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Good point sets and corresponding weights for bivariate discrete
least squares approximation*

Marc Van Barel a · Matthias Humet a

Abstract

An algorithm is presented to compute good point sets and weights for discrete least squares polynomial
approximation on a geometry Ω ⊂ R2. The criterion that is used is the minimisation of the Lebesgue
constant of the corresponding least squares operator. In order to approximate the Lebesgue constant, we
evaluate the Lebesgue function in a point set generated by a refinement method that is based on Delaunay
triangulation. The algorithm is greedy in the sense that points are added where the Lebesgue function is
largest. It also uses a new updating algorithm for the weights such that the corresponding Lebesgue
constant is made smaller. Advantages of the method are that it works for a general geometry Ω and
that the point sets are nested. Numerical experiments show that the Lebesgue constant corresponding
to the least squares operator is low and grows slower than polynomially in function of the total degree
of the polynomial approximation space. It follows that the computed points are point sets of a weakly
admissible mesh (WAM).

1 Introduction
In [10], the problem of finding good points for discrete least squares polynomial approximation on a compact domain Ω⊂ Cn is
considered. In this context, the authors define (weakly) admissible meshes or (W)AM’s, which are sequences of point sets in
function of the (total) degree that can be used to measure the uniform norm of a polynomial of degree δ on a domain Ω.

In [12, 3, 6, 2, 4, 7, 8] the problem of finding good points for polynomial interpolation on a domain Ω⊂ R2 is treated. The
criteria that are used are, among other, maximisation of the Vandermonde determinant (Fekete points) and minimisation of the
Lebesgue constant. The Lebesgue constant is equal to the uniform norm of the Lebesgue function. To approximate the Lebesgue
constant, the WAM’s defined in [10] are used. The domains that are considered are the square, the simplex and the disk. For a
more detailed overview, we refer to the introduction in our previous paper [15].

An example of good points for polynomial interpolation on the square are the Padua points, which are known analytically
and have been studied in [9, 1, 5].

Our previous paper [15] advances on the ideas of the computationally oriented paper [8]. We give alternative algorithms to
compute good (and almost optimal) points for polynomial interpolation on Ω⊂ R2 by minimisation of the Lebesgue constant.
Our algorithms are faster and also work for more general geometries, e.g., the L-shape. In order to approximate the Lebesgue
constant, the MATLAB package Distmesh is used, which generates point sets of a WAM according to numerical experiments.

The goal of this paper is the computation of good points and weights for discrete least squares polynomial approximation
in R2. The criterion that is used is the minimisation of the corresponding Lebesgue constant. In order to approximate the
Lebesgue constant, we evaluate the Lebesgue function in a point set generated by a refinement method that is based on Delaunay
triangulation. The algorithm is greedy in the sense that points are added where the Lebesgue function is largest. It also uses a
new updating algorithm for the weights such that the corresponding Lebesgue constant is made smaller.

In Section 2 we give an overview of the theory that is needed. This includes the definitions for the discrete least squares
problem, the corresponding Lebesgue constant and Lebesgue function, and WAM’s. Moreover, the orthogonal polynomial basis
that we use is discussed. In Section 3 we give a simple updating algorithm for the least squares weights for a given point set.
Section 4 contains the presentation of our main algorithm that generates nested point sets and corresponding weights per degree,
for a general geometry. A refinement method using Delaunay triangulation is discussed, which is an alternative for the Distmesh
package. Finally, the numerical experiments in Section 5 indicate the quality of the point sets constructed by our algorithm. In
particular, these results show that the Lebesgue constant in function of the degree is low and grows slower than polynomially. It
follows that the algorithm computes the first point sets of a WAM.
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rational interpolation and approximation), and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office, Belgian
Network DYSCO (Dynamical Systems, Control, and Optimization). The scientific responsibility rests with its author(s).
aKU Leuven, Department of Computer Science, Belgium
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2 Preliminaries

2.1 Discrete least squares approximation

Let C(Ω) be the space of continuous functions of two variables defined on Ω ⊂ R2, an open connected bounded subset of R2

together with its closure. In the sequel, we will denote this subset as the geometry of the problem, e.g., a square, a triangle, a
disk, an L-shape, . . . . Let Pδ be the space of bivariate polynomials of total degree at most δ. Let N = dimPδ. Given the points
X = {x i}L

i=1 ⊂ Ω and the weights W = {wi}L
i=1 ⊂ R

+ \{0}, L ≥ N , we call L : C(Ω)→ Pδ the linear operator that maps a function
f to the polynomial pL = L( f ) of degree δ that approximates the function f according to the discrete least squares criterion

min
pL



 f − pL





2 =min
pL

s

L
∑

i=1

w2
i

�

� f (x i)− pL(x i)
�

�

2
. (1)

Let {p j}Nj=1 be a basis for Pδ, and let VX =
�

p j(x i)
�

be the L × N Vandermonde matrix for this basis in the points X . Written in
this basis, the least squares approximating polynomial of a function f is

L( f )(x ) =
N
∑

j=1

c j p j(x ) = p(x )T c

with p =
�

p1 . . . pN
�T . Let W = diag(w1, . . . , wL) and f =

�

f (x 1) . . . f (x L)
�T . The coefficients c can be found as the solution

of the overdetermined L× N linear system

W VX c =W f , (2)

in the least squares sense. More precisely, c is the solution of the following optimisation problem

min
c



W
�

VX c− f
�





2 (3)

which is the matrix notation of the optimisation problem (1). Using the pseudoinverse, we can write the solution as

c = (W VX )
†W f .

and we get

L( f )(x ) = p(x )T (W VX )
†W f . (4)

We will assume that the least squares problem (3) has a unique solution. It is well known that this is equivalent to the condition
that W VX has full rank, or equivalently, since W is invertible, that VX has full rank. In this case the point set X is called
Pδ-determining, a property defined in [10] stating that for every p ∈ Pδ, if p(x ) = 0 for all x ∈ X , then p = 0. The equivalent
condition using the Vandermonde matrix applies, because the dimension of Pδ is finite.

If L = N and the point set X is Pδ-determining, then X is called unisolvent. In this case VX is an invertible matrix and the
square system (2) has a (unique) solution corresponding to the polynomial that interpolates the function f in the points X which
is given by L( f )(x ) = p(x )T V−1

X f .

2.2 Lebesgue constant

The∞-norm of a function f on a set S ⊂ R2 is defined as


 f




S =max
x∈S

�

� f (x)
�

� .

If S = Ω, we write


 f


=


 f




Ω. The Lebesgue constant ΛL is defined as the∞-norm of the operator L, i.e.,

ΛL =min
�

c ≥ 0 :


L( f )


≤ c


 f


 for all f ∈ C(Ω)
	

=max
f 6=0



L( f )






 f




= max
‖ f ‖=1



L( f )


= max
‖ f ‖≤1



L( f )


 .
(5)

The following inequality holds


L( f )


≤ ΛL



 f


 , for all f ∈ C(Ω). (6)

Let p∗ ∈ Pδ be the best polynomial approximation of f , which minimises


 f − p∗


. (Note that pL minimises the two-norm
error



 f − pL





2.) Using the triangle inequality we have


 f −L( f )


≤


 f − p∗


+


p∗ −L( f )


 , for all f ∈ C(Ω)

and then, since


p∗ −L( f )


=


L(p∗ − f )




(6)
≤ ΛL



p∗ − f


, we get the well-known result


 f −L( f )


≤ (1+ΛL)


 f − p∗


 , for all f ∈ C(Ω).
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This inequality shows how the Lebesgue constant is a measure of how good the least squares approximant is compared to the
best polynomial approximation.

To approximate ΛL, consider a point set Y = {y i}Ki=1 ⊂ Ω and define the K×N Vandermonde matrix VY =
�

p j(y i)
�

. We have


L( f )




Y =max
x∈Y

�

�p(x )T (W VX )
†W f

�

�=


VY (W VX )
†W f





∞ ,

where the last norm is the infinity norm of a vector. By replacing Ω in (5) by its subset Y, we obtain the following approximation
for the Lebesgue constant

ΛL ≈ max
‖ f ‖≤1



L( f )




Y = max
‖ f‖∞≤1



VY(W VX )
†W f





∞ =


VY(W VX )
†W




∞ , (7)

where the last norm is the infinity norm of a matrix.

2.3 Lebesgue function

From

ΛL = max
‖ f ‖≤1



L( f )


= max
‖ f ‖≤1

max
x∈Ω

�

�L( f )(x )
�

�=max
x∈Ω

max
‖ f ‖≤1

�

�L( f )(x )
�

�

it follows that the Lebesgue constant is the maximum over Ω of the so-called Lebesgue function, i.e.,

ΛL =max
x∈Ω

λL(x )

with

λL(x ) = max
‖ f ‖≤1

�

�L( f )(x )
�

� .

Using (4) we get

λL(x ) = max
‖ f‖∞≤1

�

�p(x )T (W VX )
†W f

�

�=


p(x )T (W VX )
†W




1 , (8)

where we get the 1-norm by choosing f (i) =±1 with the appropriate sign. Note that given a point x ∈ Y, λL(x ) is the 1-norm
of the corresponding row of the matrix VY(W VX )†W . Hence we get the same result for the approximation of ΛL

ΛL ≈max
x∈Y

λL(x ) =


VY(W VX )
†W




∞ .

2.4 Weakly admissible meshes (WAM’s)

Let X be Pδ-determining and let C(X ,Ω) be the smallest constant such that


p


≤ C(X ,Ω)


p




X , for all p ∈ Pδ. (9)

A Weakly Admissible Mesh (WAM) is defined in [10] as a sequence of discrete subsets Xδ ⊂ Ω such that both the cardinality |Xδ|
and the constant C(Xδ,Ω) grow at most polynomially with δ. When C(Xδ,Ω) is bounded above, independent of δ, then the
sequence {Xδ} is an Admissible Mesh (AM).

Remember that the least squares operator L depends on the points X , the weights W and the approximation space Pδ. The
following equalities show that ΛL is not only the smallest constant such that



L( f )


 ≤ c


 f


 for all f , but also the smallest
constant such that



L( f )


≤ c


 f




X for all f :

ΛL =min
�

c ≥ 0 :


L( f )


≤ c


 f


 for all f ∈ C(Ω)
	

=max
f 6=0



L( f )






 f




A
= max
‖ f ‖=1



L( f )




B
= max
‖ f ‖X=1



L( f )




A
=max

f 6=0



L( f )






 f




X

=min
�

c ≥ 0 :


L( f )


≤ c


 f




X for all f ∈ C(Ω)
	

Equalities A follow from the linearity of L and the norm ‖·‖Ω and equality B follows from the fact that L( f ) only depends on the
values of f in X .
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We can also interpret the least squares operator as a function Φ : RL → Pδ, because L( f ) depends only on the vector formed
by the values of f in X . It follows that

ΛL =min
�

c ≥ 0 : ‖Φ(v)‖ ≤ c ‖v‖∞ for all v ∈ RL	, (10)

i.e., the Lebesgue constant is also the operator norm of Φ. The constant C(X ,Ω) defined in (9) can be written as

C(X ,Ω) =min
�

c ≥ 0 :


p


≤ c


p




X for all p ∈ Pδ
	

=min
�

c ≥ 0 : ‖Φ(v)‖ ≤ c ‖v‖∞ for all v ∈ Sδ
	

, (11)

where Sδ =
n

�

p(x 1) · · · p(x L)
�T

: p ∈ Pδ
o

⊂ RL . Hence C(X ,Ω) is the operator norm of the restriction of Φ to the subset
Sδ.

Since Sδ ⊂ RL , it follows from (10) and (11) that

C(X ,Ω)≤ ΛL. (12)

If L = N , then the point set X is unisolvent, hence Sδ = RL and we get the equality C(X ,Ω) = ΛL.
Two remarks can be made concerning this important upper bound. First, since the Lebesgue constant ΛL depends on the

weights of the least squares operator, every set of weights corresponds to an upper bound for C(Xδ,Ω). By optimising over the
weights, we can try to find an upper bound that is as small as possible. In Section 3 we give such an algorithm. Second, in our
paper [15] we computed ΛL as an upper bound for C(Xδ,Ω) using uniform weights for the least squares operator. A similar
method was used in [6].

The goal of this paper is to compute a sequence of point sets Xδ having small Lebesgue constants ΛL, such that the cardinality
|Xδ| of Xδ grows polynomially. Our numerical experiments indicate that ΛL grows (slower than) polynomially, i.e., that our point
sets form (the first point sets of) a WAM.

2.5 Orthogonal polynomial basis

The formulas for the Lebesgue constant in (7) and the Lebesgue function in (8) make use of the pseudoinverse. In practice, to
evaluate these expressions, we solve a linear least squares problem with L right hand side vectors. It is well known that when
using a backward stable algorithm to solve a linear least squares problem, the relative accuracy of the computed solution is
determined by the condition number of the coefficient matrix (see [11, Theorem 5.3.1]), in this case the weighted Vandermonde
matrix W VX . Hence the condition number of W VX must not be too large.

In this subsection we review some good bases for certain geometries and briefly introduce the orthonormal bases of [14]
which we used in our numerical experiments and also in our previous paper [15]. Details about the computation of the
orthonormal bases are left out and we refer the reader to Section 4 of [15].

Let M= {mi}Ni=1 be a monomial basis for Pδ, which depends on how the monomials are ordered. In this paper, we use the
graded lexicographic order

M= {1, y, x , y2, x y, x2, . . .},

in the variables x and y . The monomial basis is not a good basis for least squares in general, because the corresponding weighted
Vandermonde matrix can have a large condition number. For particular geometries, suitable bases may be available, e.g., in [8]
the authors use product Chebyshev polynomials for the square, Dubiner polynomials for the simplex and Koornwinder type II
polynomials for the disk in the context of polynomial interpolation. However, if we consider the general setting, we need to be
able to build such good bases.

An optimal basis for Pδ for our least squares problem is an orthogonal polynomial basis {p j}Nj=1 with respect to the discrete
inner product

〈p, q〉=
L
∑

i=1

w2
i p(x i)q(x i), (13)

i.e., 〈pi , p j〉= δi, j and p j =
∑ j

i=1 ui, j mi , with u j, j 6= 0. Indeed, if VX =
�

p j(x i)
�

is the L × N Vandermonde matrix corresponding
to this orthogonal basis and the points X , and if W = diag(wi), then W VX is an orthogonal matrix with condition number 1. In
our final algorithm, we will iteratively change the weights without updating the basis, but if the weights do not change too much,
the condition number of W VX will remain relatively low. Details on how to compute such a basis are given in [15].
Remark 1. Note that for the square [−1, 1]2 the product Chebyshev basis is an example of an orthogonal polynomial basis with
respect to the discrete inner product (13) where the points X are the Padua points with specific weights that are given in [1,
Theorem 1].1

1Note that if L is the number of Padua points, then there are L−1 product Chebyshev polynomials that are orthonormal w.r.t. the discrete inner product, but not L.
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3 Optimising the discrete least squares weights
The Lebesgue constant for polynomial interpolation depends on the point set X , the approximation space Pδ and the geometry
Ω. For least squares approximation, the Lebesgue constant also depends on the weights W. In this section, we introduce
Algorithm 3.1, a simple updating algorithm that improves the weights W for a given point set X . In each iteration, each weight
is multiplied by the value of the Lebesgue function in the corresponding point, and the weights are normalised. By updating the
weights in this way, relatively more weight is added to the points in X where the Lebesgue function is larger. The idea is that this
will result in lowering the Lebesgue constant. To make the algorithm robust, we use the following stopping criterion: stop if
either

(i) the Lebesgue constant does not decrease or

(ii) the relative change of the Lebesgue constant is smaller than some threshold εΛ.

Algorithm 3.1 Least squares weight updating

Input: geometry Ω, degree δ, basis for Pδ, kmax , X = {x i}L
i=1 ⊂ Ω

Output: weights W
W ← {wi = 1/

p
L, i = 1, . . . , L}, normalised equal weights

VX ← evaluate basis functions in points X
for k = 1, . . . , kmax do

Evaluate Lebesgue function in points X using (8):
λi ←



p(x i)T (W VX )†W




1 , i = 1, . . . , L
Update weights W:

wi ← wi ·λi , i = 1, . . . , L
Normalise weights
if Stopping criterion then

Break
end if

end for

We illustrate the effectiveness of the algorithm with the following numerical experiments. Let X be an equispaced mesh of size
100× 100 on the square Ω = [−1,1]2.

• We run the algorithm for δ = 10, with εΛ = 10−3. The algorithm stops after 18 iterations because the relative change of
the Lebesgue constant is lower than εΛ. The resulting Lebesgue function with the optimised weights is shown in Figure 1
and the weights are shown in Figure 2. Note the particular pattern of the Lebesgue function. Compare this with the
Lebesgue function for equal weights in Figure 3.

• We run the algorithm for the degrees δ = 1, . . . , 20, with εΛ = 10−3. In Figure 4 the Lebesgue constant, here denoted
as Λδ in function of the degree, is shown for each iteration step of the algorithm for the degrees δ = 5,10 and 20. In
Figure 5 the resulting Lebesgue constant reached at the end of the algorithm is plotted in function of the degree δ. For
every degree the algorithm stops because the relative change of the Lebesgue constant is lower than εΛ.

We conclude that by updating the weights with Algorithm 3.1 we get a much lower Lebesgue constant, which improves the
general quality of the least squares approximation operator. Moreover, note that when using equal weights, the Lebesgue constant
for the least squares operator corresponding to the equispaced mesh X is a large overestimation of the constant C(X ,Ω) in (9).
Using Algorithm 3.1 we obtain weights for which the Lebesgue constant is much lower and hence a much better bound for
C(X ,Ω).

Comparing Figures 1 and 3, we note that our computed weights push all the local maxima of the Lebesgue function to
almost the same level, obtaining some sort of equi-oscillating effect. Note that a similar result was obtained with our global
optimisation algorithm in [15] and for univariate polynomial approximation, the equi-oscillation property is a necessary and
sufficient condition to obtain the best polynomial approximant in the uniform norm, see [13, Theorem 10.1]. This indicates that
the computed weights are close to optimal and that the Lebesgue constant can probably not be made much smaller by further
optimising the weights. Note that the computed weights in Figure 2 are larger near the boundaries and especially near the
corners of the square. These weights give an indication of the distribution of a good point set for this geometry.

Finally, we observe in Figure 4 that the value of the Lebesgue constant decreases a lot in the first iterations. It follows that in
practice, the stopping criteria can be chosen rather tight, since not many iterations are needed to get a rather low value of the
Lebesgue constant.

4 Good point sets for discrete least squares polynomial approximation
In this section we present an algorithm that computes a sequence of point sets Xδ and corresponding weights Wδ, for
δ = 1,2, . . . ,δmax, with the following properties.

• The point sets Xδ are nested, i.e., Xδ−1 ⊂ Xδ for δ = 2,3, . . . ,δmax.

• The number of elements in each point set Xδ grows linearly in the dimension of the vector space Pδ, i.e.,

|Xδ|= round(αNδ) + c, with Nδ = dimPδ,
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Figure 1: Lebesgue function for δ = 10 after 18 iterations.

Figure 2: Resulting weights for δ = 10 after 18 iterations.
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Figure 3: Lebesgue function for δ = 10 for equal weights.
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Figure 4: Λδ in each iteration step of the algorithm for degrees δ = 5,10 and 20.
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Figure 5: Λδ reached at the end of the algorithm in function of the degree δ.

and c is a small integer constant.

• The weights Wδ are the resulting weights of Algorithm 3.1 corresponding to Xδ.

• The corresponding Lebesgue constant Λδ for discrete least squares approximation over Pδ grows slowly with respect to δ.
From our numerical experiments we observe that on average it grows slower than δ.

We explain the algorithm for a polygon domain Ω. Later we consider non-polygon domains. As an example, we consider the
L-shape polygon defined by the nodes

G = {(−1,−1), (−1,1), (0,1), (0,0), (1,0), (1,−1)} .

The dimension Nδ of Pδ satisfies

Nδ =
�

δ+ 2

2

�

= Nδ−1 + nδ−1, with nδ−1 = δ+ 1.

Since the point sets are nested and

|Xδ|= αNδ + c = |Xδ−1|+αnδ−1,

it follows that Xδ is constructed by adding αnδ−1 additional points to Xδ−1, i.e.,

Xδ = Xδ−1 ∪X add
δ−1, with |X add

δ−1|= αnδ−1.

These additional αnδ−1 points X add
δ−1 are chosen one by one from a larger point set X ext

δ−1. This point set X ext
δ−1 is constructed by

Delaunay triangulation of the point set Xδ−1 and refining the triangles by dividing each edge in γ equal parts and removing the
points Xδ−1. In Figure 6 we show the points X10 with the triangulation and refinement for γ= 4 and α= 2.

The first new point is chosen as follows. The Lebesgue function is computed for discrete least squares approximation over
Pδ−1 using the point set Xδ−1 and corresponding weights Wδ−1. The point of X ext

δ−1 where the Lebesgue function is largest is
added to Xδ−1, with the corresponding weight equal to the maximum of the weights Wδ−1. The Lebesgue function is updated
and in the same way the other points are added one by one to form Xδ. Once the point set Xδ is constructed, we compute the
corresponding weights Wδ by using Algorithm 3.1.

At the start of the algorithm the point set X1 is needed. This point set consists of the points G defining the polygon and some
possible additional points. The additional points guarantee that the refined point set X ext

1 is large enough for the algorithm
to start. In Section 5 we specify the point set X1 for the other geometries, i.e., the square, the triangle and the disk. The
corresponding weights W1 are computed by Algorithm 3.1.

The refined mesh X ext
δ−1 is constructed as follows:
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Figure 6: The points X10 and the refined mesh X ext
10 for γ= 4 and α= 2.

• For a convex polygon domain it suffices to use standard Delaunay triangulation. If the polygon domain is non-convex,
then constrained Delaunay triangulation is used, where the boundary of the domain defines the constraint. This method
makes sure that only triangles inside the domain are generated, and it is available in MATLAB.

• For convex non-polygon domains, e.g., the disk, using Delaunay triangulation alone is not enough, because the boundary
of such a domain lies outside the convex hull of the point set Xδ−1. To overcome this problem for the disk, for each degree
we generate a boundary set of equispaced points on the boundary that is added to X ext

δ−1. The number of points on the
boundary is taken equal to γNδ−1. Experimentally we observed that the resulting sets Xδ−1 constructed by Algorithm 4.1
have a large fraction φ of points on the boundary. It follows that Xδ−1 ∪X ext

δ−1 contains about φγNδ−1 points on the edges
of the triangles near the boundary. Hence the cardinality of our boundary set is such that it has about the same scale of
refinement.

• For non-convex non-polygon domains a similar method can be used. After creating a fine mesh based on Delaunay
triangulation, first the points that lie outside of the domain are removed, and second a boundary set of equispaced points
on the boundary is added.

The final method is described as Algorithm 4.1 and numerical experiments are given in Section 5.

Algorithm 4.1 Good point sets and corresponding weights for discrete least squares approximation
Input: geometry Ω, X1 ⊂ Ω, α, γ, δmax
Output: point sets Xi and corresponding weights Wi , i = 1, 2, . . . ,δmax

Compute weights W1 corresponding to X1 using Algorithm 3.1
for δ = 2, . . . ,δmax do

Triangulate Xδ−1
Generate the set X ext

δ−1 by dividing the triangle edges in γ equal parts
Extend Xδ−1 to Xδ by adding αnδ−1 points from X ex t

δ−1.
- The points are added one by one where the Lebesgue function λδ−1

is largest.
- The Lebesgue function is updated after each point is added.

Compute weights Wδ corresponding to Xδ using Algorithm 3.1
end for
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Figure 7: Lower bound of the Lebesgue constant for α= 1.1,1.2, . . . , 1.9, 2.0.

5 Numerical experiments
This section contains results of Algorithm 4.1 for the following geometries: the square, the simplex, the disk and the L-shape. For
each geometry a suitable point set X1 is created. This point set must have the property that the refined point set X ext

1 from which
points are added to X1 to obtain X2, is large enough. Besides the original 4 points and 3 points of G defining the geometry of the
square and the triangle, respectively, the Delaunay triangulation is taken and refined by dividing all edges in 2 equal parts. For
the L-shape, it suffices to take the 6 points defining the geometry as X1. For the unit disk, we take the following points for X1: on
the x-axis, (−1,0), (−0.5,0), (0,0), (0.5,0), (1,0), and on the y-axis, (0,−1), (0,−0.5), (0,0.5), (0,1).

The values of the parameters are δmax = 30 and γ = 4 and we have considered the following values for α: 1.1, 1.2, . . . , 1.9, 2.0,
2.5,3.0, . . . , 5.5, 6.0. Remember that γ determines the resolution of the refined point set X ext

δ
and α determines the number of

points of Xδ compared to the dimension of Pδ.
A lower bound for the Lebesgue constant Λδ is obtained when computing good weights Wδ corresponding to Xδ, i.e.,

Λδ ≥maxx∈Xδ λδ(x ). For the square, this lower bound is plotted in Figure 7 for the values of α= 1.1, 1.2, . . . , 1.9, 2.0. Note the
non-steady behaviour for α= 1.1,1.2, . . . , 1.6. An estimate for the Lebesgue constant for the values of α= 1.1, 1.2, . . . , 1.9, 2.0
is given in Figure 8. We use the estimate Λδ ≈ maxx∈Y λδ(x ), where Y is the result of our Delaunay refinement dividing the
edges in 7 equal parts. For the values of α= 1.7, 1.8, 1.9, 2.0, the lower bound as well as the estimate are plotted in Figure 9. A
similar plot for values of α = 2.0, 2.5, 3.0, 4.0, 5.0, 6.0 is given in Figure 10. From Figure 8 we observe that the Lebesgue constant
decreases for increasing values of α. This effect is more pronounced if α is close to 1. Figure 9 shows that there is a gap between
the lower bound and the more accurate approximation of the Lebesgue constant. By increasing α, this gap decreases as we can
see in Figure 10.

The time for adding point set Xδ behaves as O(δ5) as illustrated in Figure 11.
We get similar plots for the other geometries, i.e., for the triangle, the L-shape and the disk.
In Figure 12 we show the point sets X30, containing 995, 992, 992 and 995 points, respectively, for the square, the triangle,

the L-shape and the disk, with α= 2.0. In Figure 13 the magnitude of the weights corresponding to the square are shown. For
the other geometries, the magnitude of the weights is very similar.

6 Conclusion
In this paper, we have developed an algorithm to compute nested point sets and corresponding weights having a small Lebesgue
constant for the discrete least squares approximation for a given geometry. Compared to the number of points Nδ needed for
interpolation with a polynomial of total degree δ, the number of points in the point set for least squares approximation by a
polynomial of total degree δ is αNδ + c with α > 1 and c a small constant. The numerical experiments indicate that even for
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Figure 8: Estimate of the Lebesgue constant for α= 1.1,1.2, . . . , 1.9, 2.0.
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Figure 9: Lower bound and estimate of the Lebesgue constant for α= 1.7,1.8, 1.9,2.0.
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Figure 10: Lower bound and estimate of the Lebesgue constant for α= 2.0,2.5, 3.0,4.0, 5.0,6.0.
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Figure 11: Time in function of degree δ for α= 2.0.
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Figure 12: Point sets X30 for the square, the triangle, the L-shape and the disk, for α = 2.0, containing 995, 992, 992 and 995 points, respectively.
The estimated Lebesgue constants are equal to 8.14, 8.96, 8.56 and 9.23, respectively.
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Figure 13: Weights W30 for the square domain with α= 2.0 containing 995 points.

small values of α we obtain point sets with reasonably low Lebesgue constant and this for several geometries, i.e., the square,
the triangle, the L-shape and the disk. E.g., for α = 2, the Lebesgue constant grows less than polynomial with respect to the
degree for each of these geometries. Hence, empirically, the point sets that we compute corresponding to each of the geometries
considered, are the first sets in a sequence of point sets forming a Weakly Admissible Mesh for the corresponding geometry.
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