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An extremal subharmonic function
in non-archimedean potential theory

Małgorzata Stawiska a

Abstract

We define an analog of the Leja-Siciak-Zaharjuta subharmonic extremal function for a proper subset E
of the Berkovich projective line P1 over a field with a non-archimedean absolute value, relative to a
point ζ ̸∈ E. When E is a compact set with positive capacity we prove that the upper semicontinuous
regularization of this extremal function equals the Green function of E relative to ζ. As a separate result,
we prove the Brelot-Cartan principle, under the additional assumption that the Berkovich topology is
second countable.

1 Introduction
Potential theory on curves over a field K complete with respect to a non-archimedean absolute value | · | has made substantial
progress in recent years. Fundamental developments can be found in [20], [9], [3] and [23]. Nevertheless, some topics have
been left unexplored, for instance extremal subharmonic functions associated with compact subsets. Such functions are well
known in classical potential and pluripotential theory in CN , N ≥ 1. Recall that in C (with the standard, archimedean absolute
value) the Green function with pole at infinity of a compact subset E can be proved to be equal to the so-called Leja extremal
function (see [15], [16], [10]). In CN , N > 1, an analogous extremal function (Siciak-Zaharjuta extremal function, [21], [25],
[22]), with plurisubharmonic functions replacing subharmonic ones, serves as a multivariate counterpart to the Green function.
In this article we will work on the Berkovich projective line P1 over an algebraically closed complete K. We will fix a point
ζ ∈ P1 (not necessarily equal to∞) and define a class of subharmonic functions on P1 \ {ζ} with suitable behavior near ζ. The
supremum QE of this class can be treated as a non-archimedean analogue of the Leja-Siciak-Zaharjuta extremal function. We will
further show that the Green function relative to a point ζ of a compact subset of P1 \ {ζ} of positive capacity (see subsection 2.3
for definitions) equals the upper semicontinuous regularization Q∗E of QE . Our approach is analytic and topological rather than
geometric. In particular, we do not appeal to available results in the (already rich) non-archimedean pluripotential theory.

The paper is organized as follows: Throughout, we provide proofs only for statements that are new in the non-archimedean
setting. When we explicilty state known results (without proofs), we do so for convenient reference. In Section 2 we gather
the necessary background in potential theory on the Berkovich projective line, although we do not always present all details.
So this section is mainly a survey, but a few results therein are new in the non-archimedean setting (or at least not explicitly
stated in the existing literature). Our first major result is the Brelot-Cartan principle (Theorem 3.2), proved in Section 3.
In the proof of this principle we use the Choquet topological lemma, which requires the underlying topological space to be
Hausdorff and second countable. So we assume the existence of a countable base of open sets for the Berkovich topology on
P

1, which is anyway compact, and hence Hausdorff. The second countability assumption is only made in this section and is
not necessary for other results in our paper (which do not rely on the non-archimedean Brelot-Cartan principle, either). In
Section 4 we fix a point ζ ∈ P1 (not necessarily equal to∞) and, for a set E such that E ⊂ P1 \ {ζ}, we define a suitable class of
subharmonic functions on P1 \ {ζ} (an analog of the Lelong class) and then study properties of its supremum QE . This func-
tion is a non-archimedean analogue of the Leja-Siciak-Zaharjuta extremal function; we prove several results that justify this analogy.

Our main result is the equality between the upper semicontinuous regularization Q∗E of QE and the Green function for E
relative to ζ when E has positive capacity. In Subsection 4.2 we compare the non-archimedean case with the (one-dimensional,
complex) classical case. This comparison also has a survey character, with some historical notes. As a new insight, we point out
that a proof of the equality between the upper semicontinuous regularization of the Siciak-Zaharjuta function and the Green
function can be obtained in the same way as in our non-archimedean proof, instead of relying on separate identities of these two
functions with the Leja extremal function.

2 Foundations of potential theory on the Berkovich projective line
This section recalls background notions and results developed by other researchers in potential theory on the Berkovich projective
line (following mostly [3]), and so it can be skipped by readers familiar with the material. However, Proposition 2.10 is a new
result in the Berkovich setting.
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2.1 Berkovich projective line as a topological space

Let K be an algebraically closed field (possibly of characteristic > 0) that is complete with respect to a non-trivial and non-
archimedean absolute value | · |. The Berkovich projective line P1 = P1(K) is the Berkovich analytification of the (classical)
projective line P1 = P1(K) = K ∪ {∞}. Each point in P1 corresponds to an equivalence class of multiplicative seminorms on the
polynomial ring K[X , Y ] extending the absolute value | · |. The Berkovich upper half space is H1 =H1(K) := P1 \ P1. Taking into
account the correspondences between points, seminorms and sequences of disks, the points in P1 can be further classified into
four types, with P1 being the set of all points of type I. For some fields K the set of points of type IV in P1(K) may be empty. For
further details see Chapter 2 of [3], or [13].

We will work only with the Berkovich topology on the Berkovich projective line (also called the weak topology). A basis
for this topology is given in Proposition 2.7 in [3], while neighborhood bases for the four types of points are described in the
discussion after Lemma 2.28 in that book. It follows that P1 with the Berkovich topology is locally connected. In particular, the
connected components of open sets are open. We will use this property several times in this paper. Also, P1 with the Berkovich
topology is uniquely arcwise connected ([3], Lemma 2.10).

Potential theory on the Berkovich projective line makes extensive use of the tree structure on P1. We will not present here the
definition or general properties of this tree structure, even though it enters the formulation of some definitions and results we
need. For details, we refer the reader to [3] or [13].

Definition 2.1. (i) (cf. p. 39, [3]) Let {ζ1, ...,ζn} ⊂H1 be a finite set of points. The finite subgraph with endpoints {ζ1, ...,ζn} is
the intersection of all subtrees of P1 containing the set {ζ1, ...,ζn}.
(ii) (cf. Definition 2.27, [3]) A simple domain is a domain U ⊂ P1 such that ∂ U is a nonempty finite set {ζ1, ...,ζn} ⊂H1, where
each ζi is of type II or III.

Proposition 2.1. (Corollary 7.11, [3]): If U ⊊ P1 is a domain, then U can be exhausted by a sequence V1 ⊂ V2 ⊂ ... of strict simple
domains (i.e., simple domains with boundary points all of type II) such that Vn ⊂ Vn+1 for all n.

Although the Berkovich topology on P1 is not metrizable in general, an analog of the chordal metric plays an important
role in the potential theory. Namely, the spherical kernel, or the Hsia kernel [x , y]g on P1 with respect to the Gauss point g
(a distinguished point in the Berkovich unit disk) is the unique upper semicontinuous and separately continuous extension to
P

1 ×P1 of the chordal metric

[z, w] =
|x1 y2 − x2 y1|

max{|x1|, |y1|}max{|x2|, |y2|}

defined for z = (x1 : y1), w = (x2 : y2) in P1 ×P1. More generally, for each ζ ∈ P1, the generalized Hsia kernel on P1 with respect
to ζ is defined as

[x , y]ζ := [x , y]g/([x ,ζ]g[y,ζ]g) on P1 ×P1.

Note that the kernel function [x , y]ζ satisfies the strong triangle inequality

[x , y]ζ ≤max
�

[x , z]ζ, [z, y]ζ
	

for any x , y, z ∈ P1.

Let us fix a ζ ∈ P1. The generalized spherical kernel [·, ·] = [·, ·]ζ has the following properties: (cf. §4.3 in [3]): (i)
0≤ [x , y]≤ 1 (Formula 4.19)
(ii) (Proposition 4.7 (A), [3]) [·, ·] is continuous on the complement of the diagonal and at every (x , x) ∈ P1 × P1;
(iii) (Proposition 4.7 (D), [3]) For each a ∈ P1 and r ∈ R, the closed ball B(a, r) := {x ∈ P1 : [x , a]≤ r} is connected and closed
in the Berkovich topology. It is empty if r < [a, a] and coincides with B(b, r) for some b ∈ P1 if r > [a, a] =: diam(a) or if
r = diam(a) and a is of type II or III. If r = diam(a) and a is of type I or IV, then B(a, r) = {a}.

Finally, for an arbitrary function f : P1→ R we define its upper semicontinuous regularization as f ∗(z) := lim supy→z f (y).

2.2 Subharmonic functions

In this subsection we recall the basics on harmonic and subharmonic functions on the Berkovich projective line. We need to intro-
duce the Laplacian onP1, but the available definitions are all quite involved, so we will only outline the theory, mostly following [3].

Let Γ be a finite subgraph in P1 (viewed as a metric graph with the path distance ρ on P1; see Section 2.7 in [3] for the
definition of ρ).

Definition 2.2. (see Section 3.2 in [3]) A function f : Γ → R is piecewise affine on Γ if there is a set S f ⊂ Γ such that (i) Γ \ S f is
a union of intervals, each of which has two distinct endpoints in Γ and (ii) f is affine on each interval in Γ \ S f with respect to its
arclength parametrization. By C PA(Γ ) we denote the class of continuous, piecewise affine real-valued functions on Γ .

For a point x ∈ P1 the set P1 \ {x} does not have to be connected. The connected components of P1 \ {x} can be identified
with the tangent directions v⃗ ∈ Tx at x , defined as certain equivalence classes of paths emanating from x (see Appendix B of [3]
and the end of Section 3.1 in [3]). For any function f ∈ C PA(Γ ), any p ∈ Γ and any tangent direction v⃗ to Γ at p, the directional
derivative dv⃗ f (p) := limt→0+

f (γ(t))− f (p))
t , where γ is a representative path emanating from p, exists and is finite.
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The Laplacian ∆ is first defined for f ∈ C PA(Γ ), as

∆( f ) := −
∑

p∈Γ

�

∑

v⃗∈Tp(Γ )

dv⃗ f (p)
�

δp,

where δp denotes the Dirac measure at p. Then the class of functions BDV (Γ ) is defined (see Section 3.5 in [3]) and the
Laplacian ∆Γ ( f ) is defined for f ∈ BDV (Γ ) (Theorem 3.6 in [3]) extending the operator ∆. That is, ∆Γ ( f ) = ∆( f ) when
f ∈ C PA(Γ )(⊂ BDV (Γ )).

Let U ⊂ P1 be a domain. Using the natural retraction maps rU ,Γ for each finite subgraph Γ ⊂ U (see Section 2.5 in [3]), the
Laplacian is extended to ∆U ( f ) for functions f in the class BDV (U) (for the precise definitions, see Definitions 5.11 and 5.15 in
[3]). Each such ∆U( f ) is a finite signed Borel measure on U . One further defines ∆U( f ) :=∆U( f )|U and ∆∂ U( f ) :=∆U( f )|∂ U
for f ∈ BDV (U).

Example (Example 5.19, [3]): Fix ζ ∈ P1 and y ̸= ζ. Let f (x) := − log[x , y]ζ. Then f ∈ BDV (P1) and ∆P1( f ) =
δy(x)−δζ(x).

Let U be an open set in P1.

Definition 2.3. (Definition 8.1, [3]) (i) A function f : U → [−∞,∞) is subharmonic in U if for each x ∈ U there is a
domain Vx ⊂ U with x ∈ Vx such that f ∈ BDV (Vx), ∆Vx

( f ) ≤ 0, f is upper semicontinuous in Vx , and for each z ∈ Vx ∩ P1,
f (z) = limsupVx∩H1∋y→z f (y).
(ii) A function f : U → R is harmonic in U if and only if f and − f are subharmonic in U .

Many properties of harmonic and subharmonic functions known from the classical potential theory hold also in the Berkovich
setting. We now list those which will be used later in the paper.

Proposition 2.2. (Maximum principle; Proposition 8.14 (B) in [3]) Let U ⊊ P1 be a domain and let f be a subharmonic function in
U. Then, if M ∈ R is such that, for each y ∈ ∂ U, limsupU∋z→y f (z)≤ M, then f (z)≤ M for all z ∈ U.

Proposition 2.3. (Proposition 8.26 (E) in [3]) Let U ⊂ P1 be an open set and let 〈 fα〉α∈A be a net of subharmonic functions in U
which is locally uniformly bounded from above. Put f (x) = supα∈A fα(x). Then f ∗ is subharmonic in U and f ∗(x) = f (x) for all
x ∈ U ∩H1.

Proposition 2.4. (Harnack’s inequality; Lemma 8.33, [3]) Let U ⊂ P1 be a domain. then for each x0 ∈ U and each compact set
X ⊂ U there is a constant C = C(x0, X ) such that for each function which is harmonic and nonnegative in U, each x ∈ X satisfies

(1/C) · h(x0)≤ h(x)≤ C · h(x0).

The default topology on the set SH(U) of subharmonic functions in a domain U ⊂ P1 is that of pointwise convergence on
U ∩H1. The space M+(U) of positive locally finite Borel measures on U can be given the following topology: a net of measures
〈µα〉α∈A in M+(U) converges (weakly) to a measure µ ∈M+(U) if and only if

∫

f dµα→
∫

f dµ for all f ∈ Cc(U). Here Cc(U)
is the space of all continuous functions f : U → R for which there exists a compact subset X f ⊂ U such that f |U\X f

≡ 0. The
following continuity result will be used.

Proposition 2.5. (Theorem 8.44, [3]) Let SH(U) and M+(U) be the topological spaces as described above. Then the operator
−∆U : SH(U)→M+(U) is continuous.

Here we also recall, in a general framework, a useful consequence of weak convergence.

Proposition 2.6. (cf. Formula (5.1.15) in [1] for sequences of positive Radon measures in metric spaces) Let X be a locally compact
Hausdorff space, f be a nonnegative lower semicontinuous function on X , and 〈µα〉α∈A be a net of positive Radon measures on X
converging weakly to a positive Radon measure µ on X . Then

lim inf
α

∫

f dµα ≥
∫

f dµ.

Proof. By Proposition A.3 in [3],
∫

f dµ= sup
�

∫

gdµ : g ∈ Cc(X ), 0≤ g ≤ f
	

,

where the class Cc is defined as above. Then

lim inf
α

∫

f dµα ≥ sup
g∈Cc (X ),0≤g≤ f

lim inf
α

∫

gdµα = sup
g∈Cc (X ),0≤g≤ f

∫

gdµ=

∫

f dµ.

In the literature on subharmonic functions in the Euclidean space various (related) results are referred to as a “Hartogs
lemma”. Some of them have their non-archimedean counterparts.

Dolomites Research Notes on Approximation ISSN 2035-6803



Stawiska 77

Proposition 2.7. (Proposition 8.54 in [3]) Let U ⊂ P1 be a domain and let {gn} be a sequence of functions subharmonic in U.
Suppose that the functions gn are uniformly bounded from above in U. Then one of the following holds:
(i) there is a subsequence {gnk

} which converges uniformly to −∞ on each compact subset of U, or (ii) there is a subsequence {gnk
}

and a function G subharmonic in U such that gnk
converge pointwise to G in U ∩H1 and such that for each continuous function

f : U → R and each compact subset X ⊂ U,

lim sup
k→∞

�

sup
z∈X
(gnk
(z)− f (z))
�

≤ sup
z∈X
(G(z)− f (z)).

Corollary 2.8. (cf. Theorem 1.31 and Corollary 1.32 in [17] in the Euclidean case; see also [14], Theorem 2.6.4)) Let U ⊂ P1 be
a domain and let {gn} be a sequence of functions subharmonic in U uniformly bounded from above in U. Suppose (possibly after
passing to a subsequence) that gn converge pointwise on U ∩H1 to a function G subharmonic in U.
(i) Suppose further that for some compact set X ⊂ U there is a constant C = C(X ) such that (limsupn→∞ gn(x))∗ ≤ C on X . Then for
every ϵ > 0 there is an n0 = n0(ϵ, X ) such that for every n≥ n0 and every x ∈ X we have gn(x)≤ C + ϵ. (ii) More generally, under
the above asumptions, let F be a function continuous on X such that (limsupn→∞ gn(x))∗ ≤ F(x) on X . Then for every ϵ > 0 there is
an n0 = n0(ϵ, X ) such that for every n≥ n0 and every x ∈ X we have gn(x)≤ F(x) + ϵ.

Proof. For (i), let cn := supz∈X gn(z) and let ϵ > 0. By the inequality from part (ii) of Proposition 2.7, (limsupn→∞ gn(x))∗ ≤ C
on X with C := supz∈X G(z). Take an n0 such that for every n ≥ n0, cn ≤ limsupn→∞ cn + ϵ. Then cn ≤ C + ϵ. Part (ii) follows
from (i) by observing that F is uniformly continuous on X (taking into account the unique uniform structure on P1 compatible
with the Berkovich topology; see Appendix A.9, [3]).

Here are some results on convergence of harmonic functions in open subsets of P1.

Proposition 2.9. (Proposition 7.31, [3]) Let U be an open subset of P1. Suppose f1, f2, ... are harmonic on U and converge pointwise
to a function f : U → R. Then f is harmonic in U and the fi converge uniformly to f on compact subsets of U.

Proposition 7.34 in [3] gives a non-archimedean Harnack principle for a sequence 0≤ h1 ≤ h2 ≤ ... of harmonic functions
on a domain Ω ⊂ P1. Theorem 4.7.2 in [24] is slightly more general, since it does not require the sequence to be non-negative.
A similar result is Proposition 3.1.2 in [23], while Proposition 3.1.3 and Corollary 3.3.10 in [23] are equicontinuity results for
locally uniformly bounded families of harmonic functions. Here we offer an even more general variant of the Harnack principle,
for a family F of harmonic functions on a domain Ω ⊂ P1 that is locally uniformly bounded from below in Ω but not necessarily
uniformly bounded from below in Ω, countable or increasing. This is a new result in the non-archimedean setting.

Proposition 2.10. (cf. [2], Theorem 1.5.11 in the classical case) Let Ω ⊂ P1 be a domain and let F be a family of harmonic functions
on Ω which is locally uniformly bounded from below. Then either supF ≡ +∞ in Ω or F is uniformly bounded and uniformly
equicontinuous on every compact subset E ⊂ Ω.

Proof. If supF ̸≡ +∞, then we can fix an x0 ∈ Ω such that supF(x0)< +∞. Let E ⊂ Ω be a compact set and let V ⊂ P1 be a
domain such that E ∪ {x0} ⊂ V ⊂ V ⊂ Ω. The family F is uniformly bounded from below on V , so without loss of generality we
can assume that all functions in F are positive on V . By Proposition 2.4, there is a constant C = C(E, x0) such that, for every
f ∈ F and every x ∈ E, 0< f (x)< C < +∞. Hence F is uniformly bounded on E. Further, the right side of the inequality in
Proposition 2.4 is the same as Axiom III2 of [18]. By the Theorem of [18], the family F of positive functions is equicontinuous in
a compact neighborhood of x0.

2.3 The Green function

In this section, we fix the base q > 1 of logarithms which occur in the definition of potentials. Typically this is done so that the
absolute value | · | coincides with the modulus of the Haar measure on the additive group of K . When K = Cp, p prime, one takes
q = p (see Example 6.4 in [3]).

Definition 2.4. ([3], Section 6.3) Fix ζ ∈ P1 and let ν be a positive measure on P1. The potential of ν with respect to ζ is the
function

uν(x ,ζ) =

∫

− log[x , y]ζdν(y).

Remark (Example 8.8, [3]): If ν is a probability measure on P1 and ζ ̸∈ supp ν, then the potential uν(·,ζ) is strongly
subharmonic in P1 \ supp ν, while −uν(·,ζ) is strongly subharmonic in P1 \ {ζ}.
Proposition 2.11. (Theorem 8.38, [3]: Riesz decomposition theorem) Let V be a simple subdomain of an open set U ⊂ P1. Fix
ζ ∈ P1 \ V . Suppose f is subharmonic in U and let ν be the positive measure ν = −∆V ( f ). Then there is a function hV which is
continuous in V , harmonic in V and such that f (z) = hV (z)− uν(z,ζ) for all z ∈ V .

Let now E ⊂ P1 be a compact subset such that ζ ̸∈ E and let ν be a probability measure with support contained in E. Following
Section 6.1, [3], we define a few basic notions.

Definition 2.5. The energy of ν with respect to ζ is

Iζ(ν) =

∫

E

uν(x ,ζ)dν(x).
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Varying ν over all probability measure with support in E we further define

Definition 2.6. The Robin constant of E with respect to ζ is

Vζ(E) = inf
ν

Iζ(ν)

and the (logarithmic) capacity of E is

capζ(E) = q−Vζ(E).

Remark: Unlike in the classical setting, there are finite subsets of Berkovich line with positive capacity: in fact, for every
a ∈H1 and ζ ̸= a, capζ({a}) = diamζ(a)> 0.

Remark: Other capacitary notions can be defined for subsets of P1 (see Section 6.4 of [3]). While they coincide for compact
subsets (Theorem 6.24 in [3]), they may differ for non-compact subsets (Remark 6.25 in [3]).

Proposition 2.12. (Corollary 6.17, [3]): Let {en}n∈N be a countable collection of Borel subsets of P1 \ {ζ} such that each en has
capacity 0. Let e =

⋃

n∈N en. Then e has capacity 0.

If E is compact and capζ(E) > 0, there is a (unique) probability measure µζ supported on E for which Vζ(E) = Iζ(µζ)
(Propositions 6.6 and 7.21 in [3]).

Definition 2.7. The measure µζ is called the equilibrium measure of E with respect to ζ. If ζ ̸∈ E, the Green function of E with
respect to ζ is

G(z,ζ, E) := Vζ(E)− uµζ(z,ζ).

We recall here several known properties of the Green function of a compact set E ⊂ P1 \ {ζ} with positive capacity. Let Dζ
denote the connected component of P1 \ E containing ζ.

Proposition 2.13. (Proposition 7.37, [3]) (i) G(z,ζ, E) is finite for every z ∈ P1 \ {ζ}.
(ii) G(z,ζ, E)≥ 0 for every z ∈ P1 and G(z,ζ, E)> 0 for every z ∈ Dζ.
(iii) G(z,ζ, E) = 0 on P1 \ Dζ except on a (possibly empty) set e ⊂ ∂ Dζ of capacity zero.
(iv) G(z,ζ, E) is continuous on P1 \ e.
(v) G(z,ζ, E) is subharmonic on P1 \ {ζ} and (strongly) harmonic on Dζ \ {ζ}. For every a ̸= ζ, G(z,ζ, E)− log[z, a]ζ extends to a
function harmonic in a neighborhood of ζ.
(vi) G(z,ζ, E) = G(z,ζ,P1 \ Dζ) = G(z,ζ,∂ Dζ).
(vii) If E1 ⊂ E2 are two sets of positive capacity, then G(z,ζ, E1)≥ G(z,ζ, E2).

3 Brelot-Cartan principle
In this section we will work under an additional topological assumption, namely that of the second countability of the Berkovich
topology. This is restrictive but still reasonable. On one hand, when there exists a countable base of open sets for the Berkovich
topology on P1, the underlying valued field is necessarily separable as a topological space. The precise conditions characterizing
such fields are not known but, as observed in [19], separability may fail even if the residue field and the value group are both
countable. On the other hand, for the fields Cp, p prime (which are separable; see discussion before Corollary 1.20 in [3]), such
a countable base exist. For some results related to countability of the topologies on P1 see [8] and [12]. The second countability
of the Berkovich topology allows us to apply the following lemma:

Lemma 3.1. (Choquet topological lemma; for this formulation and its proof see [6], A.VIII.3) Let {uι}ι∈I be a family of functions
from a second countable Hausdorff space to [−∞,+∞]. For a J ⊂ I , define uJ = supι∈J u. Then there is a countable subset J ⊂ I
such that (uJ )∗ = (uI )∗, where v∗(x) = limsupy→x v(y).

Using the Choquet topological lemma we can prove the Brelot-Cartan principle. It was first proved in [4] (in connection with
Dirichlet regularity) and [5] (in a more general context). Our formulation and the general strategy of proof follows the classical
version as presented in [2], Theorem 5.7.1 (ii) and (iii).

Theorem 3.2. Let Ω ⊊ P1 be a domain and {uι}ι∈I be a family of functions subharmonic on Ω which is locally uniformly bounded
from above. Let u= supι∈I uι . Then the set {x ∈ Ω : u(x)< u∗(x)} has capacity zero.

Proof. By Proposition 2.1, every domain different from P
1 can be exhausted by a sequence V1 ⊂ V2 ⊂ ... of (strict) simple domains

such that Vn ⊂ Vn+1 ⊂ Ω for each n. Since u(x) = u∗(x) in Ω ∩H1, it is enough to prove that for any simple domain V ⊂ Ω
any compact subset of {x ∈ V : u(x) < u∗(x)} has capacity zero. So let us fix a point ζ ̸∈ Ω and take a simple domain V such
than V ⊂ Ω. By Lemma 3.1 there is a sequence (un) ⊂ {uι}ι∈I such that u∗ = v∗, where v = supn∈N un. By Proposition 2.3, v∗ is
subharmonic. Defining vn =max{u1, ..., un} we get an increasing sequence (vn) of subharmonic functions with limit v in Ω. By
Proposition 2.5, the positive measures µn := −∆V (vn) converge weakly to the positive bounded measure µ := −∆V (v∗).
Consider the potentials pµn

(z,ζ) =
∫

− logδ(z, w)ζdµn(w). Since the function − logδ(z, w)ζ is lower semicontinuous and bounded
below on V , we have by Proposition 2.6 that lim infn→∞ pµn

≥ pµ on V .
By Proposition 2.11, for every n there exists a function hn continuous on V and harmonic on V such that vn = hn − pµn

. The
functions hn, n = 1, 2, ... are locally uniformly bounded below on V . Indeed, hn ≥ v1 + pµn

for every n. If C is a compact subset of
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V and x ∈ C , then there is an N > 0 such that for every n≥ N , hn(x)≥ v1(x)+ lim infn→∞ pµn
− 1

2 ≥ (v1)∗(x)+ pµ(x)−
1
2 . Taking

infimum over x ∈ C on both sides of the inequality, we get hn ≥ infC (v1)∗ + infC pµ ·µ(C)−
1
2 on C for every n≥ N , and hence a

common lower bound on C for all hn. By Proposition 2.10, there exists a subsequence (hnk
) that converges locally uniformly to a

(continuous) harmonic function h on V . Since vnk
→ v and hnk

→ h, then also pµnk
converge as k→∞ and limk→∞ pµnk

≥ pµ on
V .
We have v(x) = h(x) − limk→∞ pµnk

(x) ≤ h(x) − pµ(x) = v∗(x) in V , so it is enough to prove that the set E = {x ∈ V :
limk→∞ pµnk

(x) > pµ(x)} has capacity zero. Suppose there is a compact subset F ⊂ E such that capζF > 0. Let ν be the
equilibrium measure on F with respect to ζ. Then, by continuity of pν on F ′ ⊂ F with capζF

′ > 0, portmanteau theorem and
Fatou’s lemma,

∫

F ′
pµdν=

∫

F ′
pνdµ= lim

k→∞

∫

F ′
pνdµnk

= lim
k→∞

∫

F ′
pµnk

dν≥
∫

F ′
lim

k→∞
pµnk

dν>

∫

F ′
pµdν,

which is a contradiction. Hence E has capacity zero. Since v ≤ u and u∗ = v∗, the set {x : u(x) < u∗(x)} is a subset of
{x : v(x)< v∗(x)} and also has capacity zero.

Remark 1. In Proposition 8.26 (E) of [3] it was shown that u(x) = u∗(x) for every x ∈H1. The Brelot-Cartan principle in the
Berkovich setting refines this relation, since nonempty subsets of H1 have positive capacity.

4 The extremal function

4.1 An upper envelope

Fix a point ζ ∈ P1. Define the following:

Definition 4.1.

L= L(ζ) :=
�

u : u is subharmonic in P1 \ {ζ},∀a ̸= ζ u− log[z, a]ζ extends to a function subharmonic in P1 \ {a}
	

.

Definition 4.2. Let ζ and L(ζ) be as in Definition 4.1 and let E ⊊ P1 \ {ζ} be nonempty. Define

S 7→QE(S) := sup{u(S) : u ∈ L, u|E ≤ 0}.

We call QE the L-extremal function (relative to ζ) associated to E.

Proposition 4.1. If E has positive capacity, then the class of functions defining QE is not empty.

Proof. If E ⊂H1, then the Green function G(·,ζ, E) of E relative to ζ is in L and G(·,ζ, E) = 0 on E. If E ∩ P1 ̸= ;, take a point
a ∈ E ∩P1 and r ≥ supz∈E[z, a]. The function (log[z, a]ζ − log r)+ :=max{log[z, a]ζ − log r, 0} is then in L, and it is non-positive
on E.

The following property holds (for the classical analog, see [14], Corollary 5.1.2).

Proposition 4.2. If E1 ⊃ E2 ⊃ ... is a sequence of nonempty sets in P1 \ {ζ} and E =
⋂

n→∞ En, then QE = limn→∞QEn
.

Proof. Since QE1
≤ ...≤QEn

≤ ...≤QE , the limit limn→∞QEn
exists and does not exceed QE . Conversely, for an u ∈ L and an ϵ > 0

the open set {u< ϵ} is a neighborhood of E containing En for all sufficiently large n. Hence for those n, u−ϵ ≤QEn
≤ limn→∞QEn

.
Since ϵ was arbitrary, QE ≤ limn→∞QEn

.

Having fixed a point ζ ∈ P1, we can compute an example of the function Q. Let a ∈ P1 \ {ζ}, r ∈ (diamζ(a), diamζ(ζ)) and
let Br = B(a, r)ζ := {z : [z, a]ζ ≤ r}. When a ∈H1, the bounds on r guarantee that Br ̸= ; and Br ̸= P1.

Proposition 4.3. (cf. Property 2.6 in [22], Example 5.1.1 in [14], Théorème 3.6 in [26])

QBr
(z) =max{log[z, a]ζ − log r, 0}= (log[z, a]ζ − log r)+.

Proof. Recall that, by Formula 5 in Section 5.2 of [20], the function on the right-hand side is the Green function of Br . Arguing
like in Proposition 4.1, we get that (log[z, a]− log r)+ ≤ QBr

(z). In the reverse direction, let v ∈ L = L(Br ,ζ). The function
v(z)− log[z, a]ζ + log r extends to a subharmonic function in Ar = P1 \ Br . By Remark 4.13 in [3]), the set Ar is the connected
component of P1 \ {x r} containing ζ, where x r is the unique point on the path from a to ζ with diamζ(x r) = r. Moreover,
v(z)− log[z, a]ζ+ log r ≤ 0 on ∂ Br = ∂ Ar , and so by the maximum principle v(z)− log[z, a]ζ+ log r ≤ 0 in Ar . Hence on P1 \{ζ}
we have v(z)≤ log[z, a]ζ − log r and finally QBr

≤ (log[z, a]− log r)+.

The behavior of locally uniformly bounded families in L is analogous to what happens in CN . Namely, the following holds:

Proposition 4.4. (cf. [14], Proposition 5.2.1; [22], Theorem 3.5; [26], Lemme 3.10) Let U ⊂ L= L(ζ) be a non-empty family, let
u= sup{v : v ∈ U} and let Ω be a connected component of P1 \ {ζ}. If the set A= {z ∈ Ω : u(z)< +∞} has nonzero capacity, then
the family U is locally uniformly bounded from above in Ω. If moreover U is locally uniformly bounded from above in P1 \ {ζ}, then
u∗ ∈ L.
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Proof. Suppose U is not locally uniformly bounded in Ω. Then there exists a simple domain V ⊂ V ⊂ Ω and a sequence (u j)
in U such that m j := supV u j ≥ 2 j for every j ∈ N. We have u j ≤ m j +QV on P1 \ {ζ} for every j ≥ 1. Fix a simple domain V ′

such that V ⊂ V ′ ⊂ Ω. The family (u j −m j) j∈N is uniformly bounded in V ′. We claim that there exists an x0 ∈ V ′ such that
limsup j→∞ u j(x0) > −∞. Suppose to the contrary that limsup j→∞ u j ≡ −∞ in V ′. Then limsup j→∞ exp[u j(x0)−m j] ≡ 0 in
V ′, so lim j→∞ exp[u j(x0)−m j]≡ 0 in V ′. Note that all functions exp[u j(x0)−m j] are subharmonic (by Corollary 8.29 in [3])
and have an uniform upper bound in V ′. Hence, by Proposition 2.7 and Corollary 2.8, there exists a subsequence (u jn) and an
n0 ≥ 1 such that supV ′ exp[u jn (x0)−m jn]≤ 1/2 for every n≥ n0. Taking natural logarithm of both sides of this inequality we get
a contradiction with the definition of m j . The claim allows us (passing to a subsequence of u j if necessary) to fix an x0 ∈ Ω and
an ϵ > 0 such that u j(x0)−m j > logϵ for every j ≥ 1. Define next

v(x) =
∞
∑

j=1

1
2 j
(u j(x)−m j)

for every x ∈ P1 \ {ζ}. Note that on every simple subdomain of Ω the function v is the limit of a uniformly convergent sequence
of subharmonic functions. Therefore (by Proposition 8.26 (C) in [3]) v is subharmonic in Ω. If x ∈ A∩Ω, then sup j u j(x)< +∞,
and so v(x) = −∞, while v(x0)≥ logϵ > −∞. Hence, by Corollary 8.40 in [3], A∩Ω has capacity zero.
Now, if the family U is locally uniformly bounded in P1 \ {ζ}, then by Proposition 2.3, u∗ is subharmonic on P1 \ {ζ}. Let us fix
arbitrarily an a ∈ P1 \ {ζ} and a simple subdomain W of P1 \ {a}. Let h be a harmonic function in W such that u∗ − log[·, a]ζ ≤ h
on ∂W . Then for every v ∈ U , v− log[·, a]ζ ≤ h on ∂W . By Theorem 8.19 in [3] or Corollary 3.1.12 in [23] , v− log[·, a]ζ ≤ h in
W (when ζ ∈W , we consider the subharmonic extension of v − log[·, a]ζ to W ), so u≤ log[·, a]ζ + h in W . Since log[·, a]ζ + h is
continuous as a function of z ∈W , we also have u∗ ≤ log[·, a]ζ + h in W and so (again by Theorem 8.19 in [3]), u∗ − log[·, a]ζ
extends as a subharmonic function in W . Hence u∗ ∈ L.

Corollary 4.5. (cf. Corollary 3.9 in [22], Theorem 5.2.4 in [14]) For a nonempty E ⊂ P1 \ {ζ} the following are equivalent:
(i) There exists a function v subharmonic in P1 \ {ζ} such that E ⊂ {x : v(x) = −∞}.
(ii) The capacity of E equals zero.
(iii) There exists a function w ∈ L(ζ) such that E ⊂ {x : w(x) = −∞}.

Proof. The implication (iii) ⇒ (i) is obvious and (i) ⇒ (ii) is Corollary 8.40 in [3]. Applying Proposition 4.4 to the family
U = {w ∈ L : w|E ≤ 0} yields (ii)⇒ (iii).

Remark: For a compact set F ⊂ P1 \ {ζ} one can also directly construct a function w of class L(ζ) such that F ⊂ {w= −∞}.
For N ∈ N let PN denote a pseudopolynomial PN (z) =

∏N
i=1[z, ai]ζ with a1, ..., aN ∈ F . For every k ∈ N, let us pick a real number

pk ≥ 0 and a(k)1 , ..., a(k)Nk
∈ F such that
∑∞

k=1 pk = 1 and the function

w(z) :=
∞
∑

k=1

pk

� 1
Nk

log PNk
(z)
�

is the negative of an Evans function for F (see Lemma 7.18 in [3]). It is easy to see that w ∈ L(ζ).

Let E ⊂ P1 \ {ζ} be an arbitrary compact with positive capacity and let G(·,ζ, E) := VE − pνζ(·) be the Green function with
pole at ζ (see subsection 2.3). Our goal is to show that the equality Q∗E = G(·, E,ζ) holds. From Proposition 4.3 we already know
it for a class of sets Br . Now we will establish it in another important special case, that of the complement of a simple domain.
Note that in these special cases QE is continuous, so QE =Q∗E .

Proposition 4.6. Let V ⊂ P1 be a simple domain such that ζ ∈ V . Then QP1\V (·) = G(·,P1 \ V,ζ). In particular, the function QP1\V
is continuous in P1 \ {ζ} and strongly harmonic in V \ {ζ}.

Proof. For z ∈ P1 \ V , QP1\V (z) ≤ 0 = G(z,P1 \ V,ζ). Fix an a ̸∈ V . By Proposition 4.4, the function Q∗
P1\V − log[·, a]ζ has

subharmonic extension to V . Note that QP1\V = Q∗
P1\V on ∂ V , since ∂ V ⊂ H1. Then Q∗

P1\V (z)− log[z, a]ζ − (G(z,P1 \ V,ζ)−
log[z, a]ζ) ≤ 0 on ∂ V . Using the maximum principle we get that QP1\V (·) ≤ G(·,P1 \ V,ζ) in V \ {ζ}. In the other direction,
G(·,P1 \ V,ζ) ∈ L(P1 \ V,ζ) and G(·,P1 \ V,ζ)|P1\V = 0. Hence in P1 \ {ζ} we have QP1\V (·) = G(·,P1 \ V,ζ).

Now we are ready to prove the general case.

Theorem 4.7. For an arbitrary compact set E ⊂ P1 \ {ζ} of positive capacity, G(·,ζ, E) =Q∗E(·) in P1 \ {ζ}.

Proof. Note first that QP1\Dζ =QE , where Dζ is the connected component of P1 \ E containing ζ. Indeed, let U be a connected
component of P1 \ E not containing ζ and let u ∈ L(E,ζ). By the maximum principle, u≤ 0 on U . Hence u≤ 0 on P1 \ Dζ, which
shows that QP1\Dζ ≥ QE (the other inequality is obvious). Since G(·,ζ, E) = G(·,ζ,P1 \ Dζ), it is thus enough to establish the
equality in the theorem for sets E = P1 \ D of positive capacity, where D ⊊ P1 is a domain containing ζ.

For such a domain D consider an exhaustion by simple domains V1 ⊂ V2 ⊂ ... such that Vn ⊂ Vn+1 and let Fn := P1 \ Vn. Then,
by Proposition 4.6, Gn := G(·,ζ, Fn) =QFn

. By Proposition 4.2, QE = limn→∞ Gn ≤ G(·,ζ, E).
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It remains to prove that G(·,ζ, E) ≤ Q∗E in P1 \ {ζ}. Let e ⊂ ∂ D be the (possibly empty) set of capacity zero such that
G(z,ζ, E)> 0 for all z ∈ e. Then G(·,ζ, E)≤QE\e. By Corollary 4.5, there exists a function v ∈ L such that e ⊂ K := {z ∈ P1 \{ζ} :
v(z) = −∞}. Without loss of generality we can assume that v ≤ 0 on E. Let u ∈ L be such that u ≤ 0 on E and let ϵ > 0 be
arbitrary. Then u+ ϵv ≤ QE\e. Letting ϵ→ 0 we get that QE ≤ QE\e (and hence QE = QE\e) outside the set K, which has zero
capacity. Hence also G(·,ζ, E)≤QE ≤Q∗E outside K . Let now z ∈ K . By Remark 7.38 in [3], we have

G(z,ζ, E) = limsup
H1∋y→z

G(y,ζ, E) = lim sup
H1∋y→z

QE(y)≤ limsup
x→z

QE(x) =Q∗E(z),

which completes the proof.

Corollary 4.8. QE = RE := sup{u ∈ L′, u|E ≤ 0}), where

L′ :=
�

u : u is subharmonic in P1 \ {ζ},∀a ̸= ζ u− log[z, a]ζ extends to a function harmonic in P1 \ {a}
	

.

Proof. With the notation as in the proof of Theorem 4.7,

QE = sup
n

Gn ≤ RE .

The other inequality is obvious.

4.2 Comparison with the classical case

Fix a ζ ∈ P1 and let u ∈ L= L(ζ). For an arbitrary a ̸= ζ, rewrite

u(z)− log[z, a]ζ = u(z)− log
� [z, a]g
[z,ζ]g[a,ζ]g

�

As z → ζ, we see (by continuity of the Hsia kernel [·, a]g near ζ ̸= a) that lim supz→ζ u(z)− log[z, a]ζ = limsupz→ζ u(z) +
log[z,ζ]g . The limit superior exists, since u(z) − log[z, a]ζ extends to a function which is subharmonic, in particular upper
semicontinuous, in a neighborhood of ζ.

Recall that the spherical kernel [x , y]g is an extension of the chordal metric from P1(K)× P1(K) to P1 ×P1. Consider now
the field C of complex numbers with the standard (archimedean) absolute value and the point ζ =∞∈ P1(C). The chordal
distance [z,∞] equals 1p

1+|z|2
for z ∈ C. The class of all functions u subharmonic in C and such that u(z)≤ 1

2 log(1+ |z|2) + Cu

with a constant Cu dependent only on u is the Lelong class LC on C (an analogous class of plurisubharmonic functions can be
defined on Cn for n> 1). Here we use the natural logarithm. Each difference u(z)− 1

2 log(1+ |z|2) extends to an ω-subharmonic
function v on P1(C) (where ω is the Fubini-Study form) by taking v(∞) = limsupz→∞ u(z)− 1

2 log(1+ |z|2), and the extensions
yield a natural 1-to-1 correspondence between the Lelong class and the class of ω-subharmonic functions. This viewpoint on
Lelong classes was introduced in [11] and it helped launch systematic (and successful) study of pluripotential theory on compact
(complex) Kähler manifolds. Our class L is a non-archimedean analog of the Lelong class, and similarly the class L′ is an analog
of the class L+C = {u ∈ LC : u(z)− 1

2 log(1+ |z|2) =O(1) as z→∞}.

Some extremal functions associated with compact subsets of C are well known because of their usefulness in approximation
theory. In [15], F. Leja introduced the following extremal function:

Let E ⊂ C be a compact set. For an array a(n) = (a(n)0 , ..., a(n)n ), n= 2,3, ... of points in ∂ E (with all a(n)i , i = 0, ..., n pairwise
distinct) define the quantities

M(a(n)) :=
∏

0≤ j<k≤n

�

�

�a(n)j − a(n)k

�

�

� .

Consider an array of Fekete extremal points in ∂ E, that is, an array b(n) = (b(n)0 , ..., b(n)n ), n = 1,2, ... such that M(b(n)) =
maxa(n) M(a(n)) for every n≥ 2. In each row b(n) order the points so that |∆0(b0, ..., bn)| ≤ |∆ j(b0, ..., bn)|, j = 1, 2, ...n, where

∆ j(b0, ..., bn) = (b j − b0)...(b j − b j−1)(b j − b j+1)...(b j − bn), j = 0, 1, ...n.

Let Ln be the Lagrange interpolating polynomial Ln(z) =
(z−b1)...(z−bn)
(b0−b1)...(b0−bn)

. The function

L(z) := lim
n→∞

1
n

log |Ln(z)|

is well defined for all z ∈ C.
Under the assumption that E is a union of (non-degenerate) continua, Leja also proved that L equals the Green function

G(·,∞, E) for E with pole at infinity. In [10], J. Górski (a student of Leja) proved the equality L(·) = G(·,∞, E) for an arbitrary
compact E with positive capacity. In [21], J. Siciak (another student of Leja) defined an analog of the Leja extremal function for
compact subsets of CN . Another extremal function for a compact subset of CN , N ≥ 1, was defined in [25] as

VE(z) := sup{u ∈ L, u|E ≤ 0},
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where (for N > 2) L is the class of all plurisubharmonic functions u with logarithmic growth, u(z)≤ 1
2 log(1+ ∥z∥2) + Cu (the

Lelong class). Proofs that VE = L(·, E) (different ones) were given in [25] for E with VE continuous, and in [22] (Theorem 4.12)
for an arbitrary non-polar compact E (see also [14], Theorem 5.1.7 and, in an even more general setting of algebraic varieties
embedded in CN , [26], Théorème 5.1). It was observed without proof in both [25] (beginning of Section 4) and [22] that
VE(·) = G(·,∞, E) when n= 1.

Note that using our method of proof of Theorem 4.7 one can prove directly that V ∗E (·) = G(·,∞, E) in C, without relying
on the separate equalities of each of these functions with the function L(·, E). As before, we consider G(·,∞, E) as the Robin
constant of the set E minus the equlibrium potential. We can also assume without loss of generality that C \ E is connected.
Recall that in proving the equality GE =Q∗E in the non-archimedean case we took advantage of the possibility of exhausting a
domain with a sequence of subdomains whose boundaries do not contain sets of zero capacity (simple domains). There are
no such subdomains in C with the standard absolute value, where each point has zero logarithmic capacity. Hence different
auxiliary results must be used. First, for a general unbounded domain D ⊂ C we can take (as in [10]) an exhaustion of D
by domains Dn, n ≥ 1, such that, for every n, Dn ⊂ Dn+1, G(·,∞,C \ Dn)|C\Dn

= 0 and Dn → D in the sense of Carathéodory
convergence of domains. Then G(·,∞,C \ D) = limn→∞ G(·,∞,C \ Dn) = limn→∞ VC\Dn

. Second, we need a way to compare
V ∗E∪F with V ∗E for every E bounded and F of zero capacity. In fact, the equality V ∗E∪F = V ∗E holds in CN , N ≥ 1: see Proposition
3.11 in [22] or Corollary 5.2.5 in [14]. With these tools in place, the arguments of Theorem 4.7 go through in the archimedean case.

Finally, let us note that other characterizations of the Green function as the extremal function relative to a class of functions
with certain growth are also available in the classical theory. For example, see [6], formula 1.XIII (18.1) in the logarithmic
potential case; see further [6], Theorem 1.VII.2 in the Newtonian potential case in Rn, n> 2.
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