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Interpolating functions with gradient discontinuities via Variably
Scaled Kernels

Milvia Rossini a

Abstract

In kernel–based methods, how to handle the scaling or the choice of the shape parameter is a well–
documented but still an open problem. The shape or scale parameter can be tuned by the user according
to the applications, and it plays a crucial role both for the accuracy of the method and its stability. In [7],
the Variably Scaled Kernels (VSKs) were introduced. The idea is to vary the scale in a continuous way by
letting the scale parameter be an additional coordinate. In this way a scale function c(x) is introduced and
this allows varying scales without leaving the firm grounds of kernel–based interpolation. In [7] several
numerical experiments are devoted to show that the method performs better than the standard fixed–scale
basis and the proper use of VSKs, i.e. a proper choice of the scale function c, can lead to a more stable
and better shape–preserving approximation. When the scale function c is chosen to depend on critical
shape properties of the data, the interpolant reproduces the underlying phenomenon in a much more
faithful way. This is the starting point of this paper. The goal here is to recover from scattered data, in
one and two dimensions, functions with discontinuities. The paper is devoted to gradient discontinuities
that in general are more difficult to handle. The idea is to use translates of basis functions that change
their smoothness locally according to the position of the discontinuities and we show that this can be
achieved by suitable choices of the scale function.

1 Introduction
Variably Scaled Kernels (VSKs) were introduced in [7] with the aim to give a new technique to handle the problem of the choice
of the scale or shape parameter in kernel–based interpolation problems. There, the authors consider native spaces whose kernels
allow for a change the kernel scale of a d–variate interpolation problem locally, depending on the requirements of the application.
They define a scale function c on the domain Ω ⊂ Rd to transform an interpolation problem from data locations x j in Rd to data
locations (x j , c(x j)) and to use a fixed–scale kernel on Rd+1 for interpolation there. The (d +1)–variate solution is then evaluated
at (x , c(x)) for x ∈ Rd to give a d–variate interpolant with a varying scale.

A large number of examples in [7], shows how this can be done in practice to get results that are better than the fixed–scale
technique, with respect to both condition and error. In fact they work quite well in cases that are spoiled by a considerable
instability of the standard method and they can significantly improve the recovery quality by preserving shape properties and
particular features of the underlying function. Moreover, the background theory coincides with fixed–scale interpolation on the
sub–manifold of Rd+1 given by the points (x , c(x)) of the graph of the scale function c.

VSKs were recently used also in neural networks problems [32], in solving magnetohydrodynamic equations [14], and for
approximating the solution of elliptic partial derivative problems [13]. We will show here that they are a useful tool also when
recovering unknown non-regular functions from set of scattered data.

Surfaces with discontinuities appear in many scientific applications. By function with discontinuities, we mean that the
function or its partial derivatives are discontinuous across planar curves. In the case of function discontinuities, these curves
are known as faults or edges, while when dealing with gradient discontinuities they are called gradient faults and sometimes
oblique faults. In the last decades, the problem has become an attractive field for research, (see e.g. [3, 9, 5, 23, 24, 28, 29, 30])
especially within applications arising from different branches of science going from image processing to geophysics.

The aim of this paper is to show that a proper choice of the scaling function c allows for a faithful interpolation of scattered
data sampled from unknown two-variate functions which exhibit some discontinuous behaviour. We focus on functions with
gradient faults that we believe is the more difficult situation.

The outline of the paper is as follows. In Section 2 we give some preliminary notions. In Section 2.1 we briefly review the
main theoretical aspects of kernel-based interpolation and in Section 2.2, we discuss the role of the shape parameter when kernel
are scaled. In Section 2.3 we describe the VSKs and in Section 3 we show how the scale function can be chosen when interpolating
function with gradient faults. In Section 4 we show several numerical results. Finally, the last section deals with conclusions.
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2 Background

2.1 Preliminaries

The reader can refer to [37] and [17] for more details on the topic. A symmetric kernel

K : Ω×Ω→ R

defined on a domain Ω ⊂ Rd is very useful for a variety of purposes going from interpolation or approximation to PDE solving, if
certain nodes or centers

X =: {x1, . . . , xN} ⊂ Rd

are used to define kernel translates
K(·, x j)

as trial functions.
If the kernel is positive definite, i.e. the kernel matrices with elements K(x i , x j), 1 ≤ i, j ≤ N are positive definite for all

choices of nodes, there is a native Hilbert space H in the background in which the kernel is reproducing, i.e.

g(x) = (g, K(·, x))H ∀x ∈ Ω, g ∈H.

The use of reproducing kernels in Hilbert spaces leads to various optimality properties and applications. Interpolation of values

f := { f1, . . . , fN} on X := {x1, . . . , xN}

proceeds via solving a linear system
AX a = f

with interpolation matrix
AX := (K(x j , xk))1≤ j,k≤N ,

which is positive definite. The coefficient vector a ∈ RN then allows the interpolant function to be written as

sX , f (x) :=
N
∑

j=1

a j K(x , x j). (1)

We remember that, by adding a lower degree polynomial to (1), the existence of a solution is assured also for conditionally
positive definite kernel. In the sequel we will consider only strictly positive definite functions.

If the kernel K is translation–invariant on Rd , it is of the form

K(x , y) = Φ(x − y) for all x , y ∈ Rd .

If the kernel is radial, i.e. of the form
K(x , y) = φ(‖x − y‖2)

for a scalar function
φ : [0,∞)→ R,

the function Φ is called Radial Basis Function (RBF).
It is well-known that the main strength of RBFs is their ability to approximate scattered data without using triangularizations,

re-meshing and other geometric tools.
When dealing with scattered data and kernel-based interpolation, two indicators of data regularity have to be considered: the

separation and fill distances.

Definition 2.1. The separation distance is

q(X ) =
1
2

min
i 6=k
‖x i − xk‖2 . (2)

The quantity q(X ) represents the radius of the largest ball that can be centred at every point in X such that no two balls
overlap.

Definition 2.2. The fill distance is

h(X ,Ω) = sup
x∈Ω

�

min
xk∈X
‖x − xk‖2

�

. (3)

The quantity (3) is a measure of data distribution and indicates how well the data fill out the domain Ω. It denotes the radius
of the largest empty ball that can be placed among the data locations. They are respectively related to the interpolation matrix
conditioning and to the accuracy of the solution.

It is worthwhile to remember the uncertainty or trade-off principle: when we use the standard approach to kernel interpolation
problem, that is the solution of a linear system, there is always a conflict between the theoretical accuracy that one can obtain
and the numerical stability (see e.g. [35]). For well distributed data (i.e. q(X )≈ h(X ,Ω)) a small error bound will necessarily
imply a large condition number.
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2.2 Scaled Kernels

It is well-known that kernels on Rd can be scaled by a positive factor δ. This turns to have a new kernel

K(x , y;δ) := K(x/δ, y/δ) ∀x , y ∈ Rd . (4)

In case of a radial kernel supported on the unit ball (e.g. the Wendland kernels), the support of the scaled kernel has support
radius δ. In general, large δ increase the condition of kernel matrices, while small δ let the translates turn into sharp peaks
which approximate functions badly, if separated too far from each other.

The shape or scale parameter can be tuned by the user (according to the applications) and it plays an important role both for
the accuracy of the method and its stability. How to choose the scale parameter δ is a well–documented but still an unsolved
problem that started with Hardy many years ago with multiquadrics. When working with a fixed scale one has several possibilities.
The most popular are to pick the parameter by some ad hoc criterion as done by Hardy and later by Franke (see [19] and the
reference therein),or to choose the parameter by some optimal criterium based for instance on a variant of the cross validation
approach (leave-one-out) [33] and on its extension applied in the setting of iterated approximate moving least squares [19].

A special case of scaling is the flat limit δ →∞ (see e.g. [15, 21, 26, 27, 36]). In this case the papers of Fornberg and
co-workers suggest a way to stably compute very accurate generalized multiquadic and gaussian interpolant by using a complex
Contour-Padé Algorithm, and its variants, which is capable to overcome the conditioning problem. Usually there is a value of the
shape parameter which provides an optimal approximation error. Typically optimal values of the scale parameter give instability.
For the Gaussian kernel there are well-established tools, such as RBF-QR methods, that allow to overcome the instability issues
(see e.g. [18, 20]). In [12] is presented a rescaled-method based on a proper selection of the supports of compactly supported
basis functions that allows to keep the ill-conditioning under control.

We will see in Section 2.3 that a crucial property of VSKs is to improve stability and this fact holds for any kernel. So they
are very useful to overcome instability issues, as done in [13] where they are used in a hybrid technique to develop a stable
computation of the solution of elliptic boundary value problems.

People considered also the possibility to have the scale of a kernel translate varying with the translation. This means working
with functions

φ(‖x − x j‖2/δ j), 1≤ j ≤ N

in the radial case, [8, 22, 25], or even with basic functions that vary with j, both in shape and scale [4].
In this case, it is easy to come up with examples that let interpolation fails for certain nonuniform choices of scale. But in [6]

sufficient conditions for the unique solvability of such interpolation processes are given.

2.3 Variably Scaled Kernels

So far, it is clear the importance of the scale parameters or scale parameter vectors and in order to make more effective their
potential we can generalize the vector case by introducing a continuous scale function. In [7], the case of varying scales at the
centers is generalized by letting the scale parameter be an additional coordinate. This allows varying scales in a continuous way
without leaving the well-estabilished theory of kernel–based interpolation. It turns out that this approach can be fully understood
as the standard fixed–scale method applied to a certain sub-manifold of Rd+1.

Definition 2.3. Let K be a kernel on Rd+1. If a scale function

c : Rd → (0,∞)

is given, we define a Variably Scaled Kernel (VSK) on Rd by

Kc(x , y) := K((x , c(x)), (y, c(y))) ∀x , y ∈ Rd . (5)

If K is positive definite on Rd+1, so is Kc on Rd . Then if the chosen kernel K is positive definite, interpolation of values

f : { f1, . . . , fN} on X = {x1, . . . , xN}

proceeds as usual by solving a linear system
Ac,X a = f

with positive definite kernel matrix
Ac,X := (Kc(x j , xk))1≤ j,k≤N .

A VSK interpolant is then written as

sc,X , f (x) :=
N
∑

j=1

a j Kc(x , x j) =
N
∑

j=1

a j K((x , c(x)), (x j , c(x j))). (6)

If the kernel is radial, and of the form K(x , y) = φ(‖x − y‖2
2), the interpolant is

sc,X , f (x) :=
N
∑

j=1

a jφ(‖x − x j‖2
2 + (c(x)− c(x j))

2).

Note that the interpolant is identical to the standard kernel interpolant if the scale function is constant.
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The scale function c(x) introduces a map
C : x 7→ (x , c(x)) (7)

that maps the space Rd into a d-dimensional submanifold C(Rd) of Rd+1 and
a set

X = {x1, . . . , xN} ⊂ Ω ⊂ Rd

of nodes goes into
C(X ) ⊂ C(Ω) ⊂ C(Rd) ⊂ Rd+1.

As a consequence, interpolation by the fixed-scaled kernel K takes place on Rd+1 at the point set

C(X ) = {(x1, c(x1)), (x2, c(x2)), . . . , (xN , c(xN ))}.

This means that in Rd+1 the kernel
K((x , c(x)), (y, c(y)))

is used and if we project points (x , c(x)) ∈ Rd+1 back to x ∈ Rd , the projection of the kernel turns into the VSK Kc(x , y) on Rd ,
and the analysis of error and stability of the variably–scale problem in Rd coincides with the analysis of a fixed–scale problem on
a submanifold in Rd+1. Moreover the fill distance (3) and the separation distance (2) will transform with C , and will roughly be
multiplied by a factor related to the norm of the gradient of c or the Lipschitz constant L of c, depending on the regularity of c.
Namely,

‖C(x)− C(y)‖2
2 = ‖x − y‖2

2 + (c(x)− c(y))2

≤ ‖x − y‖2
2(1+ L)2

‖C(x)− C(y)‖2
2 ≥ ‖x − y‖2

2.

This shows that distances will blow up with C , letting separation distances never decrease, thus enhancing stability. Fill distances
may also blow up, increasing the usual error bounds. But this argument shows that one can successfully use the varying-scale
technique on points x j and xk that have very small separation distance until one roughly gets that the transformed centers are
approximately uniformly distributed, that is

q(C(X ))≈ h(X ,Ω)≈ h(C(X ), C(Ω)),

improving in this way the interpolation matrix condition number and preserving the accuracy. Note that we can also use c(x)
with discontinuities in its gradient.

3 Interpolating non-regular functions via VSKs
It is evident that kernel based methods are in principle not suitable for non regular surface reconstruction since the obtained
interpolant or approximant are linear combinations of translates of smooth functions (at least continuous), so they cannot
reproduce singularities along planar curves. Some strategies to use radial kernels even in this situation, have been developed. A
very recent one [28], proposes an algorithm that first calculates sub-approximations on non-overlapping subdomains, then extends
the sub-domains as much as possible and finally produces a global solution on the given domain by letting the sub-domains
fill the whole domain. Consequently, there will be no Gibbs phenomenon along the boundaries of the sub-domains and the
method detects faults and gradient faults as well with good accuracy. This algorithm works for fixed scattered input data of the
function itself and it does not re-sample as happens, for instance in adaptive schemes, based on residual sub-sampling, that places
more centers near singularities (see e.g. [16]). Another adaptive strategy [38] to improve accuracy in general and also near
gradient discontinuities is based on the use of an error indicator which indicates the approximation quality at nodes inspected
by the algorithm by comparing a global RBF interpolant and a local RBF interpolant. Other strategies combine a simplification
(segmentation) of the dicontinuity curve and then recover the data for instance by Dm−spline (see e.g. [30] and [23]) or after
detecting and approximating the discontinuity curve, involve a domain decomposition and a suitable blending of the obtained
approximation (see e.g. [5]). In general some information on the position and behaviour of the fault and/or gradient fault is
needed in order to avoid undue oscillations or over-smoothing (see e.g. [10]). The discontinuity curve can be detected and
approximated beforehand by ad hoc methods. It is well-known that there is a huge literature on fault (edge) detection especially
for gridded data (see e.g. [2, 34] and the references therein). There exists a number of papers developing algorithms for the
curve detection and for its approximation from scattered data too (e.g. [1, 10, 11, 31]).

The VSKs contribute to fill the gap between the reconstruction of functions with discontinuities and kernels methods. The
problem is the following: given a set of scattered data X = {x i}Ni=1, Y = { f (x i)}Ni=1, X ⊂ Ω ⊂ R2, to recover unknown functions

f : Ω ⊂ R2→ R

such that f or its gradient ∇ f is discontinuous across a curve Γ ∈ Ω. We assume that Γ has an explicit known equation, if this is
not the case, one of the above mentioned techniques has to be applied in order to approximate it.

It is worth to remember that in seminal paper [24], the authors use the idea of the additional coordinate in order to interpolate
faulted surfaces (i.e. surfaces with edges) and they give only heuristic justifications, but some promising numerical experiments
and hints on the choice of what they call auxiliary function that in our case is the scaling function c.

Here we focus on gradient discontinuities which are more difficult to handle and less considered in the literature. The idea
is very simple. It consists in using a scale function c(x) that reproduces the shape of the discontinuity. The optimal situation
would be to be able to relate its shape to the data, but this would be very hard to obtain and would require a considerable effort.
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We start with the one dimensional case. Let the data site be in a bounded interval of R, X ⊂ [a, b] and let us assume that the
derivative of the underlying function is discontinuous at x∗ ∈ [a, b]. We fix the scale function to be

c(x) =
§

1− 3/2|x − x∗|/R+ 1/2|x − x∗|3/R3, |x − x∗|< R,
0, otherwise, (8)

where 2R is the support of c(x) which goes to zero smoothly. Extensive experiments have shown that R had to be chosen less that
(b− a)/2.
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Figure 1: c(x), x∗ = 0

The shifts of the variably scaled kernel change their shape: they are no more radial functions and, as expected, exhibit, if
the center is next to x∗, a discontinuity in the first derivative. In Fig. 2 the graphs of the C2 Wendland VSK are shown for few
selected centers.
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Figure 2: C2 Wendland-VSK: ∗ is the shift and o the discontinuity point.

The basis function translates change their smoothness locally according to the position of the discontinuity. This mimics in
some sense the effects of using univariate B-splines with multiple knots.

Let now turn to the bidimensional case and assume that the underlaying function f (x , y) is defined on the unitary square
Ω= [0, 1]2 and that y = Γ (x) is the explicit equation of the gradient fault. In this case we define the scale function as

c(x , y) =
§

1− 3/2|y − Γ (x)|/R+ 1/2|y − Γ (x)|3/R3, |y − Γ (x)|< R,
0, otherwise. (9)

Again c has support included in Ω and goes to zero smoothly at the boundaries. The numerical experiments suggest to choose
R< 0.5.
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4 Numerical Examples
The scale functions (8) and (9) have been combined with various fixed scaled radial kernels and tested on several functions,
here we show the comparison between standard interpolation and VSK interpolation when C2−Wendland kernels with support
radius δ are used. In the univariate examples (d = 1) we have considered N = 61 scattered points in the interval Ω= [−1,1],
δ = 2, and R= 0.5. while when d = 2, we have considered N = 256 scattered points in the unitary square, δ = 1, and R= 0.3.
Note that in univariate examples the discontinuity points do not belong to the data sites X as well in the two-variate cases where
there is no need to have a more dense subset of data near the gradient fault.

The root mean square and maximum errors (e2 and e∞) in Tables 1-4 show that the VSK interpolation is more accurate. The
graphs of the errors confirm that the error is reduced near the discontinuities, and the VSK recovery does not over-smooth near
the gradient faults and does not present undue oscillations, providing a correct approximation, and an effective tool for the
problem discussed in this paper.

4.1 d = 1

4.1.1 Example 1

The first test function

f1(x) =
§

exp (−0.5(5x + 0.5)2) −1≤ x < 0
exp(−0.5(5x − 0.5)2) 0≤ x ≤ 1,

(depicted in Fig. 3 together with the sampled data) has a first order derivative discontinuity at x∗ = 0 and it is symmetric with
respect tothe axis x = 0. The results are presented in Figs. 4, 5, and Table 1.
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Figure 3: Test function and data points

Example 1 e2 e∞-error
Standard interpolant 2.110168e-03 2.692631e-02

VKS-interpolant 1.873396e-04 2.193475e-03

Table 1: Errors for Example 1
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Figure 4: Left: standard interpolation. Right: VSK-interpolation
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Figure 5: Blu line: VSK-error. Red line: Interpolant error

4.1.2 Example 2

The second test function

f2(x) =
§

sin (πx) −1≤ x < 0.5
−4x2 + 2; 0.5≤ x ≤ 1,

(depicted in Fig. 6 together with the sampled data) has a first order derivative discontinuity at x∗ = 0.5 and differently from
before it is not symmetric with respect to the axis x = 0.5. Even in this case the results are good as showed in Figs. 7, 9, Table 2,
and in the enlarged particulars of Fig. 8.
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Figure 7: Right: VSK-interpolation. Right: Standard interpolation
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Figure 8: Zoom. Left: Standard Interpolant. Right: VSK-interpolant
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Figure 9: Blu line: VSK-error. Red line: Interpolant error

Example 2 e2 e∞-error
Standard interpolant 1.137331e-03 1.573100e-02

VKS-interpolant 1.728193e-04 2.250510e-03

Table 2: Errors for Example 2

4.2 d = 2

For each example we show the data sites together with the curve Γ in the domain [0,1]2, and the scale function c(x , y). It is
important to note that no extra points are added near the discontinuity curve. The numerical examples confirm again what
already observed in the one dimensional case: the VKS interpolant with scale function (9) is capable to reproduce faithfully the
gradient discontinuities of the underlying function.

4.2.1 Example 3

The test function
f3(x , y) = |y − 0.6− 0.1 sin(2πx)|

has been sampled at the data sites of Fig. 10 where it is shown also the scaling function. As shown in Figs. 11 and 12, the VSK
interpolant is effective and, as expected, does not over-smooth the approximant behaviour near the gradient fault.

Example 3 e2 e∞-error
Standard interpolant 2.184125e-03 2.648879e-02

VKS-interpolant 5.101804e-04 4.605954e-03

Table 3: Errors for Example 3
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Figure 10: Test function f3, data sites with Γ , and c(x , y)
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Figure 11: Right: VSK-interpolation. Right: Standard interpolation

4.2.2 Example 4

We conclude the section by showing that the VSK interpolant with c given by (9) provides excellent results also when the
underlying function has very steep gradients near the gradient fault. To this end, we consider the test function

f4(x , y) = | tanh (9x − 9y)|

sampled at the data sites depicted in Fig. 13. In this case the interpolation error is considerably reduced near Γ (see Fig. 15).

5 Conclusions
In this paper we have considered the problem of interpolating functions with gradient faults from scattered data. We have
provided a simple strategy to choose a proper scaling function which depends on the discontinuity curve. The so obtained VSKs
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Figure 12: Right: VSK-interpolation error. Right: Standard interpolation error
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Figure 13: Test function f3, data sites with Γ , and c(x , y)

Example 4 e2 e∞-error
Standard interpolant 3.531240e-02 2.811598e-01

VKS-interpolant 3.456239e-03 3.804824e-02

Table 4: Errors for Example 4

are capable to interpolate in an effective and faithful way the unknown function. This choice of the scale function c allows for a
reduction of the interpolation error in the critical regions.
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Figure 14: Right: VSK-interpolation. Right: Standard interpolation
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Figure 15: Right: VSK-interpolation error. Right: Standard interpolation error
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