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Minimal cubature rules on an unbounded domain

Yuan Xu a

Abstract

A family of minimal cubature rules is established on an unbounded domain, which is the first such
family known on unbounded domains. The nodes of such cubature rules are common zeros of certain
orthogonal polynomials on the unbounded domain, which are also constructed.

2000 AMS subject classification: 41A05, 65D05, 65D32.
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1 Introduction
In two or more variables, few families of minimal cubature rules are known in the literature, none on unbounded domains. The
purpose of this note is to record a family of minimal cubature rules on an unbounded domain.

The precision of a cubature rule is usually measured by the degrees of polynomials that can be evaluated exactly. For a
nonnegative integer m, we denote be Π2

m the space of polynomials of degree at most m. Let Ω be a domain in R2 and let W be a
non-negative weight function on Ω. A cubature rule of precision 2n− 1 with respect to W is a finite sum that satisfies

∫

Ω

f (x , y)W (x , y)d xd y =
N
∑

k=1

λk f (xk, yk), ∀ f ∈ Π2
2n−1, (1.1)

and there exists at least one function f ∗ in Π2
2n such that the equation (1.1) does not hold. A cubature rule in the form of (1.1) is

called minimal, if its number of nodes is the smallest among all cubature rules of the same precision for the same integral.
It is well known that the number of nodes, N , of (1.1) satisfies (cf. [6, 9]),

N ≥ dimΠ2
n−1 =

n(n+ 1)
2

. (1.2)

A cubature rule of degree 2n− 1 with N = dimΠ2
n−1 is called Gaussian. In contrast to the Gaussian quadrature of one variable,

Gaussian cubature rules rarely exists and there are two family of examples known [3, 7], both on bounded domains. It is known
that they do not exist if W is centrally symmetric, which means that W (x) =W (−x) and −x ∈ Ω whenever x ∈ Ω. In fact, in the
centrally symmetric case, the number of nodes of (1.1) satisfies a better lower bound [4],

N ≥ dimΠ2
n−1 +

�n

2

�

=
n(n+ 1)

2
+
�n

2

�

. (1.3)

A cubature rule whose number of nodes attains a known lower bound is necessarily minimal. It turns out that a family of
weight functions Wα,β ,± 1

2
defined by

Wα,β ,± 1
2
(x , y) := |x + y|2α+1|x − y|2β+1(1− x2)±

1
2 (1− y2)±

1
2 , α,β >−1, (1.4)

on [−1, 1]2 admits minimal cubature rules of degree 4n− 1 on the square [−1, 1]2, which was established in [5] for α= β = 0
(see also [1, 10]) and in [11] for (α,β) 6= (0, 0). There are not many other cases for which minimal cubature rules are known to
exist for all n and none in the literature that are known for unbounded domains.

To establish the minimal cubature rules for Wα,β ,± 1
2
, the starting point in [11] is the Gaussian cubature rules in [7] and

it amounts to a series of changing of variables from the product Jacobi weight function on the square [−1,1]2 to the weight
function Wα,β ,± 1

2
. The procedure works for general product weight function on the square. Moreover, as we shall shown in this

note, that the procedure also works for an unbounded domain, which leads to our main results in this note. The minimal cubature
rules are known to be closely related to orthogonal polynomials, as their nodes are necessarily zeros of certain orthogonal
polynomials. We will discuss this connection and construct an explicit orthogonal basis on our unbounded domain in Section 3.
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2 Gaussian Cubature rules on an unbounded domain
Let W be a nonnegative weight function on a domain Ω ⊂ R2. A polynomial P ∈ Πd

n is an orthogonal polynomial of degree n
with respect to W if

∫

Ω

Pk,n(x , y)q(x , y)W (x , y)d xd y = 0, ∀q ∈ Π2
n−1.

Let V2
n be the space of orthogonal polynomials of degree exactly n. Then dimV2

n = n+ 1. The Gaussian cubature rules can be
characterized in terms of the common zeros of elements in V2

n ([6, 9]).
Theorem 2.1. Let {Pk,n : 0≤ k ≤ n} be a basis of V2

n . Then a Gaussian cubature rule of degree 2n− 1 for the integral against W
exists if and only if its nodes are the common zeros of Pk,n, 0≤ k ≤ n.

We now describe a family of Gaussian cubature rules on an unbounded domain. Let w(x) be a nonnegative weight function
defined on the unbounded domain [1,∞) and let cw denote its normalization constant defined by cw

∫∞

1
w(x)d x = 1. Let

pn(w; x) be the orthogonal polynomial of degree n with respect to w and let x1,n, x2,n, . . . , xn,n be the zeros of pn(w; x). It is well
known that xk,n are real and distinct points in [1,∞). The Gaussian quadrature rule for the integral against w is given by

cw

∫ ∞

1

f (x)w(x)d x =
n
∑

k=1

λk,n f (xk,n), f ∈ Π2n−1, (2.1)

where Π2n−1 denotes the space of polynomials of degree 2n− 1 in one variable and the weights λk,n are known to be all positive.
A typical example of w is the shifted Laguerre weight function

wα(x) := (x − 1)αe−x+1, α >−1,

for which the orthogonal polynomial pn(wα; x) is the Laguerre polynomial Lαn (x − 1) with argument x − 1.
The unbounded domain on which our Gaussian cubature rules live is given by

Ω := {(u, v) : 1< u− 1< v < u2/4}, (2.2)

which is bounded by a parabola and a line for v ≥ 1 and u≥ 2, which is the shaded area depicted in Figure 1.

1 2 3 4 5
u

-1

1

2

3

4

v

Figure 1: Domain Ω

The function w(x)w(y) is evidently a symmetric function in x and y . For γ >−1, we define the weight

Wγ(u, v) := w(x)w(y)|u2 − 4v|γ, γ >−1, (2.3)

where the variables (x , y) and (u, v) are related by

u= x + y, v = x y. (2.4)

The function w(x)w(y) is obviously symmetric in x and y , so that it can be written as a function of (u, v) for (x , y) in the domain

4 := {(x , y) : 1< x < y <∞}.

The function Wγ(u, v) is the image of w(x)w(y)|x − y|2γ+1 under the changing of variables u= x + y and v = x y , which has a

Jacobian |x − y| and |x − y|=
p

u2 − 4v. When w = wα is the shifted Laguerre weight, we denote Wγ by Wα,γ, which is given
explicitly by

Wα,γ(x , y) := (v− u+ 1)αe−u−2(u2 − 4v)γ.
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The changing of variables (2.4) immediately leads to the relation
∫

Ω

f (u, v)Wγ(u, v)dudv =

∫

4
f (x + y, x y)w(x)w(y)|x − y|2γ+1d xd y (2.5)

=
1

2

∫

[1,∞)2
f (x + y, x y)w(x)w(y)|x − y|2γ+1d xd y,

where the second equation follows from symmetry. Now, recall that xk,n denote the zeros of pn(w; x). We define

uk, j = xk,n + x j,n, vk, j = xk,n x j,n, 0≤ j ≤ k ≤ n.

Theorem 2.2. For W− 1
2

on Ω, the Gaussian cubature rule of degree 2n− 1 is

c2
w

∫

Ω

f (u, v)W− 1
2
(u, v)dudv =

n
∑

k=1

k
∑′

j=1

λkλ j f (u j,k, v j,k), f ∈ Π2
2n−1, (2.6)

where
∑′ means that the term for j = k is divided by 2. For W1

2
on Ω, the Gaussian cubature rule of degree 2n− 3 is

c2
w

∫

Ω

f (u, v)W1
2
(u, v)dudv =

n
∑

k=2

k−1
∑

j=1

λ j,k f (u j,k, v j,k), f ∈ Π2
2n−3, (2.7)

where λ j,k = λ jλk(x j,n − xk,n)2.
The proof follows almost verbatim from the proof of Theorem 3.1 in [11]. In fact, by (2.5), the cubature rule (2.6) is

equivalent to the cubature rule for w(x)w(y)d xd y on [1,∞)2 for polynomials f (x+ y, x y) with f ∈ Π2
2n−1, which are symmetric

polynomials in x and y . By the Sobolev’s theorem on invariant cubature rules [8], this cubature rule is equivalent to the product
Gaussian cubature rules for w(x)w(y) on [1,∞)2, which is the product of (2.1). Thus, the cubature rule (2.6) follows from the
product of Gaussian cubature rules under (2.4).

The existence of these cubature rules also follow from counting common zeros of the orthogonal polynomials with respect to
W± 1

2
. Indeed, a mutually orthogonal basis with respect to W− 1

2
on Ω is given by

P
(− 1

2 )
k,n (u, v) = pn(x)pk(y) + pn(y)pk(x), 0≤ k ≤ n, (2.8)

and a mutually orthogonal basis with respect to W1
2

is given by

P
( 1

2 )
k,n (u, v) =

pn+1(x)pk(y)− pn+1(y)pk(x)
x − y

, 0≤ k ≤ n, (2.9)

both families are defined under the mapping (2.4). This was established in [2] for the domain [−1,1]2, but the proof can be

easily extended to our Ω. It is easy to see that the elements of {(u j,k, v j,k) : 0≤ j ≤ k ≤ n} are common zeros of P
(− 1

2 )
k,n , 0≤ k ≤ n,

and the cardinality of this set is dimΠ2
n−1, which implies, by Theorem 2.1, that the Gaussian cubature rules for W− 1

2
exists. The

proof for W1
2

works similarly.

3 Minimal cubature rules on an unbounded domain
We are looking for cubature rules of degree 2n− 1 that satisfy the lower bound (1.3), which are necessarily minimal cubature
rules. Such cubature rules are characterized by common zeros of a subspace of V2

n ([4]).
Theorem 3.1. A cubature rule whose number of nodes attains the lower bound (1.3) exists if, and only if, its nodes are common
zeros of b n+1

2
c+ 1 orthogonal polynomials of degree n.

Let w be the weight function defined on [1,∞) and let Wγ be the corresponding weight function in (2.3) defined on Ω in
(2.2). We define a family of new weight functions by

Wγ(x , y) :=Wγ(2x y, x2 + y2 − 1)|x2 − y2|, (x , y) ∈ G, (3.1)

where the domain G is centrally symmetric and defined by

G := (−∞,−1]2 ∪ [1,∞)2.

Thus, the weight function Wγ is centrally symmetric on G.
That Wγ is well-defined on G is established in the next lemma. Recall that 4= {(x , y) : 1< x < y <∞}.

Lemma 3.2. The mapping (x , y) 7→ (2x y, x2 + y2 − 1) is a bijection from 4 onto Ω. Furthermore,
∫

Ω

f (u, v)Wγ(u, v)dudv =

∫

G

f (2x y, x2 + y2 − 1)Wγ(x , y)d xd y. (3.2)
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Proof. Recall that if (x , y) ∈4, then (x+ y, x y) ∈ Ω and the mapping is one-to-one. For (x , y) ∈ [1,∞)2, let us write x = coshθ
and y = coshφ, 0≤ θ ,φ ≤ π. Then it is easy to verify that

2x y = cosh(θ −φ) + cosh(θ +φ), x2 + y2 − 1= cosh(θ −φ) cosh(θ +φ), (3.3)

from which it follows readily that (2x y, x2 + y2 − 1) ∈ Ω whenever (x , y) ∈4. The Jacobian of the change of variables u = 2x y
and v = x2 + y2 − 1 is 4|x2 − y2|, so that the mapping is a bijection. Since dudv = 4|x2 − y2|d xd y and the area of G is four
times of 4, the formula (3.3) follows from the change of variables, the integral (2.5) and the fact that f (2x y, x2 + y2 − 1) is
central symmetric on G.

In the case of Wγ =Wα,γ, we denote the weight function Wγ by Wα,γ, which is given explicitly by

Wα,γ(x , y) := 4γ|x − y|2α(x2 − 1)γ(y2 − 1)γ|x2 − y2|e−2x y−2. (3.4)

For the weight function Wγ on the unbounded domain G, minimal cubature rules of degree 4n− 1 exist, as shown in the
next theorem. To state the theorem, we need a notation. For n ∈ N0, let xk,n be the zeros of the orthogonal polynomial pn(w; x),
which are in the support set [1,∞) of the weight function w. We define θk,n by

xk,n = coshθk,n, 1≤ k ≤ n.

Since xk,n > 1, it is evident that θk,n are well defined. We then define

s j,k := cosh
θ j,n−θk,n

2
and t j,k := cosh

θ j,n+θk,n

2
. (3.5)

Theorem 3.3. For W− 1
2

on G, we have the minimal cubature rule of degree 4n− 1 with dimΠ2
2n−1 + n nodes,

c2
w

∫

G

f (x , y)W− 1
2
(x , y)d xd y =

1

4

n
∑

k=1

k
∑′

j=1

λ j,nλk,n

�

f (s j,k, t j,k) + f (t j,k, s j,k) (3.6)

+ f (−s j,k,−t j,k) + f (−t j,k,−s j,k)
�

.

For W 1
2

on G, we have the minimal cubature rule of degree 4n− 3 with dimΠ2
2n−3 + n nodes,

c2
w

∫

G

f (x , y)W 1
2
(x , y)d xd y =

1

4

n
∑

k=2

k−1
∑

j=1

λ j,k

�

f (s j,k, t j,k) + f (t j,k, s j,k) (3.7)

+ f (−s j,k,−t j,k) + f (−t j,k,−s j,k)
�

,

where λ j,k = λ j,nλk,n(coshθ j,n − coshθk,n)2.

Proof. We prove only the case of W− 1
2
, the case of W 1

2
is similar. Our starting point is the Gaussian cubature rule in (2.6), which

gives, by (3.2),

c2
w

∫

G

f (2x y, x2 + y2 − 1)W− 1
2
(x , y)d xd y =

n
∑

k=1

k
∑′

j=1

λ j,nλk,n f (u j,k, v j,k), f ∈ Π2
2n−1.

By (3.3) or by direct verification,

coshθ j,n + coshθk,n = 2 cosh
θ j,n−θk,n

2
cosh

θ j,n+θk,n

2

coshθ j,n coshθk,n = cosh2 θ j,n−θk,n

2
+ cosh2 θ j,n+θk,n

2
− 1

which implies that
u j,k = x j,n + xk,n = 2s j,k t j,k and v j,k = x j,n xk,n = s2

j,k + t2
j,k − 1.

Consequently, the above cubature rule can be written as

c2
w

∫

G

f (2x y, x2 + y2 − 1)W− 1
2
(x , y)d xd y =

n
∑

k=1

k
∑′

j=1

λkλ j f (2s j,k t j,k, s2
j,k + t2

j,k − 1)

for all f ∈ Π2
2n−1. For f ∈ Π2

2n−1, the polynomial f (2x y x2+ y2−1) is of degree 4n−1. Since the polynomials f (2x y, x2+ y2−1)
are symmetric polynomials and all symmetric polynomials in Π2

4n−1 can be written in this way, we have established (3.6) for
symmetric polynomials. By the Sobolev’s theorem on invariant cubature rules, this establishes (3.6) for all polynomials in
Π2

4n−1.
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The number of nodes of the cubature rule in (3.6) is precisely

N = dimΠ2
2n−1 + n= dimΠ2

2n−1 +
�

2n

2

�

which is the lower bounded of (1.3) with n replaced by 2n. Thus, (3.6) attains the lower bound (1.3). Similarly, (3.7) attains the
lower bound (1.3) with n replaced by 2n− 1.

It turns out that a basis of orthogonal polynomials with respect to Wγ can be given explicitly. We need to define three more
weight functions associated with Wγ.

W (1,1)
γ
(u, v) := (1− u+ v)(1+ u+ v)Wγ(u, v),

W (1,0)
γ (u, v) := (1− u+ v)Wγ(u, v), (u, v) ∈ Ω,

W (0,1)
γ
(u, v) := (1+ u+ v)Wγ(u, v).

(3.8)

Under the change of variables u = x + y and v = x y, 1− u+ v = (x − 1)(y − 1) and 1+ u+ v = (x + 1)(y + 1). The three
weight functions in (3.8) are evidently of the same type as Wγ. We denote by {P(γ)k,n : 0≤ k ≤ n} an orthonormal basis of Vn(Wγ)

under 〈·, ·〉Wγ . For 0≤ k ≤ n, we further denote by P(γ),1,1
k,n , P(γ),1,0,

k,n , P(γ),0,1
k,n the orthonormal polynomials of degree n with respect

to 〈 f , g〉W for W =W (1,1)
γ

, W (1,0)
γ

, W (0,1)
γ

, respectively.

Theorem 3.4. For n= 0, 1, . . ., a mutually orthogonal basis of V2n(Wγ) is given by

1Q(γ)k,2n(x , y) :=P(γ)k,n (2x y, x2 + y2 − 1), 0≤ k ≤ n,

2Q(γ)k,2n(x , y) :=(x2 − y2)P(γ),1,1
k,n−1 (2x y, x2 + y2 − 1), 0≤ k ≤ n− 1,

(3.9)

and a mutually orthogonal basis of V2n+1(Wγ) is given by

1Q(γ)k,2n+1(x , y) := (x + y)P(γ),0,1
k,n (2x y, x2 + y2 − 1), 0≤ k ≤ n,

2Q(γ)k,2n+1(x , y) := (x − y)P(γ),1,0
k,n (2x y, x2 + y2 − 1), 0≤ k ≤ n.

(3.10)

Under the mapping (u, v) 7→ (2x y, x2 + y2 − 1), it is easy to see that W (1,1)
γ (u, v) becomes (x2 − y2)2Wγ(x , y), W (1,0)

γ (u, v)
becomes (x − y)2Wγ(x , y), and W (0,1)

γ
(u, v) becomes (x + y)2Wγ(x , y). Hence, using Lemma 3.2, the proof can be deduced

from the orthogonality of Pk, n(γ),i, j and symmetry of the integrals against W (i, j)
γ

, similar to the proof of Theorem 3.4 in [12].

Combining with (2.8) and (2.9), we can express orthogonal polynomials iQ
(± 1

2 )
k,n in terms of orthogonal polynomials in one

variables. For example, in the case of Wα,γ in (3.4), we can express even degree orthogonal polynomials in terms of the Laguerre
polynomials.
Proposition 3.5. Let α >−1. A mutually orthogonal basis of V2n(Wα,− 1

2
) is given by, for 0≤ k ≤ n and 0≤ k ≤ n−1, respectively,

1Q
(α,− 1

2 )
k,2n (coshθ + 1, coshφ + 1) = L(α)n (cosh(θ −φ))L(α)k (cosh(θ +φ))

+ L(α)k (cosh(θ −φ))L(α)n (cosh(θ +φ)),

2Q
(α,− 1

2 )
k,2n (coshθ + 1, coshφ + 1) = (x2 − y2)

�

L(α+1)
n−1 (cosh(θ −φ))L(α+1)

k (cosh(θ +φ))

+L(α+1)
k (cosh(θ −φ))L(α+1)

n−1 (cosh(θ +φ))
�

.

In these formulas we used x = coshθ − 1 and y = coshφ − 1, so that Lαn (x − 1) = Lαn (coshθ) and Lαn (y − 1) = Lαn (coshφ)
and we can then use (3.3). Note, however, we cannot express the odd degree ones in terms of Laguerre polynomials. In fact, for
2Qk,2n+1, we need orthogonal polynomials of one variable with respect to w(x) = (x + 1)(x − 1)αe−(x−1), which is not a shift of
the Laguerre weight function.
Corollary 3.6. For the weight function W− 1

2
, the nodes of the minimal cubature formulas (3.6) are common zeros of orthogonal

polynomials {1Q
(− 1

2 )
k,2n : 0≤ k ≤ n}.

An analogue result can be stated for the minimal cubature formulas (3.7).
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