item{2.} $L^q:=L^q({\Bbb R}^N\, \; {\Bbb R})$ or $L^q({\Bbb R}^N \; {\Bbb R}^N)$. \item{3.} $f\in L_{\text{loc} }^r ((0,T) \, \; L^q)$ means $f\in L^r ((\e,T) \, \; L^q)$ for any $\e\in (0,T)$. \item{4.} We often write $C=C(\alpha,\beta,\gamma,\cdots)$ to indicate that $C$ depends only on $\alpha,\beta,\gamma,\cdots$. \item{5.} For a Banach space $V$ with the norm $\|\cdot \|$ we set $$ C_0([0,\infty) \; V) := \{u\in C([0,\infty) \; V) \; \lim_{t\to \infty} \, \|u(t)\| =0 \}. $$ \item{6.} $P$ is the Helmholtz projection, i.e. the continuous projection from $L^p$ onto $\{ u=(u_1,\cdots,u_N)\in L^p \; \nabla\cdot u =0\}$. \item{7.} We denote by $u(t;u_0)$ the strong solution, i.e. the unique mild solution of (NS) whose existence is ensured by Theorem 2.1. See Definitions 2.2. \item{8.} For $u=(u_1,\cdots,u_N)\in L^q({\Bbb R}^N \; {\Bbb R}^N)$ we write $$ \gather |u|:=\sqrt{|u_1|^2 + \cdots + |u_N|^2}, \quad | \nabla u | := ( \sum_{i,j=1}^N | \del u_i / \del x_j |^2 )^{1/2}\\ |u|_q := ( \int |u|^q dx)^{1/q} \quad\text{and}\quad \|u(t)\|_q:= (\sum_{j=1}^N \int |u_j|^q dx)^{1/q}. \endgather$$ Note that $|\cdot |_q$ and $\| \cdot \|_q$ are equivalent $L^q$-norms. \item{9.} We often write $|u|^{q-1}u = u^q$ $(00$ and $s+t < \tmax(u_0)$. \proclaim{Lemma 2.1} Let $u(t)$ be a mild solution on $[0,T)$. Assume that $u\in L^r((0,T) \; PL^q)$ with {\it a} pair of numbers $(q,r)$satisfying (1.1). Then we have $u\in L^r((0,T) \; PL^q)$ for {\it any} pair of numbers $(q,r)$ satisfying (1.1). \endproclaim \noindent{\bf Proof.} By (2.1), $u(t) = e^{t\Delta}u_0 - I(t)$, where $$ I(t):= \int_0^t P\nabla\cdot e^{(t-s)\Delta} (u\cdot u(s)) \,ds. $$ In [G, Lemma (p.196)] we find that $$ e^{t\Delta}u_0\in L^r((0,T) \; PL^q) $$ for any pair of numbers $(q,r)$ which satisfy (1.1). We will estimate $I(t)$. Let $q' \ge q/2$. We apply the $L^p$-$L^q$ estimate and have $$ \| I(t) \|_{q'} \le C\int_0^t (t-s)^{-1/2- (2/q -1/q' )N/2} \| u(s) \|_q^2 \, ds\,. $$ Here, $C=C(N,q,q')\in{\Bbb R}^+$ is a constant. By the generalized Young inequality (see [RS, p.31]) we have $(P) \Rightarrow (Q)$ and $(R) \Rightarrow (S)$, where $(P), (Q), (R), (S)$ are defined as follows: \item{(P)} $u\in L^r((0,T) \; PL^q)$ with a $(q,r)$ satisfying (1.1) and $2N\le q$ \item{(Q)} $u\in L^{r'}((0,T) \; PL^{q'})$ for any $(q',r')$ satisfying $q/2 \le q'$ and $$ N 2N$ (resp. $N T$, i.e. the strong solution $u(t;u_0)$ exists on $[0,\,T+\delta)$ with a small constant $\delta\in{\Bbb R}^+$. \item{(d)} $\liminf_{\, t\to T-0} \| u(t;u_0) \|_q < \infty $ for some \quad $q\in (N,\infty)$. \item{(e)} $\limsup_{t\to T-0} \| u(t;u_0) \|_{\infty} < \infty$. \item{(f)} $\lim_{t\to T-0} u(t;u_0)$ exists in $L^N$. \endproclaim \noindent{\bf Proof}. First we will prove the equivalence of (a), (b) and (c). $(a)\Rightarrow (b)$: This is obvious. $(b)\Rightarrow (c)$: We can choose $\delta >0$ satisfying $$ \sup_{s\in (T-\e, \,T)} t^{(1-N/q)/2} \| e^{t\Delta} u(s\,; u_0)\|_r \le S_q \quad\text{for}\quad t\in [0,\delta). $$ Thus, it follows from Proposition 2.1 and the semigroup property of the mild solution (see Remark 2.3 (ii) ) that $u(t;u_0)$ exists on $[0, \,T+\delta)$. \par $(c)\Rightarrow (a)$: By (c) and the definition of the strong solution (see Definition 2.2) we have $$ \sup_{s\in (T-\e, T)} \| u(s\,;u_0) \|_q < \infty. \tag 2.10 $$ We obtain (a) from (2.10) and the basic inequality: $$ \| e^{t\Delta} f \|_q \le \|f\|_q. \tag 2.11 $$ Thus, (a), (b) and (c) are equivalent. \par $(c)\Rightarrow (d)$ and $(e)$ and $(f)$: This is obvious from Theorem 2.1. \par $(d) \Rightarrow (c)$: We fix $\tau\in{\Bbb R}^+$ so small that $$ \liminf_{t\to T-0} \| u(t;u_0) \|_q < \tau^{-(1-N/q)/2} S_q . $$ Then, we choose a constant $s$ such that $$ T - \frac{\tau}{2} < s< T \quad\text{and}\quad \| u(s\,;u_0) \|_q < \tau^{-(1-N/q)/2} S_q . $$ It follows that $$ t^{(1-N/q)/2} \| e^{t\Delta} u(s\,;u_0) \|_q \le t^{(1-N/q)/2} \| u(s\,;u_0) \|_q < S_q \quad\text{for}\quad t\in [0,\tau]. $$ Thus, by Proposition 2.1 $u(t;u_0)$ exists on $[\,0,\, T + \tau /2 \,]$. \par $(e) \Rightarrow (d)$: Let $\e >0$ be a small number which will be determined later. We set $u(t) := u(t;u_0)$. We have $$ u(t+T-\e) = e^{t\Delta}u(T-\e) - \int_0^t P\nabla\cdot e^{(t-s)\Delta} (u\cdot u(s+T-\e))ds \tag 2.12 $$ for $t\in (0,\e)$. We fix a number $q\in (N,\infty)$. We have $$ \|u(t+T-\e)\|_q \le \|u(T-\e)\|_q + C_0\int_0^t(t-s)^{-1/2} \|u(s+T-\e)\|_{\infty} \|u(s+T-\e)\|_{q} ds, \tag 2.13 $$ where $C_0=C_0(N,q)\in{\Bbb R}^+$. We set $$\gather C_{\e}=2C_0\e^{1/2} \sup\,\{ \|u(\tau)\|_{\infty} \; \tau\in [T-\e, T) \}, \\ M(t)=\sup\,\{ \|u(\tau)\|_{q} \; \tau\in [T-\e, T-\e+t) \}. \endgather $$ It follows from (2.13) that $$ M(t) \le \|u(T-\e)\|_{q} + C_{\e}M(t) \quad\text{for}\quad t\in [0,\e). \tag 2.14 $$ We fix $\e>0$ so small that $C_{\e} <1$. Then (2.14) implies $M(\e) < \infty$. Thus, we obtain (d). \par $(f) \Rightarrow (b)$: We write $u(t):=u(t;u_0)$ and $$\gather u(T):= \lim_{t\to T-0} u(t) \in PL^N. \\ t^{(1-N/q)/2} \| e^{t\Delta} u(s\,;u_0) \|_q \le t^{(1-N/q)/2} \| e^{t\Delta} (u(s)-u(T)) \|_q + t^{(1-N/q)/2} \| e^{t\Delta} u(T) \|_q. \endgather $$ It follows from the $L^p$-$L^q$ estimate and (2.9) that $$ \gather t^{(1-N/q)/2} \| e^{t\Delta} (u(s) -u(T)) \|_q \le C_1 \| u(s) -u(T)\|_N, \\ \lim_{t\to +0} t^{(1-N/q)/2} \| e^{t\Delta} u(T) \|_q =0\,.\endgather $$ Thus, we have (b). The proof is complete. \qed \subhead Remark 2.5\endsubhead It seems to be an open problem whether (c) is equivalent to (d) with $q=n$. We will characterize the strong solutions belonging to $\glons$. The next result is a `global'-version of Corollary 1.3. \proclaim{Proposition 2.2} Let $u(t)=u(t;u_0)$ be a global strong solution of (NS). Then, we have $u\in \glons$ if and only if $u\in L^r({\Bbb R}^+ \; PL^q)$ for a pair of (or equivalently for any pair of) numbers $(q,r)$ satisfying (1.1). \endproclaim \subhead Remark 2.6\endsubhead When $N=3$, Ponce et al [PRST] obtained a similar result under an assumption: $u_0\in PL^2\cap H^1$. \noindent{\bf Proof of Proposition 2.2.} Let $u\in \glons$. Fix a constant $T\in{\Bbb R}^+$ such that $\|u(T)\|_N \le \e_*$, where $\e_*$ is the constant appeared in the statement of Theorem 2.1. Set $u(T)$ as the initial value and apply Theorem 2.1 (iii). Then we have \linebreak $u\in L^r([T,\infty) \; PL^q)$. Combining this with $u\in L^r([0,T) \; PL^q)$, we conclude that $u\in L^r({\Bbb R}^+ \; PL^q)$. \par Next, we will prove the inverse. Let $u \in L^r({\Bbb R}^+ \; PL^q)$. In view of Lemma 2.1, we can assume without loss of generality that $N N-2, \\ &\frac{N\alpha}{2(\alpha-1)} \quad\text{if}\quad 1 <\alpha < 2 \text{ and } \alpha \le N-2, \\ & \infty \quad\text{if}\quad \alpha=2 \text{ or } [N\le 4 \text{ and } \alpha \ge N], \\ & \frac{N\alpha}{\alpha-2} \quad\text{if}\quad 2<\alpha 4 \text{ and } N\ge 5, \\ & \frac{2N\alpha}{(\alpha-2)(N-\alpha)} \quad\text{if}\quad N-2 \le \alpha 2$]. \item{(iv)} It seems that $\alpha =2$ is the exceptional case in which we can take $d_{\alpha q} =\infty$. Indeed, if $d_{\alpha q} = \infty$ then by setting $u(t;u_0) \equiv 0$ in (3.4) we have $$ \| u(t;v_0) \|_{\alpha} \le \| v_0 \|_{\alpha}, \quad t \ge 0 \tag 3.6 $$ for any $v_0 \in PL^N \cap PL^{\alpha}$. This monotonicity is valid for the special case $\alpha=2$. However, it does not seem to hold for any $\alpha\not =2$. To confirm it for each case, we have only to find a initial value $v_0$ which does not satisfy (3.6). Combining the analytical method and the numerical method, we will show in [Ka5] that for the two cases $(N,\alpha)=(3,4), (3,3)$ there exist $v_0$ which do not satisfy (3.6). We remark that it is possible to apply the same arguments as in [Ka5] to the other cases $(N,\alpha)$ with $\alpha \not =2$. \noindent We obtain immediately the following. \proclaim{Corollary 3.1} Let $\alpha\in (1,\infty)$ and $q\in (N,q_*)$ be constants and $u_0,v_0\in PL^N \cap PL^{\alpha}$. We set $d_q:=d_{N q}$ and $A_q:=A_{N q}$. Here, we use the notations in the statement of Theorem 3.1. Assume (3.2) and $$ \|v_0-u_0\|_{N} \exp\,(A_{N+2} \int_0^T \|u(s \,; u_0)\|_{N+2}^{N+2}\,ds) < \min\, (d_{N+2},d_{\alpha q}) . \tag 3.7 $$ Then we have (3.4) [resp. (3.5)] for the case $\alpha \in [2,\infty)$ [resp. for the case $\alpha \in (1,2)$]. \endproclaim \noindent{\bf Proof of Corollary 3.1.} The proof is complete if we derive (3.3). By Theorem 3.1 and (3.7) it suffices to obtain (3.4) for $(\alpha, q)=(N, N+2)$. To this end we will prove $t_*=T$, where $$ t_* := \max \{ \tau\in [0,T] \; (3.4) \text{ with } (\alpha, q)=(N, N+2) \text{ holds for } t\in [0,\tau] \}. $$ We proceed by contradiction. Suppose $t_*0 $ such that \linebreak $\| u(t;v_0) -u(t;u_0) \|_N < d_{N+2}$ for $t\in [\,0, \,t_* + \e\,]$. Therefore, by Theorem 3.1 we have (3.4) with $(\alpha, q)=(N, N+2)$ for $t\in [\,0, \,t_* + \e\,]$. This contradicts the definition of $t_*$. Thus we conclude $t_*=T$. The proof is complete. \qed \smallskip \noindent{\bf Proof of Theorem 3.1.} Our method of proof is close to the argument in [N] and [Ka] for the porous media equations. Set $w(t):=u(t;v_0) - u(t;u_0)$ and $u(t) :=u(t;u_0)$ for simplicity. The solutions $u(t;u_0)$ and $u(t;v_0)$ are regular for $t\in (0,T]$. In particular, $w,w_t \in C((0,T] \; W^{2,p})$ for $p \ge \min\, (N,\alpha)$ (see e.g. [K] and [GM, Section 3]). We verify that $w=(w_1, \cdots ,w_N)$ satisfies $$ \gathered w_t -\Delta w + (w\cdot\nabla)w + (u\cdot\nabla)w + (w\cdot\nabla)u +\nabla \pi = 0 \quad\text{in } {\Bbb R}^N\times {\Bbb R}^+, \\ \nabla\cdot w =0 \quad\text{in}\quad {\Bbb R}^N\times {\Bbb R}^+. \endgathered \tag 3.8 $$ For short notation, we use $\del_j :=\del/ \del x_j$. \subhead Case $\alpha >2$ \endsubhead We denote $w_j^p := |w_j|^{p-1}w_j$ $(0< p < \infty)$. By the integration by parts, we have $$\align \frac 1 {\alpha} \ddt \|w(t)\|_{\alpha}^{\alpha} &=\frac 1 {\alpha} \ddt \sum_{j=1}^N \int_{{\Bbb R}^N} |w_j(t)|^{\alpha} = \sum_{j=1}^N \int w_j^{\alpha-1} (w_j)_t \, dx \tag 3.9 \\ &= - \,\frac{4(\alpha-1)}{\alpha^2} J(w)^2 - I_1 - I_2 - I_3 - I_4, \endalign$$ where we set $$ \gather J(w) = (\sum_{j=1}^N \| \nabla w_j^{\alpha/2} \|_2^2)^{1/2}, \qquad I_1 = \sum_{j=1}^N\int w_j^{\alpha-1} (w\cdot\nabla)w_j, \\ I_2 = \sum_{j=1}^N\int w_j^{\alpha-1} (u\cdot\nabla)w_j, \quad I_3 = \sum_{j=1}^N\int w_j^{\alpha-1} (w\cdot\nabla)u_j, \quad I_4 = \sum_{j=1}^N\int w_j^{\alpha-1} \del_j\pi\,. \endgather $$ We will estimate $I_j$ ($j=1,2,3,4$). $$ I_1 = \frac{1}{\alpha} \sum_{j=1}^N\int \nabla (|w_j|^{\alpha}) \cdot w = - \frac{1}{\alpha} \sum_{j=1}^N\int |w_j|^{\alpha} \, \nabla\cdot w =0. $$ It follows from the integration by parts and the H\"older's inequality that $$\align |I_2|+|I_3| &\le C \,\sum_{j=1}^N\int |u| |w|^{\alpha/2}|\nabla w_j^{\alpha/2}| \tag 3.10\\ &\le C (\int |u|^{2} |w|^{\alpha})^{1/2} J(w) \le C |u|_q \, |w|_{\alpha q/(q-2)}^{\alpha/2} J(w). \endalign$$ By the H\"older's inequality and the Sobolev inequality, $$\gather |w|_{\alpha q/(q-2)} \le |w|_{\alpha }^{1-N/q} |w|_{N \alpha/(N-2)}^{N/q}, \tag 3.11 \\ |w|_{N \alpha/(N-2)} = |\,|w|^{\alpha/2} |^{2/\alpha}_{2N/(N-2)} \le C J(w)^{2/\alpha} \quad\text{for}\quad N\ge 3. \tag 3.12 \endgather $$ Combining (3.11) and (3.12), we have $$ |w|_{ \alpha q/(q-2)} \le C \|w\|_{\alpha}^{1-N/q} J(w)^{2N/\alpha q}. \tag 3.13 $$ This estimate is what we call (a version of) the Gagliardo-Nirenberg inequality (see e.g. [N]). Note that (3.12) holds for $N \ge 3$, but {\it not} for $N=2$. However, (3.13) does hold for $N \ge 2$. In what follows , we often use the H\"older's inequality and the Sobolev inequality in the same way as above in order to make clear the essence of the argument below. Although the case $N=2$ is exceptional in such situation, we will not mention it. But it is easy to rewrite it rigorously by the same argument as above. It follows from (3.10) and (3.13) that $$ |I_2|+|I_3| \le C \|u\|_q \|w\|_{\alpha}^{\alpha (q-N)/2q} J(w)^{1+N/q} \le \e J(w)^2 + C_{\e} \|u\|_q^r \|w\|_{\alpha}^{\alpha}. \tag 3.14 $$ Next we will estimate $I_4$, which is the most difficult part. It follows from the integration by parts and the H\"older's inequality that $$\align | I_4 | &\le \frac{2(\alpha-1)}{\alpha} \sum_{j=1}^N\int |\,\pi \, w_j^{\alpha/2 -1}\del_j w_j^{\alpha/2}| \tag 3.15 \\ &\le \frac{2(\alpha-1)}{\alpha} (\,\sum_{j=1}^N\int \pi^2 |w_j|^{\alpha -2} )^{1/2} J(w) \\ &\le C \| \pi^2 \|_a^{1/2} \, \| \,|w|^{\alpha-2}\, \|_{b}^{1/2} J(w) = C \| \pi \|_{2a} |w|_{b(\alpha-2)}^{\alpha/2-1} J(w). \endalign$$ Here, $a$ and $b$ are positive constants which satisfy $$ \frac{1}{a} + \frac{1}{b} =1 \quad\text{and}\quad 1< b < \infty . \tag 3.16 $$ We will later determine $a$ and $b$. By (3.8) we have $$ -\Delta \pi = \sum_{i,j=1}^{N}\del_j w_i\cdot \del_i (2u_j +w_j) = \sum_{i,j=1}^{N} \del_i\del_j [\,w_i(2u_j+w_j)\,]. \tag 3.17 $$ With the aid of the Calder\'on - Zygmund inequality and the H\"older's inequality, $$ \|\pi\|_{2a} \le C \sum_{i,j} \|w_i(2u_j+w_j)\|_{2a} \le C \|w\|_{4a}^2 + C \|u\|_{q} \|w\|_{2aq/(q-2a)}. \tag 3.18 $$ Combining (3.15) and (3.18), we have $$ | I_4 | \le C \|w\|_{4a}^2 \|w\|_{b(\alpha-2)}^{\alpha/2-1} J(w) + C \|u\|_{q} \|w\|_{2aq/(q-2a)} \|w\|_{b(\alpha-2)}^{\alpha/2-1} J(w). \tag 3.19 $$ We choose $a$ and $b$ such that the following two conditions hold. \item{(P)} Both $4a$ and $b(\alpha -2)$ are between $N$ and $N\alpha /(N-2)$ \item{(Q)} Both $2aq/(q-2a)$ and $b(\alpha -2)$ are between $\alpha$ and $N\alpha /(N-2)$ \noindent Assuming that (P) and (Q) hold, from the H\"older's inequality and (3.12) we obtain $$ \gather \|w\|_{4a} \le \|w\|_N^{1-\theta_1} \|w\|_{N\alpha /(N-2)}^{\theta_1} \le C \|w\|_N^{1-\theta_1} J(w)^{2 \theta_1/ \alpha}, \tag 3.20 \\ \|w\|_{b(\alpha -2)} \le \|w\|_N^{1-\theta_2} \|w\|_{N\alpha /(N-2)}^{\theta_2} \le C \|w\|_N^{1-\theta_2} J(w)^{2 \theta_2/ \alpha}, \tag 3.21 \\ \|w\|_{2aq/(q-2a)} \le \|w\|_{\alpha}^{1-\theta_3} \|w\|_{N\alpha /(N-2)}^{\theta_3} \le C \|w\|_{\alpha}^{1-\theta_3} J(w)^{2 \theta_3/ \alpha}, \tag 3.22 \\ \|w\|_{b(\alpha -2)} \le \|w\|_{\alpha}^{1-\theta_4} \|w\|_{N\alpha /(N-2)}^{\theta_4} \le C \|w\|_{\alpha}^{1-\theta_4} J(w)^{2 \theta_4/ \alpha}. \tag 3.23 \endgather $$ Here, $\theta_j \in [0,1]$ ($1\le j \le 4$) are constants, and exactly $(\theta_1, \theta_2,\theta_3,\theta_4) = $ $$ ( {{ \alpha \left( N -4 a \right) }\over {4 a \left( N- 2 - \alpha \right) }},\,\, {{ \alpha \left( N+2 b - \alpha b \right) }\over {\alpha b N - 2 b N + 4 b - {{ \alpha }^2} b }},\,\, {N\over 2} - {{ \alpha N }\over {4 a}} + {{ \alpha N }\over {2 q}}, \,\, {{ N \left( \alpha b- \alpha - 2 b \right) }\over {2 b (\alpha- 2)}} \,). \tag 3.24 $$ It follows from (3.16), (3.19) and (3.20)-(3.23) that $$\align |I_4| &\le C \|w\|_N^{2(1-\theta_1) + (\alpha /2 -1)(1- \theta_2)} J(w)^{1 \,+ \,4 \theta_1/ \alpha \,+\, (1- 2/ \alpha) \theta_2}\tag 3.25 \\ &\quad + C\|u\|_q \|w\|_{\alpha}^{(1-\theta_3) + (\alpha /2 -1)(1- \theta_4)} J(w)^{1 + 2 \theta_3/ \alpha + (1- 2/ \alpha) \theta_4} \\ &=C \|w\|_N J(w)^2 + C\|u\|_q \|w\|_{\alpha}^{\alpha (q-N)/2q} J(w)^{1 + N/q}. \endalign$$ Therefore, when $q > N$ we have $$ |I_4| \le C \|w\|_N J(w)^2 + \e J(w)^2 + C_{\e} \|u\|_q^r \|w\|_{\alpha}^{\alpha}.\tag 3.26 $$ Thus we obtain $$ \frac{1}{\alpha} \ddt \|w(t)\|_{\alpha}^{\alpha} \le -(\frac{\alpha -1}{\alpha^2} - C_0 \|w\|_N) J(w)^2 + A_{\alpha q} \|u\|_{q}^{r} \|w\|_{\alpha}^{\alpha}. $$ Set $d_{\alpha q} := (\alpha-1)/\alpha^2 C_0$. Then, by (3.3) we have $$ \frac{1}{\alpha} \ddt \|w(t)\|_{\alpha}^{\alpha} \le A_{\alpha q} \|u\|_{q}^{r} \|w\|_{\alpha}^{\alpha} \quad\text{for}\quad t\in [0,T]. $$ Therefore, we obtain (3.4) for $t\in [0,T]$. \par Finally, we observe how the conditions (P) and (Q) ($\Longleftrightarrow 0\le \theta_j\le 1$ for $1\le j\le 4$) restrict the range of $q$. First, we study the case $2 < \alpha < N-2$. We have $\alpha < {N\alpha}/(N-2) < N$. In order to satisfy (P) and (Q), we need to choose $b(\alpha -2) = N\alpha /(N-2)$. Then we have $$ a=\frac{N\alpha}{2(N+\alpha -2)},\qquad (\theta_1, \theta_2,\theta_3,\theta_4) =(\,\frac 1 2, \, 1, \, 1-\frac{\alpha (q-N)}{2q}, \,1 \,). $$ The condition $0 \le \theta_3 \le 1$ is equivalent to $N \le q \le q_*:= N\alpha /(\alpha-2)$. Next, we study the case $N-2 \le \alpha$. The condition $0 \le \theta_1 \le 1$ is equivalent to $$ (N-4)b \le N \quad\text{and}\quad (N\alpha -4N +8)b \ge N\alpha\,. \tag 3.27 $$ By (3.24) we have $$ \frac{1}{q} = \frac{1}{2} - \frac{1}{\alpha} + \frac{2\theta_3}{N\alpha} - \frac{1}{2b}. \tag 3.28 $$ Let $N-2 \le \alpha < N$ and $ 2< \alpha \le 4$. Since $\alpha < N \le N\alpha /(N-2)$, the conditions (P) and (Q) implies $N \le b(\alpha -2) \le N\alpha /(N-2)$. Thus we have $$ \frac{N}{\alpha-2} \le b \le \frac{N\alpha}{(\alpha-2)(N-2)}. \tag 3.29 $$ Remark that (3.29) leads to $\theta_2, \theta_4 \in [0,1]$ and (3.27). We see that $q$ achieves the maximum at $(\theta_3, b) =(0,N/(\alpha-2))$ and the minimum at $(\theta_3, b) = (1, \frac{N\alpha}{(\alpha-2)(N-2)} )$. Thus we have $$ N < q \le q_* := \frac{2N\alpha}{(N-\alpha)(\alpha-2)}. $$ Let $N-2 \le \alpha$ and $\alpha > 4$ and $N \ge 5$. It follows from (3.27) and the condition $\theta_2, \theta_4 \in [0,1]$ that $$ \gather \frac{N\alpha}{N(\alpha -4)+8} \le b \le \frac{N}{N-4}, \\ \frac{\max\,(N,\alpha)}{\alpha -2} \le b \le \frac{N\alpha}{(N-2)(\alpha-2)}. \endgather $$ Here, we see that $$ \frac{\max\,(N,\alpha)}{\alpha -2} \le \frac{N\alpha}{N(\alpha -4)+8} \quad\text{and}\quad \frac{N\alpha}{(N-2)(\alpha-2)} \le \frac{N}{N-4}. $$ It follows that $$ \frac{N\alpha}{N(\alpha -4)+8} \le b \le \frac{N\alpha}{(N-2)(\alpha-2)}. $$ In view of this inequality and (3.28), $q$ achieves the maximum at $(\theta_3, b) =$ \linebreak $(0, N\alpha /(N(\alpha -4)+8)\,)$ and the minimum at $(\theta_3, b) =(1, {N\alpha}/{(\alpha-2)(N-2)} )$. Therefore, we have $$ N < q \le q_* := \frac{N\alpha}{N-4}. $$ Finally, let $N\le 4$ and $\alpha \ge N$. Since $N \le \alpha$, the conditions (P) and (Q) lead to $\alpha \le b(\alpha-2) \le N\alpha/(N-2)$. Thus we have $$ \frac{\alpha}{\alpha -2} \le b \le \frac{N\alpha}{(N-2)(\alpha-2)}, $$ which implies that $\theta_2,\theta_4 \in [0,1]$ and also that $\theta_1 \in [0,1]$. By this inequality and (3.28) we see that $q$ achieves the maximum at $(\theta_3, b) =(0,\alpha/(\alpha-2))$ and the minimum at $(\theta_3, b) =(1, {N\alpha}/{(\alpha-2)(N-2)} )$. We conclude that $N < q \le q_* := \infty$. \subhead Case $ \alpha =2$ \endsubhead The above estimates of $I_1$, $I_2$, $I_3$ holds in this case. Moreover, by the integration by parts we have $$ I_4 = \sum_{j=1}^N \int_{{\Bbb R}^N} w_j \del_j \pi = -\int \pi \, \nabla\cdot w =0. $$ Therefore, we have $$ \frac 1 2 \ddt \|w(t)\|_2^2 \le A_{2,q} \|u\|_q^r \|w\|_2^2. \tag 3.30 $$ Here, $q \in (N,\infty]$ is any number. The estimate (3.30) implies (3.4) with $\alpha =2$. \subhead Case: $1 < \alpha <2$\endsubhead We write $w^p := |w|^{p-1} w$ $(1N$ we have $$ |I_4| \le C \|w\|_N K(w)^2 + \e K(w)^2 + C_{\e} \|u\|_q^r \, |w|_{\alpha}^{\alpha}. $$ Thus, we obtain $$ \frac{1}{\alpha} \ddt |w(t)|_{\alpha}^{\alpha} \le - (\frac{\alpha -1}{2} - C_0 \|w\|_N) K(w)^2 + A_{\alpha q} \|u\|_{q}^{r} \, |w|_{\alpha}^{\alpha}. \tag 3.42 $$ Set $d_{\alpha q} := (\alpha -1)/2C_0$. Then, by (3.3) and (3.42) we have (3.5) for $t\in [0,T]$. \par Finally, we determine the available range of $q$. First we consider the case: $1 < \alpha \le N-2$. We have $\alpha < N\alpha /(N-2) \le N$. By (R) and (S), we need to choose $a(\alpha-1)/(a-1):={N\alpha}/(N-2)$, i.e. $$ a:= \frac{N\alpha}{N+2(\alpha-1)} \quad (<2)\,. $$ It leads to $$ \theta_1= \frac{2-\alpha}{4-\alpha} \in (0,1), \qquad \theta_3 = 1- \frac{\alpha (q-N)}{q(2-\alpha)}. $$ By the conditions $\theta_3\in [0,1]$ and $q > N$ we have $$ N < q \le \frac{N\alpha}{2(\alpha-1)} := q_*. $$ Next, let $N-2 < \alpha < 2$. Since $\alpha < N < N\alpha /(N-2)$, (R) and (S) implies \linebreak $N \le a(\alpha -1) /(a-1) \le N\alpha /(N-2)$, i.e. $$ \frac{N\alpha}{N + 2\alpha -2} \le a \le \frac{N}{N-\alpha +1}. \tag 3.43 $$ We remark that (3.43) is equivalent to $\theta_2$, $\theta_4 \in [0,1]$. We verify that (3.43) also implies $\theta_1 \in [0,1]$. By (3.41) we have $$ \frac{1}{q} = \frac{2-\alpha}{N\alpha}\,\theta_3 + \frac{1}{a} - \frac{1}{\alpha}. $$ Thus, $q$ achieves the minimum at $(\theta_3,a) =(\,1,\,{N\alpha}/(N+ 2\alpha -2)\,)$ and the maximum at $(\theta_3,a) =(\,0,\, {N}/(N-\alpha +1)\,)$. Combining this and the condition $q > N$, we have $$ N < q \le \frac{N\alpha}{(N-\alpha)(\alpha-1)} := q_* . $$ The proof is complete. \qed \proclaim{Lemma 3.2}. Let $\alpha \in (1,2)$ be a number and $w=(w_1,\cdots,w_N) \in W^{2,\alpha} ({\Bbb R}^N \; {\Bbb R}^N)$. Then we have $|w|^{\alpha/2} \in H^1 (:= W^{1,2})$ and $$ \frac{4(\alpha -1)}{\alpha^2} \| \nabla |w|^{\alpha/2} \|_2^2 \le (\alpha-1)\int_{{\Bbb R}^N} \frac{|\nabla w|^2}{|w|^{2-\alpha}} \le - \int_{{\Bbb R}^N} w^{\alpha-1} \cdot \Delta w \, dx \,\,(< \infty). \tag 3.44 $$ Here, we define ${|\nabla w|^2} / {|w|^{2-\alpha}} = 0$ when $|w(x)|=0$. \endproclaim \noindent{\bf Proof.} Since $| \nabla |w|\, | \le |\nabla w|$, we have $$ \int_{{\Bbb R}^N} \frac{|\nabla w|^2}{|w|^{2-\alpha}} \ge \int_{{\Bbb R}^N} |w|^{\alpha-2} | \nabla |w|\, |^2 =\frac{4}{\alpha^2} \int | \nabla |w|^{\alpha/2} \,|^2. $$ Thus we obtained the first inequality in (3.44). To show the second inequality in (3.44), it suffices to derive $$ -\int_{{\Bbb R}^N} |w|^{\alpha-2}w \cdot \del_j^2 w \ge (\alpha-1) \int_{{\Bbb R}^N} \frac{|\del_j w|^2}{|w|^{2-\alpha}}. \tag 3.45 $$ Let $j=1$. (We omit the other cases: $j \not =1$ since they are same.) With the aid of the Fubini Theorem we have $$ -\int_{{\Bbb R}^N} |w|^{\alpha-2}w \cdot \del_1^2 w = -\int_{{\Bbb R}^{N-1}} dx' \int_{{\Bbb R}} |w|^{\alpha-2}w \cdot \del_1^2 w \, dx_1. \tag 3.46 $$ Here, $x':= (x_2,\cdots, x_N)$. By the assumption: $w \in W^{2,\alpha}$ we have $$ w(\cdot, x') \in C^1({\Bbb R} \; {\Bbb R}^N) \tag 3.47 $$ for a.e. $x' \in {\Bbb R}^{N-1}$. We fix any $x'$ such that (3.47) holds and set $$ W(\cdot) := w(\cdot, x') \in C^1({\Bbb R} \; {\Bbb R}^N). $$ Then, there exist countable numbers of open intervals $\{ I_k \}_{k=1}^{\infty}$ such that $W(x)\not = 0$ on each $I_k$. Actually, $W(x)$ is positive definite or negative definite on each interval $I_k$. Each $\del I_k$ (:= the boundary of $I_k$ in ${\Bbb R}$) consists of at most two points. Therefore, $\bigcup_{k=1}^{\infty} \del I_k$ is a set whose measure is zero. It follows from the integration by parts that $$\align -\int_{{\Bbb R}} |W|^{\alpha-2}W \cdot W_{xx} \,dx &= - \sum_{k=1}^{\infty} \int_{I_k} |W|^{\alpha-2}W \cdot W_{xx} \tag 3.48 \\ &= \sum_{k=1}^{\infty} \int_{I_k} [ \,-(2-\alpha) |W|^{\alpha-2} |W|_{x} W_{x} + |W|^{\alpha-2} (W_{x})^2 \,] \\ &\ge \sum_{k=1}^{\infty} \int_{I_k} [\, -(2-\alpha) |W|^{\alpha-2} (W_{x})^2 + |W|^{\alpha-2} (W_{x})^2 \,] \\ &= (\alpha-1) \int_{{\Bbb R}} |W|^{\alpha-2} (W_{x})^2 . \endalign$$ Combining (3.46) and (3.48), we obtain (3.45). \qed \head 4. Applications \endhead In this section we give the proofs of Corollaries 1.1-1.3 and some other applications of our Theorem 3.1.\smallskip \noindent{\bf Proof of Corollary 1.1.} Let $v$ be any mild solution of (NS) which satisfies $v\in C([0,T)\, \; PL^N) \cap L_{\text{loc}}^r ((0,T) \, \; PL^q)$. It suffices to show that $$ v(t)=u(t\,\; v(0)) \qquad\text{on} \qquad [0,T). $$ Here, $u(t\,\; v(0))$ is a strong solution, which satisfies $$ u(t\,\; v(0)) \in C([0,T)\, \; PL^N) \cap L^{N+2} ((0,T) \, \; PL^{N+2}) $$ (see Definition 2.2). We set $u(t):=u(t \,\; v(0)\,)$ and $w(t):=v(t)- u(t)$. Let $d_{N+2}$ and $A_{N+2}$ be the constants defined in Corollary 3.1. We choose a small constant $\tau\in (0,T)$ such that $$ \| w(t) \|_N \le d_{N+2} \quad\text{for}\quad t\in [0,\tau]. $$ Let $\e\in (0,\tau)$. By the semigroup property of the mild solution, $v(t)$ is a strong solution on $[\e,T)$ with the initial value $v(\e)$. We apply Theorem 3.1 and obtain $$ \| w(t ) \|_{N} \le \| w(\e) \|_{N} \exp\,( A_{N+2} \int_{\e}^{\tau} \|u(s)\|_{N+2}^{N+2}\,ds) \quad\text{for}\quad t\in [\e, \tau]. $$ Let $\e \to +0$. Then we have $w(t)=0$ for $t\in [0,\tau]$. Now, we easily verify from the continuity of $w(t)$ that $T=\sup \,\{ \tau \; w(t)=0 \quad\text{for}\quad t\in [0,\tau] \}$. \qed \smallskip The next result is a `local'-version of Corollary 1.2. \proclaim{Corollary 4.1. (Local Stability)} Let $u_0\in PL^N \cap PL^{\alpha}$ with a constant $\alpha \in (1,\infty)$ and $u(t;u_0)$ be a strong solution. Then, for any $T < \tmax (u_0)$ there exist constants $\delta_0=\delta_0(N,u_0,T)\in {\Bbb R}^+$ and $C_0=C_0(N)\in{\Bbb R}^+$ such that if $$ v_0\in PL^N \quad\text{and}\quad \|v_0-u_0\|_{N}\le \delta_0 $$ then we have $\tmax (v_0) > T$ and $$ \|u(t \,; v_0)-u(t;u_0) \|_{N} \le \|v_0-u_0\|_{N} \exp\,(C_0 \int_0^t \|u(s \,; u_0)\|_{N+2}^{N+2}\,ds) \tag 4.1 $$ for $t\in [0,T]$. \par Moreover, when $\alpha \not = N$ there exist constants $\delta_1=\delta_1(N,\alpha,u_0,T)\in (0,\delta_0]$, \linebreak $q=q(N,\alpha)\in (N,\infty)$ and $C_1=C_1(N,\alpha)\in{\Bbb R}^+$ such that if $v_0\in PL^N \cap PL^{\alpha}$ and $\|v_0-u_0\|_{N}\le \delta_1$ then we have for $\alpha \in [2,\infty)$ $$ \|u(t \,; v_0)-u(t;u_0) \|_{\alpha} \le \|v_0-u_0\|_{\alpha} \exp\,(C_1 \int_0^t \|u(s \,; u_0)\|_{q}^{r}\,ds) \tag 4.2 $$ for $t\in [0,T]$, and for $\alpha\in (1,2)$ the estimate (4.2) with the norm $\|\cdot\|_{\alpha}$ replaced by $|\cdot|_{\alpha}$. Here, $r$ is the constant which satisfies (1.1). \endproclaim \noindent{\bf Proof.} We use the notation in the statement of Theorem 3.1 and Corollary 3.1. We denote $u(t):=u(t;u_0)$ and $v(t):=u(t;v_0)$. We fix constants $\alpha_0\in (N,\infty)$ and $q_0\in (N,q_*(N,\alpha_0))$. For example, set $(\alpha_0,q_0)=(2N,2N)$. We choose $\delta_0\in {\Bbb R}^+$ such that $$ \delta_0 < \min\,(d_{N+2},d_{\alpha_0,q_0}) \exp\,( - A_{N+2} \int_0^T \|u(s)\|_{N+2}^{N+2}\,ds) $$ and assume $\| v_0-u_0 \|_N \le \delta_0$. Let $C_0 := A_{N+2}$. Then, by Corollary 3.1 we have (4.1) for $t\in [0,T_0)$ and $$ \|v(t) -u(t) \|_{N} < \min (d_{N+2},d_{\alpha_0,q_0}) \quad\text{for}\quad t\in [0,T_0). \tag 4.3 $$ Here, $T_0 := \min (T, \tmax (v_0))$. We complete the proof if we prove $\tmax(v_0) > T$. We fix a constant $t_0 \in (0,T_0)$. Then, by (4.3) and Theorem 3.1 we have $$ \|v(t)-u(t) \|_{\alpha_0} \le \| v(t_0) - u(t_0) \|_{\alpha_0} \exp\,(A_{\alpha_0,q_0} \int_0^T \|u(s)\|_{q_0}^{r_0}\,ds) < \infty $$ for $t\in (0,T_0)$, where $r_0$ is the constant which satisfies $N/q_0 +2/r_0 = 1$. Thus, $\| v(t) \|_{\alpha_0}$ is bounded on $[0,T_0)$. In view of Corollary 2.1 we have $T_0 = T < \tmax (v_0)$. \par When $\alpha \not = N$, we choose $\delta_1 \in{\Bbb R}^+$ such that $$ \delta_1 < \min\,(d_{N+2},d_{\alpha_0,q_0}, d_{\alpha q}) \exp\,( - A_{N+2} \int_0^T \|u(s)\|_{N+2}^{N+2}\,ds). $$ Here, $q\in (N,q_*(N,\alpha))$ is a constant. Then we can verify (4.2) in the same argument as above. \qed \smallskip The following lemma will be used in the proof of Corollary 1.2. \proclaim{Lemma 4.2} Let $v(t)=u(t;v_0)\in \glons$ be a global strong solution. And let $\alpha \in [N,\infty)$ be a constant. Then there exists a constant $T_* = T_*(N,\alpha,v_0)\in {\Bbb R}^+$ such that $\| u(t;v_0) \|_{\alpha}$ is non-increasing on $[T_*,\infty)$. \endproclaim \noindent{\bf Proof.} We use the notation in the statement of Theorem3.1 and Corollary 3.1. We choose $T_*$ such that $\| v(T_*) \|_{N} < \min (d_{N+2},d_{\alpha \alpha})$. Let $u_0 := 0$. Then $u(t;u_0)$ is a trivial solution. It follows from Corollary 3.1 that $\| v(t) \|_{\alpha} \le \| v(T_*) \|_{\alpha} < \min\,(d_{N+2}, d_{\alpha\alpha})$ for $t \ge T_*$. Applying Corollary 3.1 again, we see that $\| u(t;v_0) \|_{\alpha}$ is non-increasing for $t \ge T_*$. \qed \subhead Remark 4.1\endsubhead Actually, we can verify the decay estimate $$ \|v(t)\|_{\alpha} \le Ct^{-(1-N/ \alpha)/2} \quad\text{for}\quad t\ge 1. \tag 4.4 $$ See [K, Theorem 4]. We can prove (4.4) using the same argument as in the proof of [Ka, Theorem 4.1]. We omit it since we do not use (4.4) in this paper.\smallskip \noindent{Proof of Corollary 1.2.} We use the notation in the statement of Theorem 3.1 and Corollary 3.1. We fix constants $\alpha_0\in (N,\infty)$ and $q_0\in (N,q_*(N,\alpha_0))$. For example, set $(\alpha_0,q_0)=(2N,2N)$. \par (i) We write $u(t):= u(t;u_0)$ and $v(t):=u(t;v_0)$. We choose $\delta_0 \in {\Bbb R}^+$ such that $$ \delta_0 \exp\,(A_{N+2} \int_0^{\infty} \|u(s)\|_{N+2}^{N+2}\,ds) < \min\,( d_{N+2},d_{\alpha_0,q_0}, \frac{1}{2} \e_* ). $$ Here, $\e_*$ is the constant in the statement of Theorem 2.1 (iii). We set $C_0 := A_{N+2}$. Let $\| v_0 -u_0 \|_N \le \delta_0$. Then, by Corollary 3.1 we have (1.2) and $$ \|v(t) -u(t) \|_{N} < \min (d_{N+2},d_{\alpha_0,q_0}, \frac{1}{2} \e_* ) \tag 4.5 $$ for $t\in (t_0,\tmax(v_0))$. We will show $\tmax (v_0) =\infty$. We fix a constant $t_0 \in (0, \tmax(v_0))$. By (4.5) and Theorem 3.1 we have $$ \|v(t)-u(t) \|_{\alpha_0} \le \| v(t_0) - u(t_0) \|_{\alpha_0} \exp\,(A_{\alpha_0,q_0} \int_{t_0}^{\infty} \|u(s)\|_{q_0}^{r_0}\,ds) < \infty \tag 4.6 $$ for $t\in (t_0, \tmax(v_0))$, where $r_0$ is the constant which satisfies $N/q_0 +2/r_0 = 1$. Since $\|u(t)\|_{\alpha_0}$ is bounded on $[t_0,\infty)$ (see Lemma 4.2), $\|v(t)\|_{\alpha_0}$ is bounded on $[t_0,\tmax(v_0))$. With the aid of Corollary 2.1, we have $\tmax (v_0)=\infty$. Thus, $v(t)$ is a global solution. We choose a constant $T_1$ such that $\| u(T_1) \|_N < \e_* /2$. Then, by (4.5) we have $\| v(T_1) \|_N < \e_* $. Therefore, we obtain from Theorem 2.1 that $v(t) \in \glons$. \par (ii) We choose a constant $q$ such that $N < q < q_*(N,\alpha)$. We choose $\delta_1\in {\Bbb R}^+$ such that $$ \delta_1 < \min\,( d_{N+2},d_{\alpha_0,q_0}, \frac{1}{2} \e_* , d_{\alpha q}) \exp\,( - A_{N+2} \int_0^{\infty} \|u(s)\|_{N+2}^{N+2}\,ds). $$ Then we can easily verify (1.3) for $t\in {\Bbb R}^+$ by the same argument as in (i). \qed\smallskip \noindent{\bf Proof of Corollary 1.3.} We denote $u(t) := u(t;u_0)$. It follows from Theorem 2.1 that $\tmax (u_0) >T$ implies $u(t)\in L^r( (0,T) \; PL^q )$. Next, we will prove the inverse. Let $u(t) \in L^r((0,T) \; PL^q)$. In view of Corollary 2.1, it suffices to prove that $\lim_{\,t\to T-0} \,u(t)$ exists in $PL^N$. By Lemma 2.1 we have $u(t;u_0)\in L^{N+2}((0,T) \; PL^{N+2})$. Let $\{ t_j \}_{j=1}^{\infty}$ be any monotone increasing sequence such that $t_1 \ge T/2$ and $t_j \to T$ $(j\to\infty)$. Setting $u_0 := u(t_k- T/2)$ and $v_0 := u(t_l- T/2)$ $(k < l)$, we apply Corollary 3.1. We have $$\align &\|u(t_l)-u(t_k)\|_N \\ \le\, &\|u(t_l-T/2)-u(t_k-T/2)\|_N \exp ( A_{N+2} \int_0^{T/2} \| u(s+ t_k-T/2) \|_{N+2}^{N+2}\,ds) \\ \to \, & 0 \quad (k\to\infty). \endalign$$ Thus, $\lim_{\,j\to \infty} u(t_j)$ exists in $PL^N$. \qed \medbreak Finally we mention the topological structure of the space of strong solutions. We set $$ A:=\{\, u_0\in PL^{N} \; u(t \; u_0) \in \glons \,\}. \tag 4.7 $$ Then $A$ is open in $PL^{N}$ by Corollary 1.2. When $N=3$ the open set $A$ is unbounded in $PL^3$ since $u_0\in A$ if $u_0 (x)$ is axially symmetric and $u_0\in PL^2\cap PL^3$ (which was shown in [UI]). We also set $$\align B:=& \{ u_0\in PL^N \; \tmax(u_0)<\infty \} \tag 4.8 \\ =&\{ u_0\in PL^N \; \| u(t;u_0) \|_{\infty} \, \text{ blows up in finite time} \, \}. \endalign$$ The second equality holds by the equivalence of (e) and (c) in Corollary 2.1. \proclaim{Proposition 4.1} When $N=2$, we have $A=PL^2$. \endproclaim This result was proved in [KM], [M] and [Wi]. However, we give a simple and different proof by using Corollary 1.3 and Proposition 2.2.\smallskip \noindent{\bf Proof.} Let fix any $u_0 \in PL^2$. We write $u(t) := u(t;u_0)$. We have the energy equality $$ \|u(t)\|_2^2 +2\int_0^t \|\nabla u(s)\|_2^2ds= \|u_0\|_2^2 \quad\text{for}\quad t\in [0,\tmax(u_0)). \tag 4.9 $$ By the Gagliardo-Nirenberg inequality $$ \|u(t)\|_4 \le C\|u(t)\|_2^{1/2}\|\nabla u(t)\|_2^{1/2}. \tag 4.10 $$ In view of (4.9) and (4.10) we have $u(t;u_0)\in L^4((0,T) \; PL^4)$. Here $T\in {\Bbb R}^+$ is a constant such that $T\le \tmax(u_0)$. By Corollary 1.3 we have $T< \tmax(u_0)$. Thus, we obtain $\tmax(u_0)=\infty$, i.e. $u(t;u_0)$ is a global solution. Now we have $u(t;u_0) \in L^4({\Bbb R}^+ \; PL^4)$. Therefore, we apply Proposition 2.2 to conclude $u(t;u_0)\in\glons$. \qed \proclaim{Proposition 4.2} Let $N=3,4$. Then we have the following results: \item{(i)} For $u_0\in PL^2 \cap PL^N$ the solution $u(t;u_0)$ blows up in finite time or $u(t;u_0)\in\glons$, i.e. we have $$ (A\cup B)\cap PL^2=PL^2\cap PL^N. \tag 4.11 $$ \item{(ii)} the set $B\cap PL^2$ is closed in $PL^2 \cap PL^N$. \item{(iii)} the set $B$ is empty or $B$ is not open in $PL^N$. \endproclaim \noindent{\bf Proof.} (i) Let $u_0\in PL^2 \cap PL^N$ and $\tmax(u_0)=\infty$. In view of the energy equality (4.9), $\|u(t)\|_2$ is bounded for $t\ge 0$ and $\liminf_{t\to\infty} \|\nabla u(t)\|_2 = 0$. Thus, by the Gagliardo - Nirenberg inequality, we have $\liminf_{t\to\infty} \|u(t)\|_N = 0$. It follows from Theorem 2.1 that $u\in \glons$. Hence, we have (4.11). (ii) By Corollary 1.2, the set $A\cap PL^2$ is open in $PL^2 \cap PL^N$. Therefore, $B\cap PL^2 = (PL^2\cap PL^N)-(A \cap PL^2)$ is closed in $PL^2\cap PL^N$. (iii) We proceed by contradiction. Suppose that $B$ is non-empty open set in $PL^N$. Since $PL^2\cap PL^N$ is dense in $PL^N$, there exists $u_0\in (PL^2 \cap B)- \{ 0 \}$. We set $$ C:=\{ \tau\in {\Bbb R} \; \tau u_0 \in A \}. $$ In view of Corollary 1.2 and Theorem 2.1 (iii), the set $C$ is non-empty open set in ${\Bbb R}$. Since $C\not ={\Bbb R}$, we have $\del C\not =\phi$. Set $B_1 := \{ \tau u_0 \; \tau\in \del C \}$. Then, we obtain from (4.11) that $B_1 \subset \del A\cap B$. This implies $A \cap B \not = \emptyset$, which is a contradiction. Thus, $B$ is empty or $B$ is not open in $PL^N$. \qed \subhead Acknowledgment\endsubhead The author would like to express his sincere gratitude to Professors Tosio Kato, Yoshikazu Giga, Hideo Kozono, Toshiaki Hishida, and Takayoshi Ogawa for their useful comments and information on literature. In particular, Professor Tosio Kato suggested a uniqueness problem (Corollary 1.1). \head References \endhead \item{[B]} H. Brezis, {\it Remarks on the preceding paper by M. Ben\,-\,Artzi "Global solutions of two\,-\,dimensional Navier\,-\,Stokes and Euler equations"}, Arch. Rat. Mech. Anal. {\bf 128} (1994), 359--360. \item{[G]} Y. Giga, {\it Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system}, J. Differential Eqns {\bf 62} (1986), 186--212. \item{[GM]} Y. Giga and T. Miyakawa, {\it Solutions in $L^r$ of the the Navier-Stokes initial value problem}, Arch. Rat. Mech. Anal. {\bf 89} (1985), 267--281. \item{[K]} T. Kato, {\it Strong $L^p$-solutions of the Navier-Stokes equations in ${\Bbb R}^m$ with applications to weak solutions}, Math. Z. {\bf 187} (1984),471--480. \item{[K2]} T. Kato, {\it On nonlinear Schr\"odinger equations, II. $H^s$\,-\,solutions and unconditional well-posedness}, Preprint. \item{[Ka]} T. Kawanago, {\it Existence and behavior of solutions for $u_t=\Delta (u^m) + u^l$}, Adv. Math. Sci. Appl. 7 (1997) 367-400. \item{[Ka2]} T. Kawanago, {\it Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity}, Annal. Inst. H. Poincar\'e - Analyse nonlin\'eaire 13 (1996) 1-15. \item{[Ka3]} T. Kawanago, {\it Stability of global strong solutions of the Navier-Stokes equations}, RIMS k{\B o}ky{\B u}roku Vol. 913 (1995) 141-147. \item{[Ka4]} T. Kawanago, {\it Stability of strong solutions for the Navier-Stokes system and a related scalar semilinear equation}, Unpublished manuscript. \item{[Ka5]} T. Kawanago, In preparation. \item{[KM]} R. Kajikiya and T. Miyakawa, {\it On $L^2$- decay of weak solutions of the Navier-Stokes equations in ${\Bbb R}^N$}, Math. Z. {\bf 192} (1986), 135--148. \item{[M]} K. Masuda, {\it Weak solutions of the Navier-Stokes equations}, T\^ohoku Math. J. {\bf 36} (1984), 623--646. \item{[N]} M. Nakao, {\it Global solutions for some nonlinear parabolic equationswith nonmonotonic perturbations}, Nonlin. Anal. {\bf 10 } (1986), 299--314. \item{[PRST]} G. Ponce, R. Racke, T.C. Sideris and E.S. Titi, {\it Global Stability of Large Solutions to the 3D Navier-Stokes equations}, Comm. Math. Phys. {\bf 159} (1994), 329--341. \item{[RS]} M. Reed and B. Simon, {\it Methods of modern mathematical physics}, Vol. 2, {\it Fourier Analysis}, Academic Press, New York, 1972. \item{[Se]} J.Serrin, {\it The initial value problem for the Navier-Stokes equations}, In: ``Non-linear Problems, Univ. Wisconsin Press (R.E. Langer Ed.), 69--98, 1963. \item{[St]} E.M. Stein, {\it Singular integrals and differentiability properties of functions}, Princeton NJ: Princeton University Press 1970. \item{[UI]} M.R. Ukhovskii and V.I. Iudovich, {\it Axially symmetric flows of ideal and viscous fluids filling the whole space}, J. Appl. Math. Mech. {\bf 32} (1968), 52--62. \item{[VS]} H.B. Veiga and P. Secchi, {\it $L^p$-Stability for the strong solutionsof the Navier-Stokes equations in the whole space}, Arch. Rat. Mech. Anal.{\bf 98} (1987), 65--70. \item{[Wi]} M. Wiegner, {\it Decay and stability in $L^p$ for strong solutions of the Cauchy problem for the Navier-Stokes equations}, in The Navier-Stokes equations (J.G. Heywood ed.), Lecture Notes Math. {\bf 1431} (1990), 95--99. \enddocument