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RBF Collocation, Kansa’s method PDEs of Interest

Linear elliptic PDE with boundary conditions

Lu = f in Ω

u = g on Γ = ∂Ω

Time-dependent PDE with initial and boundary conditions

ut (x , t) + Lu(x , t) = f (x , t), x ∈ Ω ∪ Γ, t ≥ 0
u(x ,0) = u0(x), x ∈ Ω

u(x , t) = g(t), x ∈ Γ
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

According to [Kansa (1986)] we consider an elliptic PDE and start with

u(x) =
N∑

j=1

λjΦj(x) = ΦT (x)λ

Coefficients λ determined by solving[
ÃL
Ã

]
λ =

[
f
g

]
,

with (rectangular) collocation matrices

ÃL,ij = LΦj(x i) = Lϕ(‖x − x j‖)
∣∣
x=x i

,

i = 1, . . . ,N − NB, j = 1, . . . ,N,
Ãij = Φj(x i) = ϕ(‖x i − x j‖),

i = N − NB + 1, . . . ,N, j = 1, . . . ,N.
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ÃL
Ã
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

If

[
ÃL
Ã

]
invertible (open problem since 1986), then approximate

solution (at any point x) found by inserting λ in basis expansion, i.e.,

u(x) = ΦT (x)λ

Solution at collocation points

u = A

[
ÃL
Ã

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

, Aij = Φj(x i)
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Note

u = A

[
ÃL
Ã

]−1 [
f
g

]
⇐⇒

[
ÃL
Ã

]
A−1

︸ ︷︷ ︸
=LΓ

u =

[
f
g

]

with

LΓ =

[
ÃLA−1

I ÃLA−1
B

ÃA−1
I ÃA−1

B

]
=

[
M P
0 I

]
,

−→ RBF-PS method (see later).
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Example (2D Laplace Equation)

uxx + uyy = 0, x , y ∈ (−1,1)2

Boundary conditions:

u(x , y) =


sin4(πx), y = 1 and − 1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

See [Trefethen (2000)]
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method
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Figure: Gaussian-RBF (ε = 2.75), N = 24× 24



RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Program (KansaLaplaceMixedBCTref_2D.m)

global rbf Lrbf; rbf_definition; epsilon = 3;
N = 289; M = 1681;
Lu = @(x,y) zeros(size(x));
[collpts, N] = CreatePoints(N, 2, ’u’); collpts = 2*collpts-1;
indx = find(abs(collpts(:,1))==1 | abs(collpts(:,2))==1);
bdypts = collpts(indx,:);
intpts = collpts(setdiff([1:N],indx),:);
ctrs = [intpts; bdypts];
evalpts = CreatePoints(M,2,’u’); evalpts = 2*evalpts-1;
DM_eval = DistanceMatrix(evalpts,ctrs);
EM = rbf(epsilon,DM_eval);
DM_int = DistanceMatrix(intpts,ctrs);
DM_bdy = DistanceMatrix(bdypts,ctrs);
LCM = Lrbf(epsilon,DM_int);
BCM = rbf(epsilon,DM_bdy);
CM = [LCM; BCM];
rhs = zeros(N,1); NI = size(intpts,1);
indx = find(bdypts(:,1)==1 | (bdypts(:,1)<0) & (bdypts(:,2)==1));
rhs(NI+indx) = (bdypts(indx,1)==1)*0.2.*sin(3*pi*bdypts(indx,2)) + ...

(bdypts(indx,1)<0).*(bdypts(indx,2)==1).*sin(pi*bdypts(indx,1)).^4;
Pf = EM * (CM\rhs);
disp(sprintf(’u(0,0) = %16.12f’,Pf(841)))
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RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

We just showed that we always have (even if the Kansa matrix is not
invertible)

LΓ =

[
ÃL
Ã

]
A−1 =

[
M P
0 I

]

It is known that
LΓ is invertible for polynomial basis (1D)
In a certain limiting case RBF interpolant yields polynomial
interpolant

=⇒ Kansa’s collocation matrix is invertible in the limiting case

Other recent work on a well-defined approach to Kansa’s method, e.g.,
in [Schaback (2007)]
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ÃL
Ã
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RBF Collocation, Kansa’s method Time-Dependent PDEs

Consider time-dependent PDE

ut + Lu = f

and discretize the time, e.g.,

ut (x , tk ) ≈ u(x , tk )− u(x , tk−1)

∆t
=

uk (x)− uk−1(x)

∆t

Then
uk (x) ≈ uk−1(x) + ∆t [f (x)− Luk−1(x)]
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RBF Collocation, Kansa’s method Kansa for Time-Dependent PDEs

Start with

u(x , t) =
N∑

j=1

λj(t)Φj(x) = ΦT (x)λ(t)

Then after time discretization

N∑
j=1

λ
(k)
j Φj(x) =

N∑
j=1

λ
(k−1)
j Φj(x) + ∆t

f (x)−
N∑

j=1

λ
(k−1)
j LΦj(x)



or
ΦT (x)λ(k) =

[
ΦT (x)−∆tLΦT (x)

]
λ(k−1) + ∆tf (x)
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RBF Collocation, Kansa’s method Application to Time-Dependent PDEs

Collocation on X = {x1, . . . ,xN} yields

Aλ(k) = [A−∆tAL] λ(k−1) + ∆tf

Solve for λ(k), then (for any x)

u(k)(x) =
N∑

j=1

λ
(k)
j Φj(x) = ΦT (x)λ(k)

Solution at collocation points

u(k) = Aλ(k), Aij = Φj(x i)

Much too complicated!
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PS Methods and Differentiation Matrices Background

PS methods are known as highly accurate solvers for PDEs

Basic idea (in 1D)

u(x) =
N∑

j=1

λjΦj(x), x ∈ [a,b]

with (smooth and global) basis functions Φj , j = 1, . . . ,N

Here u is the unknown (approximate) solution of the PDE
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PS Methods and Differentiation Matrices Differentiation Matrices

For PDEs we need to be able to represent values of derivatives of u.

For PS methods values at grid points suffice.

Key idea: find differentiation matrix D such that

u′ = Du

where u = [u(x1), . . . ,u(xN)]T

Example
Chebyshev polynomials on Chebyshev points. In this case explicit
formulas for entries of D are known.
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PS Methods and Differentiation Matrices General Differentiation Matrices

u(x) =
N∑

j=1

λjΦj(x) =⇒ u′(x) =
N∑

j=1

λj
d
dx

Φj(x).

Evaluate at grid points:

u = Aλ with Aij = Φj(xi)

and
u′ = Axλ with Ax ,ij =

d
dx

Φj(xi).

Therefore
u′ = AxA−1u =⇒ D = AxA−1.
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PS Methods and Differentiation Matrices RBF Differentiation Matrices

Want to use radial basis functions

Φj(x) = ϕ(‖x − x j‖), x ∈ Rs

and a general linear differential operator L with constant coefficients.

Discretized differential operator (differentiation matrix):

L = ALA−1

with Aij = Φj(x i) = ϕ(‖x i − x j‖)
and AL,ij = LΦj(x i) = Lϕ(‖x − x j‖)

∣∣
x=x i

.

A is (non-singular) RBF interpolation matrix
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PS Methods and Differentiation Matrices RBF Differentiation Matrices

How to proceed for a time-independent PDE

Lu = f

Discretize space
Lu ≈ Lu

Then (at grid points)
u = L−1f

Challenge

Need to ensure invertibility of L
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PS Methods and Differentiation Matrices A First (ill-posed) PDE

Want to solve Lu = f without BCs.

Discretize:
Lu = f =⇒ u = L−1f = A (AL)−1 f

Invertibility of L (and therefore AL) required.

Chebyshev PS: L is singular
RBF-PS: L is non-singular since AL invertible for positive definite
RBFs and elliptic L.

Remark
RBFs “too good to be true”. Built-in regularization due to variational
framework.
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PDEs with BCs via PS Methods

Consider linear elliptic PDE

Lu = f in Ω

with boundary condition

u = g on Γ = ∂Ω

and assume basis functions do not satisfy BCs.

Construct differentiation matrix L based on all grid points x i .
Then replace diagonal entries corresponding to boundary points
with ones and the remainder of those rows with zeros.
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PDEs with BCs via PS Methods

Reorder rows and columns to obtain

LΓ =

[
M P
0 I

]
,

Here
M is NI × NI (interior points)
I is NB × NB (boundary points)
NB number of grid points on boundary Γ

NI = N − NB number of grid points in the interior Ω

Then

u = L−1
Γ

[
f
g

]
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PDEs with BCs via PS Methods

Using u = [uΩ,uΓ]T and substituting uΓ = g back in we get

uΩ = M−1(f − Pg),

or, for homogeneous boundary conditions,

uΩ = M−1f .

Remark
For standard PS methods the block M is invertible. Its spectrum is well
studied for many different L and BCs.
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Symmetric RBF collocation

As in [F. (1997)] we start with

u(x) =

NI∑
j=1

λjL∗j Φ(x) +
N∑

j=NI+1

λjΦj(x).

Since Φj(x) = ϕ(‖x − x j‖), L∗j denotes application of L to ϕ viewed as
a function of the second variable followed by evaluation at x j .

Then λ = [λΩ,λΓ]T obtained from[
ÂLL∗ ÂL
ÂL∗ Â

][
λΩ

λΓ

]
=

[
f
g

]
.
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a function of the second variable followed by evaluation at x j .

Then λ = [λΩ,λΓ]T obtained from[
ÂLL∗ ÂL
ÂL∗ Â

][
λΩ

λΓ

]
=

[
f
g

]
.
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Symmetric RBF collocation

The collocation matrix [
ÂLL∗ ÂL
ÂL∗ Â

]
consists of

square blocks

ÂLL∗,ij =
[
L [L∗ϕ(‖x − ξ‖)]ξ=x j

]
x=x i

, i , j = 1, . . . ,NI

Âij = Φj(x i) = ϕ(‖x i − x j‖), i , j = NI + 1, . . . ,N

rectangular blocks

ÂL,ij =
[
Lϕ(‖x − x j‖)

]
x=x i

, i = 1, . . . ,NI , j = NI + 1, . . . ,N

ÂL∗,ij = [L∗ϕ(‖x i − x‖)]x=x j
, i = NI + 1, . . . ,N, j = 1, . . . ,NI
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Symmetric RBF collocation

2D Laplace Equation from [Trefethen (2000)]
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Figure: Gaussian-RBF (ε = 6), N = 17× 17 (+ 64 boundary points)



Symmetric RBF collocation

Program (HermiteLaplaceMixedBCTref_2D.m)
global rbf Lrbf L2rbf; rbf_definition; epsilon = 3;
N = 289; M = 1681;
Lu = @(x,y) zeros(size(x));
[datasites, N] = CreatePoints(N, 2, ’u’); intdata = 2*datasites-1;
sg = sqrt(N); bdylin = linspace(-1,1,sg)’; bdy1 = ones(sg-1,1);
bdydata = [bdylin(1:end-1) -bdy1; bdy1 bdylin(1:end-1);...

flipud(bdylin(2:end)) bdy1; -bdy1 flipud(bdylin(2:end))];
h = 2/(sg-1); bdylin = (-1+h:h:1-h)’; bdy0 = repmat(-1-h,sg-2,1); bdy1 = repmat(1+h,sg-2,1);
bdycenters = [-1-h -1-h; bdylin bdy0; 1+h -1-h; bdy1 bdylin;...

1+h 1+h; flipud(bdylin) bdy1; -1-h 1+h; bdy0 flipud(bdylin)];
centers = [intdata; bdycenters];
evalpoints = CreatePoints(M, 2, ’u’); evalpoints = 2*evalpoints-1;
DM_inteval = DistanceMatrix(evalpoints,intdata);
DM_bdyeval = DistanceMatrix(evalpoints,bdycenters);
LEM = Lrbf(epsilon,DM_inteval);
BEM = rbf(epsilon,DM_bdyeval);
EM = [LEM BEM];
DM_IIdata = DistanceMatrix(intdata,intdata);
DM_IBdata = DistanceMatrix(intdata,bdycenters);
DM_BIdata = DistanceMatrix(bdydata,intdata);
DM_BBdata = DistanceMatrix(bdydata,bdycenters);
LLCM = L2rbf(epsilon,DM_IIdata);
LBCM = Lrbf(epsilon,DM_IBdata);
BLCM = Lrbf(epsilon,DM_BIdata);
BBCM = rbf(epsilon,DM_BBdata);
CM = [LLCM LBCM; BLCM BBCM];
rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sg-1,1); 0.2*sin(3*pi*bdydata(sg:2*sg-2,2)); ...

zeros((sg-1)/2,1); sin(pi*bdydata((5*sg-3)/2:3*sg-3,1)).^4; zeros(sg-1,1)];
Pf = EM * (CM\rhs);
disp(sprintf(’u(0,0) = %16.12f’,Pf(841)))
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Symmetric RBF collocation

It is well known that the symmetric collocation matrix[
ÂLL∗ ÂL
ÂL∗ Â

]

is invertible.

Therefore, the solution at any point is obtained by inserting λ into basis
expansion, or at grid points

u =
[

AL∗ ÃT
]

︸ ︷︷ ︸
=K T

[
ÂLL∗ ÂL
ÂL∗ Â

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

with evaluation matrix K T .
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Symmetric RBF collocation

Entries of K T given by

AL∗,ij = [L∗ϕ(‖x i − x‖)]x=x j
, i = 1, . . . ,N, j = 1, . . . ,NI

ÃT
ij = Φj(x i) = ϕ(‖x i − x j‖), i = 1, . . . ,N, j = NI + 1, . . . ,N

Symmetry of RBFs implies AL∗ = ÃT
L, and therefore

K T =
[

AL∗ ÃT
]

=

[
ÃL
Ã

]T

→ transpose of Kansa’s matrix
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Symmetric RBF collocation Symmetric RBF-PS Method

Start with “symmetric basis” expansion

u(x) =

NI∑
j=1

λjL∗j Φ(x) +
N∑

j=NI+1

λjΦj(x).

At the grid points in matrix notation we have

u =
[

AL∗ ÃT
] [ λΩ

λΓ

]
or

λ =
[

AL∗ ÃT
]−1

u.
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Symmetric RBF collocation Symmetric RBF-PS Method

Apply L to basis expansion and restrict to grid

Lu =
[

ALL∗ AL
]
λ

with

ALL∗,ij =
[
L [L∗ϕ(‖x − ξ‖)]ξ=x j

]
x=x i

, i = 1, . . . ,N, j = 1, . . . ,NI

AL,ij =
[
Lϕ(‖x − x j‖)

]
x=x i

, i = 1, . . . ,N, j = NI + 1, . . . ,N

Replace λ and get

L̂u =
[

ALL∗ AL
] [

AL∗ ÃT
]−1

u.

Remark

Note that L̂ differs from

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

since the BCs are not yet enforced.
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Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs
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] [
AL∗ ÃT
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ÂLL∗ ÂL
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] [
AL∗ ÃT
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ÃL
Ã
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RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .

This implies we need to
provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),
and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008



RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .
This implies we need to

provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),
and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008



RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .
This implies we need to

provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),

and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008



RBF Differentiation Matrices in MATLAB
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RBF Differentiation Matrices in MATLAB

Program (DRBF.m)

1 function [D,x] = DRBF(N,rbf,dxrbf,ep)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 r = DistanceMatrix(x,x);
5 dx = DifferenceMatrix(x,x);
6 A = rbf(ep,r);
7 Ax = dxrbf(ep,r,dx);
8 D = Ax/A;

Remark

The differentiation matrix is given by D = AxA−1. In MATLAB we
implement this as solution of DA = Ax using mrdivide (/).
Could add a version of LOOCV to find “optimal” ε.
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Solving PDEs via RBF-PS Methods

Example (1D Transport Equation)
Consider

ut (x , t) + cux (x , t) = 0, x > −1, t > 0
u(−1, t) = 0
u(x ,0) = f (x)

with solution
u(x , t) = f (x − ct)

Use implicit Euler for time discretization
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Solving PDEs via RBF-PS Methods
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Figure: Gaussian RBFs with “optimal” ε = 1.874528, ∆t = 0.01, collocation
on 21 Chebyshev points



Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation

Example (Allen-Cahn)

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

µ coupling parameter (governs transition between stable solutions),
here µ = 0.01
Initial condition:

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

Boundary conditions:

u(−1, t) = −1 and u(1, t) = sin2(t/5)

See [Trefethen (2000)]
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Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation
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Figure: Matérn-RBF with “optimal” ε = 0.351011, collocated on 21
Chebyshev points



Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation
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Figure: Chebyshev pseudospectral with 21 points



Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation

Example (2D Laplace Equation)

uxx + uyy = 0, x , y ∈ (−1,1)2

Boundary conditions:

u(x , y) =


sin4(πx), y = 1 and − 1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

See [Trefethen (2000)]
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Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Matérn-RBF (ε = 2.4), N = 24× 24



Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation
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Figure: Chebyshev pseudospectral, N = 24× 24



Solving PDEs via RBF-PS Methods MATLAB Code

Program (p36_2D.m)

1 rbf=@(e,r) exp(-e*r).*(15+15*e*r+6*(e*r).^2+(e*r).^3);
2 Lrbf=@(e,r)e^2*exp(-e*r).*((e*r).^3-(e*r).^2-6*e*r-6);
3 N = 24; ep = 2.4;
4 [L,x,y] = LRBF(N,rbf,Lrbf,ep);
5 [xx,yy] = meshgrid(x,y); xx = xx(:); yy = yy(:);
6 b = find(abs(xx)==1 | abs(yy)==1); % boundary pts
7 L(b,:) = zeros(4*N,(N+1)^2); L(b,b) = eye(4*N);
8 rhs = zeros((N+1)^2,1);
9a rhs(b) = (yy(b)==1).*(xx(b)<0).*sin(pi*xx(b)).^4 + ...
9b .2*(xx(b)==1).*sin(3*pi*yy(b));

10 u = L\rhs;
11 uu = reshape(u,N+1,N+1); [xx,yy] = meshgrid(x,y);
12 [xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);
13 uuu = interp2(xx,yy,uu,xxx,yyy,’cubic’);
14 surf(xxx,yyy,uuu), colormap(’default’);
15 axis([-1 1 -1 1 -.2 1]), view(-20,45)
16a text(0,.8,.4,sprintf(’u(0,0) = %12.10f’,...
16b uu(N/2+1,N/2+1)))
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Solving PDEs via RBF-PS Methods MATLAB Code

Remark
Note that for this type of elliptic problem we require inversion of the
differentiation matrix.
As pointed out above, we use the non-symmetric RBF-PS method
even though this may not be warranted theoretically.
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Solving PDEs via RBF-PS Methods MATLAB Code

Program (LRBF.m)

1 function [L,x,y] = LRBF(N,rbf,Lrbf,ep)
2 if N==0, L=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 y = x; [xx,yy] = meshgrid(x,y);
5 points = [xx(:) yy(:)];
6 r = DistanceMatrix(points,points);
7 A = rbf(ep,r);
8 AL = Lrbf(ep,r);
9 L = AL/A;
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Solving PDEs via RBF-PS Methods MATLAB Code

Summary

Coupling RBF collocation and PS methods yields additional
insights about RBF methods
Provides “standard" procedure for solving time-dependent PDEs
with RBFs
Can apply many standard PS procedures to RBF solvers, but now
can take advantage of scattered (multivariate) grids
RBF-PS method for ε = 0 identical to Chebyshev-PS method and
more accurate for small ε
RBF-PS method has been applied successfully to a number of
engineering problems (see, e.g.,
[Ferreira & F. (2006), Ferreira & F. (2007)])

fasshauer@iit.edu Lecture IV Dolomites 2008



Solving PDEs via RBF-PS Methods MATLAB Code

Future work:

Need to think about stable way to compute larger problems with
RBFs (preconditioning) – especially for eigenvalue problems
Need efficient computation of differentiation matrix analogous to
FFT
Can think about adaptive PS methods with moving grids
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