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Abstract

A simple heuristic construction of good interpolation points on the unit disc is proposed. First, a set
of quasi-random uniformly distributed points in the unit square is generated. Consequently, this set is
transformed onto the unit sphere using cylindrical Lambert map and, finally, the points of the upper
hemisphere are orthogonally projected onto the unit disc. Numerical results concerning important
properties of the proposed disc interpolation points are presented.
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1 Introduction
One of the fundamental problems in polynomial interpolation is efficient choice of interpolation points ensuring well-conditioned
interpolation process and high accuracy of the resulting interpolating polynomial. To investigate this problem in the multidimen-
sional case, let us consider the interpolation problem

PN (xi) = f (xi), i = 1,2, ..., n

for a multivariate function f (x) continuous on a compact multidimensional domain Ω and the interpolation points xi ∈ Ω. Here,
the lowercase letter n denotes the dimension of the space of all multivariate polynomials of total degree ≤ N . Therefore, n is the
total number of the polynomial basis functions φ j(x) used in the interpolation process. Note that in the bivariate case the letters
n and N are coupled by the equality n= (N + 1)(N + 2)/2.

Although in contrast to the one-dimensional case the construction of multivariate fundamental Lagrange polynomials is far
from being an easy task, using suitable polynomial basis functions φ j(x), we may write the desired interpolating polynomial
PN (x) in the form

PN (x) =
n
∑

j=1

c jφ j(x).

The unknown coefficients c j are determined by solving the system of linear equations

Mnc= f,

where Mn(i, j) = φ j(xi), 1 ≤ i, j ≤ n is generalized Vandermonde matrix (collocation matrix), c = (c1, c2, ..., cn)T and f =
( f (x1), f (x2), ..., f (xn))T .

As generally known, the requirements mentioned above are satisfied if the condition number of the collocation matrix Mn
and the Lebesgue constant ΛN are as small as possible. More precisely, if cond(Mn) is large, one must expect log10(cond(Mn))
digits of the final output may be destroyed by the roundoff error. The requirement for the Lebesgue constant ΛN to be as small as
possible stems from the inequality

‖u− LN‖ ≤ (1+ΛN )‖u− uN‖,

where LN and uN are the Lagrange interpolating polynomial of u and the best polynomial approximation of u in the maximum
norm, respectively. The Lebesgue constant ΛN , dependent on the set of n interpolation points xi , is defined

ΛN =max
x∈Ω

n
∑

i=1

|`i(x)|.
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Here
`i(x) = det(M (i)

n (x))/det(Mn),

where M (i)
n (x) is created from Mn by replacing xi with x, denotes the i − th fundamental Lagrange polynomial with the cardinal

property `i(x j) = δi, j . The interpolation points for which Lebesgue constant attains its minimal value are called Lebesgue points
of Ω.

The problem of choice of the optimal interpolation points in one dimension is well understood and well documented [31, 46].
On the other hand, the situation in the multidimensional case is essentially more complicated and efficient choice of the optimal
or at least good interpolation points with respect to ΛN (eventually with respect to cond(Mn)) for general domains is still an open
question. Interpolation points are considered to be the good points if ΛN grows at most polynomially. To clarify more precisely
what means by good points for polynomial interpolation, see [6].

In the last years we see a few successful attempts to solve this problem in the multidimensional case as well. The first of
these attempts, we comment here, was published in 2009 by Sommariva and Vianello [43]. The authors presented an elegant
greedy algorithm selecting approximate Fekete points by QR factorization of a generalized Vandermonde matrix created for a
finite set of carefully selected candidate points. Similarly, greedy algorithms selecting among suitable candidate points have also
been used for computing good approximations of the Lebesgue points greedily minimizing a variant of a weighted Lebesgue
function [33] and an approximate Lebesgue function [47]. The methods based on approximate Lebesgue function, where this
function is represented by its values on a large finite set of a priori selected suitable points followed by nonlinear optimization
were proposed by Briani et al. [12] and Gunzburger and Teckentrup [20]. The main difference between [12] and [20] consists in
different evaluation of the fundamental Lagrage polynomials. In [12] the Vandermonde determinant representation followed by
the MATLAB function ’fmincon’ to solve the corresponding minimax problem is used. In [20] the use of an efficient algorithm of
Sauer ad Xu [38] for evaluating `i(x) followed by the MATLAB function ’fminmax’ is considered. Although all the mentioned
methods require nontrivial computations mainly for large sets of interpolation points, e.g., n> 1000, they are able in principle to
produce good interpolation points for arbitrarily shaped simply connected domains and probably for multiply connected domains
as well.

Attempts have been made to construct good interpolation points on the unit disc given explicitly by a formula. Based on the
results of [7], Carnicer and Godés [13] proposed points in the form (r`,θ` j), where these points are equally placed on concentric
circles situated inside the unit disc. However, in this construction it is necessary to optimize the values of r` in order to ensure the
Lebesgue constant and condition numbers of the corresponding collocation matrices created by the Zernike polynomials are small.
Similar construction of good disc interpolation points based on equally spaced points on inner concentric circles (this pattern of
points generating nonsingular collocation matrices is known as Bos array [5, 6, 8]), is presented by Ramos-López et al. [36],
where the values of r` are determined by minimizing the condition number of the corresponding collocation matrices built by the
Zernike polynomials. As shown in numerical experiments [13, 36], both the mentioned methods produce good interpolation
points at least for small orders of interpolating polynomials (N ≤ 40).

In this paper we concentrate our effort to construct good interpolation points on the unit disc with respect to the conditioning
of the collocation matrices Mn for more than 10 000 interpolation points. The quality of the generated point sets will be measured
by four parameters - the smallest and largest singular values of Mn, their spectral condition numbers, and maximum norm error
bounds of the interpolating polynomials of three functions of very different nature.

2 Construction of disc interpolation points
For more than 150 years after appearance of the initiatory paper of Pafnuty Lvovich Chebyshev [14] the scientific community is
fascinated by a variety of formulas, relations and very useful properties of the Chebyshev polynomials and their zeros [30]. With
respect to the intention of this paper to create good interpolation points on the unit disc, we need to mention only two of them

• excellent interpolation properties - as known [31, 46], the zeros of the Chebyshev polynomials of the first kind are near-
optimal points for interpolation of smooth functions on the finite interval by algebraic polynomials and the corresponding
Lebesgue constant is bounded by the inequality

ΛN <
2
π

log(N + 1) + 0.9733...;

• simple geometric construction - these zeros may be created also as the orthogonal projection of points equally distributed
on the upper circular arc over the interval 〈−1,1〉 into the same interval [46], where

ζn
i = cos((2i − 1)π/2n), i = 1,2, ..., n.

The perfect interpolation properties of the Chebyshev zeros and their simple geometric construction raise the following question.
How good can interpolation points on the unit disc be if they are created from equally distributed points on the upper

unit hemisphere orthogonally projected into the unit disc ?
Since the terminology concerning spherical points is diverse, e.g., equally spaced, evenly spaced, uniformly distributed and

well-separated spherical points, we give the following definition.

Definition 2.1. Let us have n different points Q1,Q2, ...,Qn placed on the sphere S2 and define

di = min
1≤ j≤n, j 6=i

‖Q i −Q j ‖, 1≤ i ≤ n,

where ‖ . ‖ denotes the usual Euclidean norm in R3. The points Q1,Q2, ...,Qn are called equally distributed on S2 if all di are
equal.

Dolomites Research Notes on Approximation ISSN 2035-6803
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However, there are exactly only five possibilities how to distribute points on the sphere equally. These possibilities are
represented by the Platonic solids - tetrahedron, hexahedron (cube), octahedron, icosahedron, and dodecahedron, inscribed in
the sphere under consideration. To avoid this obstacle, instead of equally distributed spherical points we will consider the so
called uniformly distributed spherical points [4].

Definition 2.2. The sequence of spherical points Q1,Q2, ... is called uniformly distributed, if we have, for each spherical cap A,

lim
n→∞

(
1
n

#{1≤ i ≤ n : Q i ∈ A}) =
Area(A)

4π
,

where the symbol #X denotes the number of elements (or cardinality) of the set X .

Although the efficient construction of uniformly distributed spherical points is one of the challenging mathematical problems
for the XXI. century [39], with history dating back to the famous paper of L. L. Thomson [45], this approach offer all the theoretical
results and computational experiences achieved throughout the decades of research in this area. The variety of methods used to
generate uniformly distributed spherical points is enormous and may roughly be divided into three categories

• computational category - the points are computed in order to optimize a suitable criterion;

• closed form category - the points are computed directly using simple formulas derived usually from different geometrical
considerations, e.g., equal area partition of the sphere;

• quasi-random number category - the points are computed from a quasi-random uniformly distributed points in the unit
square mapped onto the unit sphere by a suitable map.

In this section we review briefly some of them. A more exact presentation of the most popular uniformly distributed spherical
point sets can be found in [21].

2.1 Computational category

One of the most famous problems generating the set of uniformly distributed spherical points (UDSPs) based on an optimization
principle arises from electrostatics, where the arrangement of equal point charges on the sphere to be in equilibrium with respect
to a Coulomb potential law is investigated. This problem (called Thomson’s problem) is defined as follows

UDSPs= arg min
Q j ,Qk∈S2

∑

1≤ j<k≤n

‖ Q j −Qk ‖−1,

where S2 denotes the unit sphere in the Euclidean space R3 [1, 11, 27, 37].
Another important problem leading to uniformly distributed spherical points is linked to the computation of point sets

providing equal weights quadrature formulae on S2, the so called spherical t-design [11]. This problem is defined as to find a
finite set of points Q= {Q1,Q2, ...,QM} ⊂ S2 satisfying

∫

S2
p(x)dµ(x) =

4π
M

M
∑

i=1

p(Qi)

for all p ∈ Pt(S2), where µ is the surface measure on S2 and Pt(S2) is the space of all spherical polynomials on S2 of total degree
≤ t. The solution of these problems for large n (say n> 1000) is computationally very expensive [2, 3, 15] and the corresponding
methods are not considered in this paper.

2.2 Closed form category

The construction of different sets of uniformly distributed spherical points known in closed form (as a formula) has been initiated
by serious demands in science and engineering, e.g., biomedical imaging [25], material sciences [26], astrophysics [18], and
computer graphics [29], to have simply generated spherical points exhibiting some specific properties. Among many sets of such
points the generalized spiral points [35, 37], HEALPix (Hierarchical Equal Area isoLatitude Pixelization) and Reuter points [19],
Koaya points [26] and Fibonacci points [29] have been used in our computational experiments. Now, having a set of uniformly
distributed spherical points, the corresponding Chebyshev-like disc interpolation points with the cartesian coordinates (xk, yk)
are generated by those spherical points (xk, yk, zk) for which zk > 0.

Although the disc interpolation points proposed in [13, 36], mentioned in the introduction, need an initial optimization of
some parameters, we can consider these point sets as generated by a formula as well.

The sets of spherical points of closed form mentioned above are easily computable for all n. On the other hand, the condition
numbers of the corresponding collocation matrices Mn grow rapidly. The sets of points giving the smallest condition numbers of
Mn are presented in Table 1. To create the collocation matrices Mn the Logan-Shepp algebraic polynomials (4) defined in Section
3 were used. An attempt has been made to improve the conditioning of Mn for the generalized spiral points of Rakhmanov, Saff,
and Zhou [35] with respect to the parameter C (the authors recommend the value C ≡ Cn = 3.6), however, the improved values
of cond(Mn(C opt

n )) for C opt
n ∈ 〈3.6, 10〉 were not sufficiently small for our purposes. Moreover, the functionω(Cn) = cond(Mn(Cn))

to be minimized exhibits chaotic multiminima behaviour that makes the optimization process very awkward.
Perhaps the most aesthetically influential uniformly distributed points on the sphere are represented by Fibonacci spherical

points (the following derivation is presented in [29]) generated starting from the Fibonacci lattice on the unit square

x j = 〈 jFm−1/Fm〉, y j = j/Fm, 0≤ j < Fm,
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where Fm are numbers of the Fibonacci sequence {0, 1,1, 2,3,5, 8,13, ...} given by the recurrence relation

Fm = Fm−1 + Fm−2, m> 1.

Here F0 = 0, F1 = 1 and 〈x〉 denotes the fractional part of x . Consequently, the transformation of these points by the cylindrical
Lambert map

(x , y)→ (2cos(2πy)
p

x − x2, 2 sin(2πy)
p

x − x2, 1− 2x) (1)

produces the following set of points situated on the unit sphere

θ j = arccos(1− 2 j/Fm), φ j = 2π〈 jFm−1/Fm〉 0≤ j < Fm. (2)

Table 1: Comparison of the condition numbers of Mn generated by the Fibonacci disc points, Carnicar and Godés points (C&G), and OCS (optimal
concentric sampling) points of Ramos-López et. al. The last three columns report the smallest condition numbers of Mn (one hundred samples for
each n) for two kinds of quasi-random point sets created by the Matlab function ’rand’ and a jittered sampling generated by the tensor product of
one-dimensional equally spaced points.

N n Fibonacci C&G OCS rand n jittered
10 66 1.9+01 2.1+01 1.2+01 4.7+02 64 1.3+02
20 231 8.3+01 9.8+01 4.5+01 1.2+04 225 8.8+02
30 496 9.6+02 5.4+02 2.5+02 9.8+04 484 4.9+03
40 861 9.9+03 5.1+03 1.8+03 3.8+05 841 4.8+03
50 1326 3.1+04 6.1+04 1.4+04 1.6+06 1296 7.9+03
60 1891 2.7+05 7.7+05 1.1+05 5.7+06 1936 2.0+04
70 2556 9.5+08 1.1+07 9.1+05 6.1+06 2601 4.3+04
80 3321 3.1+07 1.3+08 7.8+06 2.2+07 3364 5.7+04
90 4186 3.0+07 1.8+09 6.6+07 1.6+07 4225 7.7+04

100 5151 3.4+08 2.5+10 5.6+08 5.3+07 5184 9.4+04

Finally, considering the property of the Fibonacci sequence

lim
m→∞

Fm/Fm−1 = (1+
p

5)/2≡ Φ,

the periodicity of the spherical coordinates and setting Fm = n, we achieve the spherical Fibonacci points

θ j = arccos(1− 2 j/n), φ j = 2 jπΦ−1, 0≤ j < n. (3)

To obtain a more uniform distribution of points near the poles, Swinbank and Purser [42] consider θ j = arccos(1− (2 j + 1)/n).
Although the point set (2), available only for the number of points n equal to a member of the Fibonacci sequence, belongs
to the quasi-random point category, its simplified version (3), giving the Fibonacci spherical points for arbitrary n, may be
considered to be of the closed form category for all n. The configurations of 1597 Fibonacci lattice points in (0, 0.5)× (0, 1) and
the corresponding 1597 Fibonacci disc points are presented in Figure 1.

Figure 1: Configurations of the Fibonacci lattice points in (0, 0.5)× (0,1) and the corresponding Fibonacci disc points for n= 1597.

Another sets of uniformly distributed spherical points available in closed form, very useful in the solution of global weather
and climate prediction models, are generated by subdividing the faces of three most popular Platonic solids - cube (6 square
faces), icosahedron (20 triangular faces), and dodecahedron (12 pentagonal faces) inscribed in the sphere under consideration
[22, 24, 44]. The faces of the considered solid are divided into triangles or quadrilaterals and the centroids or edge midpoints
of all faces are gnomically projected onto the spherical surface in order to create a new solid with more vertices. (The gnomic
projection maps each point P of an inscribed solid onto spherical surface along the straight line drawn from the center of the
considered sphere through the point P.) This process is repeated until the requested density of the generated spherical points
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is achieved. Since this construction may be initiated also by the Archimedean solids, e.g., truncated icosahedron (a mix of
pentagonal and hexagonal faces), and truncated cube (a mix of square and triangular faces), this approach offers enormous
diversity of resulting spherical point sets. On the other hand, the repeated divisions of polyhedron faces causes the number of
generated spherical points grows rapidly. Consequently, this approach is not able to generate sets of points for arbitrary value of
n and, as such, this approach lies beyond the scope of this work.

2.3 Quasi-random number category

The Fibonacci lattice enable us to create not only the sets of nice and useful spherical points, however, it offers also very simple
recipe how to generate variety of uniformly distributed spherical points if an arbitrary set of uniformly distributed points on
(0, 1)× (0, 1) is considered and transformed by the cylindrical Lambert map (1) onto the unit sphere. To test the efficiency of this
approach we can start our search for the optimal disc points with quasi-random points on the unit square created by the MATLAB
function ’rand’. Although the distribution of these points exhibits very small uniformity, the smallest condition numbers of the
corresponding interpolation matrices Mn (computed repeatedly for 100 samples of the point sets generated by ’rand’) and shown
in Table 1 behave better than those of the Fibonacci, Carnicer and Godés, and Ramos-López et al. points. Consequently, using a
jittered sampling (perturbed regularly distributed points), exhibiting higher uniformity than the points generated by ’rand’, the
corresponding values of min1≤i≤100(cond(Mn(i))) reported also in Table 1 exhibit very encouraging behavior - as n increases,
the values of cond(Mn) increases more slowly than the values of all the point sets presented in Table 1. In this place it is worth
to note that a simple quasi-random set of points may produce better conditioned collocation matrices than the sets of points
generated by essentially more sophisticated constructions.

The natural question now arises.Is there a set of uniformly distributed points in the unit square giving the corresponding
collocation matrices Mn better conditioned than the jittered sampling reported in Table 1 ?

As the uniformly distributed points represent one of the basic tools of very mature and well developed scientific discipline, the
quasi-Monte Carlo methods [28, 34], the choice of these points is very rich. To avoid never ending computations with different
sets of uniformly distributed points, we decided for the class of very popular and highly uniform Halton points. At this place it is
worth to refresh at least the definition of the uniformly distributed sequences of real numbers [32].

Definition 2.3. The sequence of real numbers x1, x2, ... is called uniformly distributed in [0, 1] if we have, for each subinterval
[a, b) ⊂ [0, 1],

lim
n→∞

(
1
n

#{x1, x2, ..., xn} ∩ [a, b)) = b− a,

where the symbol #X denotes the number of elements (or cardinality) of the set X .

To create the Halton points on the unit square we have firstly to define a Van der Corput sequence of real numbers from (0, 1)
based on the radical inverse function

ξp(n) =
np
∑

i=0

ai/p
i+1,

where ai ∈ [0, p− 1] are the coefficients of the p-adic expansion of n defined as

n= a0 + a1p+ ...+ ar pr .

Here r denotes the maximum index for which ai is not equal to zero, i.e., np = r. Then the p-adic Van der Corput sequence is
defined as the sequence xn = ξp(n) for n≥ 0.

Therefore, the set of n Halton points on the unit square Hn(p, q) is defined as the set of points (ξp(k),ξq(k)), k = 1, ..., n,
where p, q are co-prime integers often called the bases. Now, the cylindrical Lambert map (1) transforms each set of n Halton
points on the unit sphere. Finally, the corresponding Chebyshev-like Halton disc interpolation points HDn(px , py) with the
coordinates (xk, yk) are generated by those spherical points (xk, yk, zk) for which zk > 0. This procedure may be slightly simplified
if the Halton points are created on the rectangle (0, 0.5)× (0, 1). The Lambert map transforms this rectangle directly on the upper
hemisphere.

3 Numerical experiments
The numerical experiments described in this section pursue two targets. First, a simple procedure how to find a set of conditionally
near-optimal interpolation points on the unit disc is presented. Second, the accuracy of the polynomial interpolation based
on the proposed Halton disc points HDn(px , py) is compared with the accuracy based on approximate Fekete points (AFPs) of
Sommariva and Vianello [9, 43] for three functions of different nature. All the presented results are obtained using the basis
functions composed by the Logan-Shepp algebraic polynomials

ϕL,`(x , y) =
1
p
π

UL

�

x cos(
`π

L + 1
) + y sin(

`π

L + 1
)
�

, `= 0,1, ..., L, (4)

where UL is the degree L Chebyshev polynomial of the second kind [10]. These polynomials are orthonormal on the unit disc in
the sense

∫ 2π

0

∫ 1

0

ϕL,`(r cos(θ ), r sin(θ ))ϕK ,k(r cos(θ ), r sin(θ ))rdrdθ = δL,Kδ`,k

for all indexes L, K and 0 ≤ ` ≤ L, 0 ≤ k ≤ K . The sets of disc interpolation points used in the presented computations are
created for n= 100 ∗ 2k, k = 0, 1,2, ..., 7, points.
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3.1 Computation of Halton-disc points

Usually, we need sets of interpolation points for a priori selected values of n. In this case it is possible to find a set of n good points
among HDn(px , py) for different values of co-prime integers px , py ≥ 2. This approach is defined as the discrete optimization
problem

(popt
x , popt

y ) = arg min
(px ,py )∈PK

cond(Mn(HDn(px , py))),

where PK denotes the set of co-prime integer pairs (px , py), e.g., px = 2, py = 2i + 1, i = 1,2, ..., K . Consequently, the resulting
pair (popt

x , popt
y ) generates the desired Halton-disc points HDn(popt

x , popt
y ). Although to find the optimal set of points among all the

reasonable candidates HDn(px , py) for large n is computationally very intensive task, sets of good disc interpolation points have
been found without massive computations as seen in Table 2. Table 3 shows the same parameters as Table 2 obtained for the sets
HDn(2, 3).

Table 2: Condition numbers and the smallest and largest singular values of Mn generated by the optimized HDn(px , py ) point sets.

n popt
x /popt

y cond(Mn) σmin(Mn) σmax (Mn)
100 2/99 4.9+1 0.6965 3.4+1
200 101/4 1.6+2 0.3925 6.1+1
400 4/202 4.9+2 0.2001 9.8+1
800 3/796 1.6+3 0.1010 1.6+2

1600 3/37 6.9+3 0.0456 3.1+2
3200 4/97 1.7+4 0.0317 5.4+2
6400 2/103 3.0+4 0.0261 7.8+2

12800 2/27 6.1+4 0.0242 1.5+3

Table 3: Condition numbers and the smallest and largest singular values of Mn generated by the HDn(2,3) point sets.

n cond(Mn) σmin(Mn) σmax (Mn)
100 1.5+2 0.2607 3.8+1
200 1.1+3 0.0556 5.6+1
400 2.1+3 0.0552 1.1+2
800 4.0+3 0.0438 1.8+2

1600 7.9+3 0.0391 3.1+2
3200 2.8+5 0.0020 5.3+2
6400 8.9+5 0.0010 9.1+2

12800 2.6+5 0.0062 1.6+3

Table 4: Condition numbers and the smallest and largest singular values of Mn generated by the approximate Fekete disc points computed by the
algorithm of Sommariva and Vianello applied to m Halton disc candidate points HDm(2, 3).

n m cond(Mn) σmin(Mn) σmax (Mn)
100 3262 2.8+1 1.6271 4.5+1
200 7600 4.5+1 1.6473 7.3+1
400 6130 8.3+1 1.4124 1.2+2
800 7800 1.8+2 1.1032 2.0+2

1600 16900 3.8+2 0.8949 3.4+2
3200 11320 8.0+2 0.6762 5.4+2
6400 10140 2.2+3 0.3903 8.6+2

12800 21200 5.6+3 0.2807 1.6+3

3.2 Computation of AFPs

The crucial point in computing AFPs is the choice of suitable sets of candidate points with the property to mimic the distribution
of the corresponding Fekete points as much as possible. Although there are many ways how to select suitable sets of candidate
points, the proposed Halton-disc points are used owing to their simplicity and efficiency.

For the selected n and constant co-prime integers px , py , e.g., px = 2, py = 3, we solve the discrete optimization problem

mopt = arg min
m∈TK

cond(Mn(AFPs(m, n, px , py))),

where TK denotes the finite increasing sequence of integers, e.g., t1 = 2n, t i+1 = t i + h, 1 ≤ h ≤ 100, i = 1,2, ..., K and
AFPS(m, n, px , py) denotes the set of n AFPs created by the algorithm of Sommariva and Vianello using HDm(px , py) as the
candidate points. Consequently, the algorithm of Sommariva and Vianello applied to the set of Halton-disc points HDmopt (px , py)
gives the desired AFPs with the properties presented in Table 4.
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3.3 Interpolation: Halton-disc points versus AFPs

The values of cond(Mn) and σ1(Mn) presented in Tables 2, 3, and 4 manifest that the proposed Halton-disc points are able to
generate well-conditioned collocation matrices. However, the crucial property of good interpolation points that remains to be
investigated is either these points are able to produce also high accurate interpolants for a class of important functions. To
verify this property, comparisons of the interpolation errors based on the Halton disc points and AFPs are made interpolating
three functions depending on a parameter α managing the behaviour of the considered functions. The class of highly oscillating
functions are represented by the function

u(α)1 (x , y) = sin(αx y).

For a sufficiently large α the function
u(α)2 (x , y) = 1− exp(−α(1− x2 − y2))

exhibits a rapid variation (boundary layer) near the boundary ∂Ω. Finally, the function

u(α)3 (x , y) = exp(−α(x2 + y2))

generates a mildly sharp spike at the origin. The interpolation error bounds for these three functions and for selected values of α
are shown in Tables 5, 6, and 7.

Table 5: Interpolation error bounds er rα1,n for Example 1 and α = 1,50,100 (from top to bottom) computed by HDn(2,3) points, optimized

HDn(p
opt
x , popt

y ) points, and AFPs.

n 100 200 400 800 1600 3200 6400 12800
(2,3) 1.6-07 9.6-13 8.3-15 7.0-15 1.7-14 4.3-14 2.9-13 9.4-14
optim 1.5-07 3.1-13 4.3-15 8.0-15 2.2-14 1.7-14 6.9-14 2.7-14
AFPs 9.8-08 6.2-14 1.5-15 1.6-15 1.6-15 3.1-15 5.9-15 1.1-14
(2,3) > 1 > 1 > 1 > 1 > 1 9.4-05 1.6-10 7.8-12
opt > 1 > 1 > 1 > 1 > 1 8.5-05 4.2-12 7.6-12

AFPs > 1 > 1 > 1 > 1 0.5-00 1.5-05 5.5-13 1.5-12
(2,3) > 1 > 1 > 1 > 1 > 1 > 1 > 1 1.8-09
opt > 1 > 1 > 1 > 1 > 1 > 1 6.8-01 1.9-09

AFPs > 1 > 1 > 1 > 1 > 1 > 1 2.4-01 1.5-09

Table 6: Interpolation error bounds er rα2,n for Example 2 and α= 10, 100, 200 (from top to bottom) computed by HDn(2, 3) points, optimized

HDn(p
opt
x , popt

y ) points, and AFPs.

n 100 200 400 800 1600 3200 6400 12800
(2,3) 1.4-01 2.0-03 9.8-06 4.7-11 4.8-14 2.3-12 1.9-12 4.9-13
opt 4.1-02 2.1-03 6.1-06 5.8-11 4.6-14 7.7-14 1.1-13 1.4-13

AFPs 9.4-03 2.7-04 5.2-07 7.9-12 8.2-15 7.8-15 1.4-14 1.5-14
(2,3) > 1 > 1 > 1 2.4-01 5.6-03 6.1-05 3.8-11 4.3-13
opt > 1 > 1 > 1 2.6-01 8.5-03 5.6-06 6.8-12 2.0-13

AFPs 5.5-01 3.8-01 1.3-01 2.2-02 1.1-03 8.9-07 1.5-12 6.2-14
(2,3) > 1 > 1 > 1 > 1 2.1-01 1.5-01 4.5-05 2.8-12
opt > 1 > 1 > 1 > 1 3.6-01 6.7-03 3.5-06 1.9-12

AFPs 7.4-01 6.3-01 3.7-01 1.5-01 4.1-02 1.1-03 1.5-06 3.0-13

Table 7: Interpolation error bounds er rα3,n for Example 3 and α= 10, 100, 200 (from top to bottom) computed by HDn(2, 3) points, optimized

HDn(p
opt
x , popt

y ) points, and AFPs.

n 100 200 400 800 1600 3200 6400 12800
(2,3) 1.0-01 1.4-01 8.4-06 4.2-11 8.8-14 5.4-13 2.7-12 1.7-13
opt 4.2-02 2.6-03 5.8-06 6.5-11 3.5-14 3.8-14 1.2-13 1.9-13

AFPs 1.1-02 2.1-04 4.9-07 9.1-12 3.7-15 7.7-15 1.5-14 3.0-14
(2,3) > 1 > 1 9.9-01 1.2-01 9.8-03 1.3-04 1.4-10 1.2-12
opt > 1 > 1 > 1 2.0-01 8.0-03 7.2-06 9.0-12 3.3-13

AFPs 7.2-01 3.4-01 1.9-01 3.2-02 6.6-04 8.8-07 7.0-13 3.9-14
(2,3) > 1 > 1 > 1 6.6-01 3.5-01 1.8-01 6.9-05 3.0-12
opt > 1 > 1 > 1 > 1 2.9-01 8.8-03 4.2-06 2.0-12

AFPs 9.0-01 6.3-01 4.9-01 1.8-01 2.7-02 1.1-03 4.7-07 2.9-13

These tables are organized as follows. The first triplet of rows reports the interpolation errors obtained using HDn(2, 3) points,
optimized HDn(popt

x , popt
y ) points (reported in Table 2) and AFPs (reported in Table 4) for α= 1 in order to check the roundoff
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error propagation process. Then the second and third triplets of rows report the same kind of values for α= 50 and α= 100,
respectively. The values of the reported maximum errors are of the form

er rα
`,n = max

(xi ,y j )∈Ωh
|u(α)
`
(x i , y j)− u(α)

`,n (x i , y j)|,

where Ωh is the set of discrete points (x i , y j) from the unit disc satisfying x i+1 − x i = yi+1 − yi = h= 2/101.
Finally, two figures showing the asymptotic behaviour of log10(cond(Mn)) for the proposed Halton disc interpolation points are

presented. Figure 2 shows log10(cond(Mn)) for values of n = 100, 101, 102, ..., 3000, where Mn are generated using HDn(2, 3). The
same dependence is shown in Figure 3 for the optimized sets HDn(popt

x , popt
y ) and AFPs computed for n = 100∗2k, k = 0, 1, 2, ..., 7.

Figure 2: Dependence of log10(cond(Mn)) on n for the Halton disc points HDn(2,3) and n= 100, 101, 102, ..., 3000.

Figure 3: Dependence of log10(cond(Mn)) on n for the optimized Halton disc points HDn(pxopt , p yopt ) (marked by o), reported in Table 2, and
AFPs (marked by *) reported in Table 4 for n= 100 ∗ 2k , k = 0, 1,2, ..., 7.

These figures indicate that the function cond(Mn) grows slowly and many sets of disc points HDn(px , py) for reasonably
selected parameters px , py may create well-conditioned collocation matrices Mn suitable for practice also for n> 12800.

3.4 Acceleration of the search procedure

The complexity of the presented search procedure is dominated by repeated generation of the matrices Mn and computation
of cond(Mn) using the MATLAB function ’cond’ requiring O(n3) arithmetic operations . Although the CPU times 0.5693 and
0.0014 seconds for computing M100 and cond(M100), respectively, are negligible, the CPU times 1185.6 and 1961.1 seconds for
computing M12800 and cond(M12800) are horrible. Therefore, to find a high quality set of 12800 Halton disc interpolation points
or more among a few hundreds or thousands of candidates HDn(px , py) is an unviable task for any personal computer.

To avoid this serious computational drawback, we can try to find the desired points HDn(popt
x , popt

y ) among the spherical
points Qi maximizing the sum

∑

1≤i< j≤n

‖ Qi −Q j ‖α, (5)

where the symbol ‖ . ‖ denotes the usual Euclidian norm in R3, Qi are determined by Hn(px , py) and 0 < α < 2. As noted by
Stolarsky [40], this problem has been studied by various authors beginning probably with Pólya and Szegö in 1931. Due to the
fact that the spherical points maximizing (5) are well-spaced [41], we may expect the corresponding disc interpolation points
will generate well-conditioned collocation matrices. The computational experiments for α = 1 reported in Table 8 show that
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the points maximizing (5) create disc interpolation points giving collocation matrices with the smallest condition numbers (as
presented in Table 2) only for n = 100, 200, and 3200. For other values of n the conditionally optimal point sets occur among a
few (10, 20 or more) point sets giving the greatest values of the sum (5). This situation is presented in Table 8 for the remaining
cases n = 400, 800, 1600, 6400, and 12800 and is described for the case n = 12800.

Let us denote by V the sequence of the values Vk of the sum (5) with α= 1 computed for 1000 samples of 12800 spherical
points. These points are generated by Halton points H12800(2, py), py = 2k+ 1, k = 1,2, ..., 1000, placed in (0,0.5)× (0,1) and
mapped on the upper unit hemisphere by the cylindrical Lambert map (1). The parameters py corresponding to 10 greatest
values of the sequence V are reported in Table 8 together with the corresponding values of cond(M12800(2, py)). As seen in Table
8, the pair (2, 753) that generates spherical points giving the greatest value of V is different from the pair (2, 27) generating the
collocation matrix M12800(2, 27) with the smallest condition number. In general, the point sample giving the largest value of the
sum (5) is not usually identical to the sample giving the corresponding collocation matrix with the smallest condition number.

Table 8: The values of the parameter py corresponding to 10 greatest values of the sum (5) together with the values of cond(Mn(px , py )) for n
= 400, 800, 1600, 6400 and 12800 selected from 250, 500, 1000, 4000 and 1000 samples of spherical point sets, respectively.

py 200 400 398 402 50 396 100 134 198 202
cond(M400(4, py)) 1.8+3 5.4+4 3.3+4 1.4+6 9.5+3 1.7+5 5.6+4 3.6+4 2.0+3 4.9+2

py 800 798 802 200 100 400 266 796 10 804
cond(M800(3, py)) 3.1+3 2.0+3 6.3+3 8.4+3 6.0+3 4.8+4 5.2+4 1.6+3 8.2+3 8.2+3

py 1599 1601 1597 799 533 1603 801 11595 89 399
cond(M1600(3, py)) 1.3+4 1.2+4 1.8+4 7.3+4 3.7+4 1.3+4 2.4+5 3.1+4 2.3+4 2.3+4

py 6399 6401 6397 711 2133 6403 6395 237 173 6405
cond(M6400(2, py)) 2.0+5 7.8+4 6.2+5 5.1+5 1.3+5 1.0+5 1.7+5 9.0+4 1.6+5 2.6+5

py 753 1829 251 51 985 217 27 413 173 97
cond(M12800(2, py)) 1.3+6 2.8+6 3.4+5 6.5+5 9.7+5 2.5+5 6.1+4 3.4+5 4.0+5 5.1+5

This means that the proposed search procedure is not able to find exactly what we are seeking. However, this procedure is
able to identify set of a few point samples (e.g., 10, 20 or more) among those the desired sample generating collocation matrix
with the smallest condition number may be found. Why 10 or 20 point samples are usually enough ? To answer this question we
have to reorder the sequence V for n = 800 in decreasing order (see the middle plot in Figure 4) and use the same reordering to
rearrange the sequence of the parameters py . The dependence of log10(cond(M800(3, py))) on the rearranged sequence of py is
shown in the right plot in Figure 4. In the left plot in Figure 4 dependence of the values of V on the values py before reordering,
i.e., py = 2k, k = 1,2, ..., 500, is shown.

Therefore, in virtue of the log10(cond(M800(3, py))) behaviour we can consider point samples corresponding to 10 or 20
greatest values of (5) to be usually enough for all n. If not, the point set giving the smallest condition number among the selected
10 or 20 samples with respect to Stolarsky criterion (5) is good alternative to the optimal point set as seen comparing Table 2 and
Table 8 for n = 1600 and 6400. Similar behaviour exhibits also the search procedure based on minimizing (5) for α= −1.
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Figure 4: Illustrations (from left to right) of the values of the sum (5) for n = 800 and py = 2k, 1 ≤ k ≤ 500, the same values reordered in
decreasing order, and the values log10(cond(M800(3, py ))) corresponding to the reordered values of py .

Now we can compare the CPU time needed to investigate one point sample with respect to the condition number criterion
versus the Stolarsky criterion (5) for n = 12800. The achieved saving of CPU time can be seen comparing 3146.7 seconds needed
for generating M12800 and computing cond(M12800) versus 7.5 seconds used for the computation of the sum (5). Consequently,
the average speed-up in the investigation of one sample containing 12800 points is 420.

At the end of this paper the configurations of 12800 Halton disc interpolation points HD12800(2, 753) (left) and HD12800(2, 27)
(right) generated in 0.0434 seconds for one set on a PC with the Intel Core i5-480M processor are presented in Figure 5.
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4 Concluding remarks
Although the matrix conditioning and accuracy of the polynomial interpolation based on the presented Chebyshev-like Halton
disc points are comparable with the outputs produced by AFPs, in spite of the use of the speed-up procedure presented above, the
computational process needed to find the point set HDn(popt

x , popt
y ) for very large n is still expensive and needs more efficient

improvement. To minimize computational complexity of the method, it could be more advantageous to avoid the search procedure
completely. The answer to the following question may be useful in this direction.

Is there a possibility to create a set of uniformly distributed points on the unit square for which the corresponding
Chebyshev-like disc interpolation points will be comparable to AFPs for all n and a set of sampling parameters not
dependent on n ?

Owing to the great variety of the sets of uniformly distributed points in the square, available in the theory and practice of
the quasi-Monte Carlo methods, the positive answer to this question cannot be a priori rejected. For example, instead of the
one-sequence construction of uniformly distributed points on the unit square, resulting in our case in the Halton square points,
we can use hybrid sampling coupling together two different uniformly distributed sequences, e.g., Van der Corput, Weyl [16] and
Zinterhoff [23] sequences. Moreover, we have at hand different sets of high-quality uniformly distributed points with blue-noise
property generated by various techniques [48].

Finally, it would certainly be of interest to construct disc interpolation points for which ΛN , cond(Mn) and CPU time needed
to generate the desired points and corresponding collocation matrices Mn are minimized using one set of the disc algebraic
polynomials - Zernike [10], Logan-Shepp [10] and Kornwinder ball polynomials [17].

Figure 5: Configurations of the Halton disc interpolation points HD12800(2, 753) (left) and HD12800(2, 27) (right).
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