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Abstract

Smoothing Spline ANOVA is a statistical modeling algorithm based on a function decomposition
similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of
main effect and interaction. It represents a suitable screening technique for detecting important
variables (Variable Screening) in a given dataset. We present the mathematical background together
with possible industrial applications.

1 Introduction
Smoothing Spline ANOVA (SS-ANOVA) models are a family of smoothing methods suitable for both univariate and multivariate
modeling/regression problems.

In this context smoothing means nonparametric function estimation in presence of stochastic data. Indeed SS-ANOVA
belongs to the family of nonparametric or semiparametric models (more precisely it belongs to smoothing methods), which
presents some peculiarities that distinguish them from the classical set of standard parametric models (polynomial models,
etc.).

In fact in classical parametric regression analysis, the model has a given fixed form, known up to the parameters (the
degrees of freedom of the model), which are estimated from the data: the model is said to have a set of rigid constraints on
its functional form. Usually the number of unknown parameters (the dimension of the model space) is much smaller than
the sample size. Data are affected by noise but can be considered as unbiased, while parametric models (viewed as a set
of constraints) help in reducing noise but are responsible for the (possible) introduction of biases in the analysis (e.g. a
possible model misspecification represents a typical bias).

On the contrary, nonparametric or semiparametric methods let the model vary in a high-dimensional (possibly infinite
dimensional) function space. In this case so-called soft constraints are introduced, instead of the rigid constraints of
parametric models: this leads to a more flexible function estimation. We will soon see how smoothing methods – a subset of
such nonparametric models – can be derived by means of the so-called general penalized likelihood method. Smoothing
methods are suited for regression with noisy data, given the assumption of Gaussian-type responses.

SS-ANOVA is a statistical modeling algorithm based on a function decomposition similar to the classical analysis of
variance (ANOVA) decomposition and the associated notions of main effect and interaction (in fact higher-order interactions
are typically excluded from the analysis, as we will see later). For this reason it presents an important fringe benefit over
standard parametric models: the interpretability of the results. In fact each term – main effects and interactions – reveals
an interesting measure: the percentage of its contribution to the global variance. That is in a statistical model the global
variance is explained (decomposed) into single model terms.

For this reason SS-ANOVA represents a suitable screening technique for detecting important variables (Variable Screen-
ing) in a given dataset. Indeed, the industrial applications we are going to present rely on the implementation of this
technique within the software framework modeFRONTIER [6], where SS-ANOVA is actually employed as Screening Analysis
Tool for improving Response Surface Methodology (RSM) functions and it will soon exploited also for multi-objective
optimization tasks. The mathematical formulation of the technique and some benchmark applications are included also in
the documentation of the software [8, 9].

There exists a vast body of literature on Smoothing Spline ANOVA models: for example refer to [3, 11] for a detailed and
complete treatment of the subject. In the following only the major theoretical and computational features will be provided:
the interested reader could undoubtedly take advantage of these precious sources of information for a deeper technical
analysis on this topic.

2 Mathematical Description
In the next subsections a general overview of SS-ANOVA models is given. Firstly the penalized likelihood method is
introduced, then its application to a simple univariate (one-dimensional) case is shown: this leads to the formulation of
cubic smoothing splines as smoothing methods. Subsequently the general multivariate case is shown: firstly the simple
additive models are outlined, then the introduction of interaction effects leads to the general formulation of SS-ANOVA
models.
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2.1 General penalized likelihood method
For the moment we will consider a univariate regression problem for the function f (x) : [0,1] ⊂ R→ R,

fi = f (x i) + εi , i = 1, . . . , n , (1)

where n is the number of designs (sample set size), and εi ∼ N(0,σ2) represent independent random errors (normally
distributed with mean 0 and variance σ2 – Gaussian-type response). For convenience the input variable x is limited in the
interval [0, 1], without losing generality.

In seeking a proper regression model f (x) for the given stochastic data set, these two functionals can be taken into
account:

L( f ) defined as minus log likelihood of the model f (x) given the data (we will soon see its implementation as the usual
least square function), that estimates the goodness of the fit (or better, the lack of fit),

J( f ) defined as a quadratic roughness functional, that measures in a proper way the roughness/smoothness of the model
f (x).

Therefore a suitable solution to the regression problem could be stated as a constrained minimization problem, in these
terms

min L( f ) , subject to J( f )≤ ρ , (2)

where the minimization of L guarantees a good fit to the data, but the soft (i.e., inequality) constraint on J – limiting the
admissible roughness – prevents overfitting.

By applying the Lagrange method, eq. (2) can be transformed in the following minimization problem:

min L( f ) +
λ

2
J( f ) , (3)

where λ is the Lagrange multiplier. By changing the value of the parameter λ, a whole family of different solutions fλ to the
regression problem can be obtained. The value of λ controls the trade-off in the resulting model between smoothness and
fidelity to the data: the larger λ, the smoother the model, while smaller values imply rougher functions but with better
agreement to the data.

The procedure of finding a proper function estimation by minimizing eq. (3) is called general penalized likelihood
method: in fact the J term represents a penalty on the roughness. This methodology is also referred to as penalty smoothing
(or smoothing method with roughness penalty), and λ takes the name of smoothing parameter.

A key issue for the success of such methodologies is the proper – and operatively practicable – selection of the value to
be assigned to the smoothing parameter.

As a final note, we would like just to mention that the functionals L and J represent the two basic components of a
statistical model: the deterministic part J , and the stochastic part L.

2.2 Univariate Cubic Smoothing Spline
The general method outlined in the previous subsection can be specialized as the minimization of the following penalized
least square score:

min
1

n

n
∑

i=1

( fi − f (x i))
2 +λ

∫ 1

0

[ f ′′(x)]2d x , (4)

where f ′′(x) = d2 f /d x2. With Gaussian-type responses, as in the case of eq. (1), the likelihood L( f ) takes the usual form of
least square function (so we deal with a penalized least square problem): this term discourages the lack of fit of the model
to the data. The penalty term is an overall measure of the magnitude of the curvature (roughness) of the function over the
domain. Clearly we have assumed the existence of second-order derivative of f as well as of square integrable second-order
derivative.

The minimizer fλ of eq. (4) – the solution of the regression problem – is called the Cubic Smoothing Spline: in fact it
can be demonstrated that it corresponds to a classical cubic spline (i.e., a piecewise cubic polynomial, with the knots at all
of the distinct values of the sampling set {x i}).

As λ→ 0, fλ tends to the minimum curvature interpolant. On the contrary, as λ→ +∞, fλ becomes the simple linear
regression, since linear polynomials form the null space of the roughness penalty functional.

2.3 Simple multivariate case: additive model
From now on we will consider a general multivariate regression problem for the function f (x) : [0,1]N ⊂ RN → R,

fi = f (xi) + εi , i = 1, . . . , n , (5)

where N is the number of input variables, and again we are in presence of Gaussian-type errors εi .
The simplest extension of smoothing splines to multivariate case is represented by the additive model,

f (x) =
N
∑

j=1

f j(x j) , (6)
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i.e., f is expressed as the sum of N independent components, each of which is function of one relevant variable. This means
that only the main effects are taken into account.

The additive smoothing spline is then the minimizer of the expression

min
1

n

n
∑

i=1

( fi − f (xi))
2 +

N
∑

j=1

λ j

∫ 1

0

[ f ′′j (x j)]
2d x , (7)

and in this case each of the components f j takes the form of a natural cubic spline. Now there are N tuning parameters λ j ,
one for each term.

2.4 General multivariate case
In general the minus log likelihood functional L( f ) – in presence of Gaussian-type response as that of eq. (5) – reduces to
the usual least square functional. So eq. (3) – in general multivariate case – can be expressed as

min
1

n

n
∑

i=1

( fi − f (xi))
2 +λ J( f ) , (8)

An interesting fact is that the ANOVA decomposition can be built into the above penalized least square estimation through
the proper construction of the roughness functional J( f ). The theory behind this formulation is based on the so-called
reproducing kernel Hilbert space1.

In seeking the solution of the penalized least square minimization problem, only smooth functions are taken into account:
more specifically the solution lives in the reproducing kernel Hilbert space H ⊆ { f : J( f )<∞}.

H possesses the following tensor sum decomposition:

H =NJ ⊕HJ = ⊕
p
k=0Hk (9)

where NJ = H0 = { f : J( f ) = 0} is the null space of the roughness penalty functional J( f ). Let {Φ j}mj=1 be a basis of NJ ,
where m is the dimension of NJ (Φ j will be used in the following). The number of tensor sum terms p is determined only by
the number and type (i.e., main/interaction) of effect terms introduced in the ANOVA decomposition model.

The penalty term then can be expressed as

λ J( f ) = λ
p
∑

k=1

θ−1
k · ( f , f )k , (10)

where ( f , g)k is the inner product in Hk, and let the function Rk(x , y) be the relevant reproducing kernel (Rk will be used in
the following).
λ and θk are the smoothing parameters. Their values are determined by a proper data-driven procedure: a suitable

method is represented by the generalized cross validation (GCV), as described in [2, 4, 5].
Generally the computation of smoothing splines is of the order O(n3), where n is the sample size. In our implementation

we adopted the procedure devised by [5], obtaining a more scalable computation of smoothing spline regression by means
of certain low-dimensional approximations that are asymptotically as efficient as the standard procedure: their computation
is of the order O(n q2), where q ≤ n. This result is achieved by selecting a suitable subset of the original sampling data:
{z j} j=1,...,q ⊆ {xi}i=1,...,n.

In this context, the bilinear form J( f , g) =
∑p

k=1 θ
−1
k ( f , g)k is an inner product in HJ , with a reproducing kernel

RJ (x , y) =
∑p

k=1 θk Rk(x , y).
It can then be demonstrated that the minimizer fλ of eq. (8) has this representation

f (x) =
m
∑

j=1

d j Φ j(x) +
q
∑

j=1

c j RJ (x,z j) , (11)

where d j and c j are the unknown parameters to be determined by solving the penalized least square minimization problem.
The estimation reduces to solving the following linear system expressed in matrix form

�

ST S ST R
RT S RT R+Q

�

·
�

d
c

�

=
�

ST f
RT f

�

, (12)

which has dimension (m+ q) × (m+ q). S is a n × m matrix with entries Si j = Φ j(x i), R is a n × q matrix with entries
Ri j = RJ (x i , z j), and Q is a q× q matrix with entries Q i j = λRJ (zi , z j). f is the vector holding the n observations of eq. (5).

3 Screening Analysis
A key feature of Smoothing Spline ANOVA is the interpretability of the results. In fact – after the model has been trained over
the given sampling data – different heuristic diagnostics are available for assessing the model quality and the significance of
terms in the built-in multiple-term ANOVA decomposition. Indeed statistical modeling has two phases: model fitting and
model checking. In the next subsections we provide all the information relevant to the use of SS-ANOVA as a Screening
Analysis Tool.

1A complete treatment of the subject is far beyond the scope of the present work. For any detail, please refer e.g., to [3]
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3.1 Curse of dimensionality
Usually in SS-ANOVA decomposition – compliantly with standard ANOVA models – only main effects and interaction effects
are taken into account. In fact higher-order interactions are typically excluded from the analysis, mainly due to practical
reasons: for limiting the model complexity, for improving the model interpretability, for reducing the required computational
effort.

One related, practical, aspect that should be always taken into account when dealing with multivariate – high-dimensional
– space is the so-called curse of dimensionality. This nasty reality affects all different aspects of multivariate analysis, and
unfortunately it is an unavoidable evil. Its typical symptomatology involves the effect of sparsity of the space. This means
that when the dimensionality (number of input variables) increases, the volume of the space increases so fast that the
available data become sparse: in order to obtain a statistically significant and reliable result, the amount of needed sampling
data grows exponentially with the dimensionality.

A major consequence of the curse of dimensionality on SS-ANOVA models is the explosive increase in the number of
parameters (degrees of freedom) that would be required by the introduction in the model of higher-order effects in a
high-dimensional space. So considering only main effects in building the model (i.e., additive model) – or possibly adding
at most only interaction effects – helps in tackling the curse of dimensionality. If N is the number of input variables, the
number of main effect terms is clearly equal to N , while the number of interaction effects is equal to N(N − 1)/2, so the
growth rate of second order models goes as O(N 2)

For this reason, in practical data analysis in a high-dimensional space, usually only the main effects are included.
Interaction effects are taken into account only if the relevant computational demand is affordable.

3.2 Model checking
The function ANOVA decomposition of the trained model, evaluated at sampling points, can be written as

f∗ =
p
∑

k=1

f∗k , (13)

where f∗ and f∗k are column vectors of length n. The star symbol (∗) denotes the fact that we got rid of the constant term2.
The relative significance of the different terms composing the model can be assessed by means of the contribution indices

πk, defined as

πk =
(f∗k, f∗)
||f∗||2

, (14)

where (u, v) denotes the usual scalar product of vectors, i.e., (u, v) = uT · v, and ||u||=
p

(u, u) is the vector norm. In fact,
applying the scalar product between f∗ and the two terms of eq. (13) respectively – making use of eq. (14) – the following
identity is obtained:

p
∑

k=1

πk = 1 , (15)

that can be interpreted as a decomposition of unity, although πk can be negative. It follows that – in case f∗k are nearly
orthogonal to each other (see below) – the πk can be interpreted as the “percentage decomposition of explained variance
into model terms”. In this sense each term – main effects and interactions – revealing the percentage of its contribution to
the global variance, can be evaluated in terms of importance: higher values of πk mean important terms that have to be
kept, lower values mean negligible terms that can be dropped.

A useful diagnostics tool for assessing the model quality is represented by the collinearity indices κk. Defining the p× p
matrix C as3

Ci j =
(f∗i , f

∗
j )

||f∗i || · ||f
∗
j ||

(16)

κ2
k can be identified as the diagonal elements of C−1, so that

κk =
q

C−1
kk . (17)

Each index κk ≥ 1: the equality κ j = 1 holds if and only if a given f∗j is orthogonal to all the other f∗k 6= j . So the ideal situation
of all κk ' 1 holds only in case all the f∗k are nearly orthogonal to each other.

In case two or more f∗k are highly (linearly) correlated – a phenomenon referred to as collinearity4 – can be easily detected
since the relevant collinearity indices will be much greater than one (κk � 1). This unfortunate situation occurs when the
chosen model decomposition is inadequately supported on the sampling points domain (that is the decomposition is bad
defined on its domain, since its terms cannot be identified unambiguously). There can be many causes to this pathology:
dependent input variables (explanatory variables of a model should be always be independent), bad sampling points (e.g.,
set of correlated designs, inappropriate DOE selection), too low sample size. As a severe consequence the values of the
relevant πk indices become unreliable.
2Technically, the full ANOVA decomposition has been projected on the space {1}⊥ = {f : fT 1 = 0} where the vector 1 is a vector of all ones generating the
constant term space {1}. Practically this operation is performed by centering the column vectors of the full decomposition, i.e., by subtracting their relevant
element means.

3That is Ci j represents the cosine of the angle between the vectors f∗i and f∗j : C is referred to as the cosines matrix.
4This situation can also be designated as concurvity or as identifiability problem.
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4 Variable Screening Benchmarks
The performance of the screening method is tested on four different problems. It depends on the number of designs in the
database, on the number of input variables and on the collinearity among inputs. For these reasons, the analysis for each
problem is repeated using 500, 1000, 2000, 5000 designs, generated with Random DOE: a measure of their collinearity is
express with collinearity indices. In section 4.4, we choose a scalable function in order to perform the same test for different
number of variables as well as of designs. In particular, we consider 10, 20, 50 and 100 input variables.

The benchmark is performed on a computer mounting an Dual Core, 2.40 GHz, with 15 GB of RAM. The OS is Ubuntu
10.10 64 bit using modeFRONTIER 4.4.1.

For each test, we report the screening analysis execution time, the contribution indices and the collinearity indices. Since
we know the explicit explicit model of all tests, we can summarize the performance in each test.

4.1 Problem 1
The first test is proposed by C. Gu in [3]. It involves three input variables between [0, 1].

x1 , x2 , x3 ∈ [0, 1]

y = 10sin(πx2) + e3x3 + 5 cos(2π(x1 − x2)) + 3x1 (18)

In Table 1 we report the results of the screening analysis: x3 is the less important variable while x1 and x2 can be
considered important. While the analysis with only “Main Effect” shows that x2 could appear not important, the interaction
effect analysis gives more informations about the single variables. In fact, the term x1 ∗ x2 is important in the model, as it is
possible to confirm by analysing the explicit formula of Eq. (18).

4.2 Problem 2 - Polynomial case
This test involves six variables, but only three of them give a contribution to the output (relative to indices I = {1, 2, 3}), as
we can see in the following formula

x1 , x2 , x3 , x4 , x5 , x6 ∈ [0, 1]

y = k0 +
∑

j∈I

k j x j +
∑

i, j∈I

ki j x i x j +
∑

i, j,l∈I

ki jl x i x j x l

where:

k0 = 0.5025 k1 = −0.4898 k2 = 0.0119
k3 = 0.3982 k11 = 0.07818 k12 = 0.4593
k22 = 0.00944 k13 = −0.3614 k23 = −0.3507
k33 = −0.04850 k111 = 0.006814 k112 = −0.04914
k122 = 0.06286 k222 = −0.005130 k113 = 0.08585
k123 = −0.03000 k223 = −0.06068 k133 = −0.04978
k233 = 0.02321 k333 = −0.000534

Thanks to this test, we notice different interesting behaviors. First of all, it seems that the results for the sensitivity
indices do not depends on the number of designs used to perform the test. As expected, these results depend on the variable
collinearity: indeed in such cases, the collinearity index is close to the value 1, which means that the input variables are not
collinear.

We also notice that x2 appears to be more important than x3, since x2 has bigger interaction effects.
Although in this test the interaction analysis provides relevant information about our model, we can consider the main

effect analysis as a first study to understand the general behavior of variables. If the number of variables is too large to
perform an interaction effect analysis, the main effect values are sufficient to determine a smaller set of input variables.

4.3 Problem 3 - Polynomial case
For this test, we consider the same model as Problem 2, but we change two coefficients. In particular:

k12 = 0.9 k123 = 0.9

In this way, the importance of x2 increases, as also confirmed by the screening analysis. Also the main effect of x3
increases, thanks to the high value of k123.
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4.4 Problem 4 - Uncontrained Problem 1 Cec 2009
The last test proposed is the first function of the Unconstrained Problem 1 reported in [12]. Thanks to its formulation
independent of the number of variables, it has been possible to do the analysis with 10, 20, 50, 100 input variables.

x0 ∈ [0,1], x i ∈ [−1,1]n i = 1, . . . , n

f1 = x0 +
2

|J |

∑

j∈J

�

x j − sin
�

6πx0 +
jπ

n

��2

where:

J =
�

j| j is odd and 2≤ j ≤ n
	

Table 4 reports the time needed to do the screening and Table 5 summarizes the variable collinearity. The symbol (–) in
the two Tables 4 and 5 represents unfinished analysis: this happens when the number of designs is less than the number of
terms.

When at least one collinearity index is sensibly greater than 1, the main or interaction effects could be greater than 1.
This means that the screening analysis does not represent the percentage decomposition of variance and the results might
be far from reality. In this case there are several possible strategies. When these problems are due to the interaction effect
analysis, a possible strategy is to divide the input variables by following the results of the main effect analysis and perform
another sensitivity analysis. Also an increment of the number of designs should overcome the collinearity among terms. If
all of these strategies are not possible, a preliminary screening of variables could be done by removing the variables which
have the higher values of collinearity index.

5 Metamodeling
A metamodel (or response surface model, RSM) is a surrogate of a model, which has to maximizing the fidelity with the
original one, while minimizing the computational effort needed to evaluate it. Smoothing Spline ANOVA is a metamodel
itself, since it provides a piece-wise polynomial regression over a database generated using a “first order” model.

However, SS-ANOVA reveals its best utility when coupled with a different metamodeling technique. Indeed, the curse of
dimensionality prevents the use of high order terms in the SS-ANOVA training, but thanks to the reliable variable number
reduction obtained even with low order spline models, it is possible to train more sophisticated RSM reducing the effort and
increasing the accuracy.

We will present the results of a severe benchmarking activity in a future work, but we can use the previously described
Problem 2 as a toy model to explain a phenomenon observed in different industrial databases. If all the coefficients of the
polynomial relative to x4, x5 or x6 are set to zero, the accuracy of any metamodelling technique depends strictly on its
ability to recognize that only 3 out of 6 input variables are involved in the output.

Moreover, also the computational cost of the training phase depends on the number of variables considered, with often
an exponential rate of growth. On the contrary, as shown in the previous benchmarks, the screening training is not so
demanding. This is the reason why the implementation of SS-ANOVA in modeFRONTIER is proposed as a pre-RSM training
tool, with several shortcuts to select the desired input variables depending on the analysis results.

6 Multi-Objective Optimization
The need for a screening variable technique is pressing when dealing with multi-objective optimization in industrial contexts.
From one hand the already cited curse of dimensionality weakens also the most robust algorithms. On the other hand, the
empirical but effective Pareto principle (the 80% of the effects is produced by the 20% of the causes) opens the door to
great performance boosts.

Before describing a possible use of SS-ANOVA in this field, we recall some definitions. A multi-objective problem can be
stated as:







min fi(x) for i = 1 . . . n,
g j(x)≤ 0 for j = 1 . . . mi ,
hk(x) = 0 for k = 1 . . . me,

(19)

where x is an arbitrary large vector spanning an admissible configuration set called A; n is bigger than 1 and mi , me express
the number of constraints of the problem (which can also be zero).

The solution of the problem is the set P of optimal trade-off solution among all the objectives, called Pareto Set. It can
be defined as the set of non-dominated points of A, where the Pareto dominance is a partial ordering defined as:

x dominates y⇔
�

∀i = 1 . . . n fi(x)≤ fi(y) and
∃ j such that f j(x)< f j(y).

(20)
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6.1 Game Theory as a MOA
Multi-objective optimization is a very wide research field and literature reports many different approaches to tackle the
problem 20. Here we focus on a heuristic algorithm referring to game theory and in particular on competitive games [1].
The idea is to have a number of players equal to the number of objectives. Each player uses a single objective algorithm (the
Nelder-Mead Simplex [7]) to improve its objective function working on a subset of the input variables. The algorithm is
iterative and at each iteration the variables are re-assigned to the players. The fundamental part of the proposed strategy is
how this assignment is performed.

A first implementation of the algorithm relies on the Student test. At the first iteration the variables are assigned
randomly. For each subsequent iteration, a player maintains the variables which are judged relevant by the Student test
and refuses the non relevant ones, which are randomly reassigned. This algorithm, called MOGT (Multi Objective Game
Theory), is part of modeFRONTIER [6] and it showed very good performances in finding -in the shortest time and requesting
the minimum number of design evaluations- a point on the Pareto set or at least the Nash equilibrium point (which is not
assured to lie on the Pareto front, but in many practical application it is close enough).

This assignment rule has the advantage of favoring the exchange of variables among the objective, but at the cost
of loosing accuracy. Indeed, the Student test has to be performed on a biased database, since it is computed over the
convergence histories of the Simplex algorithms representing the players.

Smoothing Spline ANOVA used as a sensitivity test, on the contrary, performs accurately even when applied on biased
databases. The only drawback is that this technique is so precise that it may prevent the exchange of important variables
among the players (in the case the same variable is important for more than one objective). Therefore we design two
different assignment rules and we switch between them depending on the knowledge or the experience on each single
problem.

One assignment rule can be named as deterministic rule. After each iteration, the SS-ANOVA coefficients are computed
for each objective function. The values are normalized and then ranked. The assignments are done looking at the ranking
from the top: the highest coefficient determines the first variable-objective couple. All other entries related to the same
variable are excluded from the ranking and the procedure is iterated. At the end, if an objective remains without assigned
variables, a repair mechanism reassign randomly one variable.

The stochastic rule is based on the roulette wheel operator taken from classical Genetic Algorithms. Once the coefficients
are computed and normalized, the values for each variable are collected. A virtual roulette wheel is then created sizing each
objective slot proportionally to the related coefficient. The variable-objective assignment is determined by a random number
extraction, which simulates the stopping point of the roulette ball.

6.2 Working example
The resulting algorithm is being tested and we will present the results of the benchmark in a future work. However, this new
implementation of MOGT is being used on demonstrative, but still challenging real-world optimization problem like the
boomerang shape optimization [10].

The cited paper contains the details of the model and the proposed bi-level optimization problem: the shape of the
boomerang is optimized under the constraint of a re-entrant launching loop. We are now trying to optimize also the trajectory
of the boomerang, maximizing the launch range while minimizing the force applied (and, of course, maintaining the loop
condition).

The new MOGT finds interesting configurations and it suggests a possible disconnected Pareto front, as shown in figure
1.

7 Conclusions
Smoothing Spline ANOVA algorithm is a smoothing method suitable for multivariate modeling/regression problems in
presence of noisy data. Being a statistical modeling algorithm – based on a function decomposition similar to the classical
analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction – it provides an
important advantage over standard parametric models: the interpretability of the results. In fact the relative significance of
the different terms – main effects and interactions – composing the model is properly assessed by means of the contribution
indices (πk). In this way the global variance can be explained (decomposed) into single model terms.

For this reason SS-ANOVA represents a suitable screening technique for detecting important variables (Variable Screening)
in a given dataset.

The benchmark tests reported in this paper summarizes the performance and accuracy of the SS-ANOVA tool in the
determination of the important variables of a problem. The results show the accuracy of this method in detecting important
variables in a given dataset. An initial analysis can be refined by repeating the SS-ANOVA procedure on the reduced input
variable set determined by the initial analysis.

The industrial applications of such a technique span a wide range of tasks: variable screening is a key ingredient
for effective model building; metamodeling can benefit from a reduction of the input variable number; multi-objective
optimization algorithms can exploit the information about most relevant variables in internal routines as shown in the
MOGT case.

We expect to further enlarge this list, as well as to rigorously prove the effectiveness of the proposed approaches by
severe benchmarking. The examples provided in this work, together with the mathematical description of the technique, are
promising and plenty justify the choice of including Smoothing Spline ANOVA in the modeFRONTIER software.
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Figure 1: The optimization of the boomerang trajectory done by the new MOGT algorithm enhanced with SS-ANOVA variable screening.
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Table 1: Contribution indices obtained by analysing Problem 1 with 500, 1000, 2000, 5000 designs. The last row reports analysis execution
time (in seconds).

500 1000 2000 5000
Terms Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect
x1 0.1424 0.0475 0.092 0.0089 0.0882 0.0375 0.0760 0.0326
x2 0.8581 0.3294 0.8991 0.3511 0.9004 0.3656 0.9178 0.3680
x3 -5.3327 E-4 -6.4887 E-4 0.0089 0.0037 0.0113 0.0042 0.0061 0.0034
x1 ∗ x2 – 0.6202 – 0.6034 – 0.5933 – 0.5950
x1 ∗ x3 – -2.6677 E-4 – 0.0022 – 5.1315 E-4 – 3.2767 E-4
x2 ∗ x3 – 0.0038 – 0.0035 – -0.0013 – 5.2426 E-4
Time 0.924 0.629 0.517 1.546 1.622 3.468 7.714 12.494

Collinearity Indices
Max Value 1.0026 1.0305 1.0005 1.0177 1.0004 1.0123 1.0002 1.0080
Min Value 1.0004 1.0078 1.0001 1.0033 1.0001 1.0041 1.0001 1.0007
Mean Value 1.0015 1.0170 1.0003 1.0096 1.0003 1.0072 1.0001 1.0034

Table 2: Contribution indices obtained by analysing Problem 2 with 500, 1000, 2000, 5000 designs. The last row reports analysis execution
time (in seconds).

500 1000 2000 5000
Terms Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect
x1 0.9809 0.7189 0.9763 0.7126 0.9729 0.7168 0.9701 0.7140
x2 0.0214 0.0223 0.0230 0.0183 0.0209 0.0170 0.0262 0.0192
x3 -0.0028 -0.0035 -2.3527E-4 1.8991E-4 0.0049 0.0038 0.0036 0.0029
x4 4.1501E-4 -5.2992E-6 3.8814E-4 -8.8781E-5 8.6698E-4 -1.6925E-6 1.6679E-4 4.1998E-6
x5 9.3178E-4 -4.6284E-5 6.7718E-4 -2.3563E-5 6.1452E-4 -2.1965E-6 -1.9202E-5 -7.5136E-6
x6 -9.0375E-4 -2.1165E-4 -2.5459E-4 -1.0819E-5 -3.6491E-4 1.2834E-5 -2.7545E-4 4.4288-6
x1 ∗ x2 – 0.1118 – 0.1053 – 0.1072 – 0.1139
x1 ∗ x3 – 0.0670 – 0.0748 – 0.0763 – 0.0609
x1 ∗ x4 – 7.3585E-5 – 1.2678E-4 – -2.9027E-5 – -5.6391E-6
x1 ∗ x5 – -3.7609E-5 – 6.9811E-5 – 7.9851E-5 – -1.8004E-4
x1 ∗ x6 – 4.9782E-5 – 1.3315E-4 – -1.5828E-4 – 6.1921E-5
x2 ∗ x3 – 0.0836 – 0.0881 – 0.0789 – 0.0889
x2 ∗ x4 – -5.3684E-5 – 1.5795E-5 – -1.7326E-5 – -5.5969E-6
x2 ∗ x5 – -1.1205E-5 – -7.0786E-5 – -3.8717E-5 – -3.5851E-5
x2 ∗ x6 – 3.6886E-5 – 1.7460E-4 – -7.4930E-5 – -2.0645E-5
x3 ∗ x4 – -1.9821E-5 – 3.9820E-5 – -4.3679E-5 – -1.5173E-5
x3 ∗ x5 – -5.4946E-6 – 5.2976E-5 – 3.4419E-5 – 2.0064E-6
x3 ∗ x6 – 5.8237E-5 – 4.4585E-5 – 1.8158E-5 – 1.5405E-5
x4 ∗ x5 – -1.5142E-4 – 2.2078E-4 – -5.7626E-5 – 2.0620E-5
x4 ∗ x6 – 7.9505E-5 – -9.9617E-5 – -2.0026E-6 – 1.7995E-6
x5 ∗ x6 – -6.6473E-5 – -1.2678E-4 – 1.2366E-5 – 7.8857E-6
Time 0.34 2.353 0.791 5.491 1.929 14.255 9.188 43.589

Collinearity Indices
Max Value 1.0153 1.0657 1.0054 1.0416 1.0017 1.0264 1.0008 1.0260
Min Value 1.0051 1.0129 1.0013 1.0086 1.0003 1.0058 1.0002 1.0014
Mean Value 1.0094 1.0333 1.0035 1.0232 1.0009 1.0146 1.0005 1.0085
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Table 3: Contribution indices obtained by analysing Problem 3 with 500, 1000, 2000, 5000 designs. The last row reports analysis execution
time (in seconds).

500 1000 2000 5000
Terms Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect
x1 0.7617 0.4274 0.7187 0.3968 0.6725 0.3825 0.6679 0.3777
x2 0.0137 0.0146 0.0141 0.0102 0.0122 0.0084 0.0179 0.0109
x3 0.2209 0.1460 0.2639 0.1639 0.3112 0.1836 0.3137 0.1826
x4 -8.1804E-5 2.1058E-5 7.9491E-4 2.2947E-4 0.0017 1.7455E-4 2.7692E-4 2.5293E-5
x5 0.0047 4.7546E-5 0.0025 1.8633E-5 0.0021 -2.2416E-5 2.9471E-4 1.8097E-5
x6 -0.0011 -3.8401E-4 -2.2359E-4 -1.6152E-4 -1.2229E-5 -7.1246E-6 -1.9308E-4 1.7042E-6
x1 ∗ x2 – 0.0605 – 0.0483 – 0.0519 – 0.0600
x1 ∗ x3 – 0.1502 – 0.1746 – 0.1839 – 0.1629
x1 ∗ x4 – 1.7163E-4 – -1.6553E-6 – -8.0553E-6 – 1.8182E-5
x1 ∗ x5 – 2.3562E-5 – -4.7009E-4 – 5.7116E-5 – -1.8047E-4
x1 ∗ x6 – -7.3218E-4 – 3.5687E-4 – 6.7571E-5 – 2.0754E-4
x2 ∗ x3 – 0.1996 – 0.2062 – 0.1891 – 0.2056
x2 ∗ x4 – -1.1441E-4 – -2.0679E-5 – 2.2263E-5 – -3.3959E-5
x2 ∗ x5 – 0.0016 – -2.3791E-5 – 3.2200E-5 – -5.1379E-5
x2 ∗ x6 – -6.9754E-4 – 2.7571E-5 – 8.1896E-5 – -4.7938E-5
x3 ∗ x4 – 0.0011 – -1.3185E-4 – -1.5382E-4 – -4.8759E-5
x3 ∗ x5 – 3.0333E-5 – -2.0252E-4 – -1.8186E-5 – -2.4602E-5
x3 ∗ x6 – 5.1896E-4 – 1.3224E-4 – 9.4878E-5 – 2.1746E-5
x4 ∗ x5 – -2.0973E-4 – 1.2186E-4 – 9.1986E-6 – 7.8474E-5
x4 ∗ x6 – -9.2892E-5 – -1.1611E-4 – -3.9836E-6 – -2.8478E-6
x5 ∗ x6 – 7.8214E-5 – -1.4455E-4 – 2.2336E-5 – 4.2879E-6
Time 0.341 2.303 0.736 5.378 2.118 13.71 8.951 43.255

Collinearity Indices
Max Value 1.0138 1.1001 1.0054 1.0438 1.0020 1.0339 1.0007 1.0207
Min Value 1.0042 1.0228 1.0014 1.0073 1.0004 1.0035 1.0002 1.0016
Mean Value 1.0087 1.0434 1.0036 1.0221 1.0010 1.0141 1.0005 1.0085

Table 4: Analysis execution time (in seconds) for Problem 4 with 10, 20, 30, 50 and 100 input variables and 500, 1000, 2000, 5000 designs.

Number 500 1000 2000 5000
of Inputs Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect Main Effect Inter. Effect

10 0,45 6,406 1,115 15053 2,584 38,069 13,921 117,521
20 0,889 26,77 2,148 70,579 5,394 159,239 18,66 500,038
50 2,149 – 4,99 – 14,186 1350,639 45,598 4885,664

100 4,392 – 11,43 – 29,265 – 91,292 –

Table 5: Collinearity indices Problem 4 with 10, 20, 30, 50 and 100 input variables and 500, 1000, 2000, 5000 designs.

500 1000 2000 5000
Number Collinearity Main Inter. Main Inter. Main Inter. Main Inter.
of Inputs Indices Effect Effect Effect Effect Effect Effect Effect Effect

Max Value 1,0169 1,1254 1,0080 1,0699 1,0055 1,0751 1,0013 1,0609
10 Min Value 1,0022 1,0468 1,0017 1,0192 1,0017 1,0121 1,0004 1,0058

Mean Value 1,0078 1,0782 1,0049 1,0408 1,0030 1,0229 1,0008 1,0191
Max Value 1,0315 1,4910 1,0156 1,1994 1,0081 1,1586 1,0026 1,1084

20 Min Value 1,0120 1,2626 1,0049 1,1161 1,0027 1,0481 1,0011 1,0205
Mean Value 1,0192 1,3704 1,0096 1,1522 1,0049 1,0732 1,0018 1,0322
Max Value 1,0861 – 1,0389 – 1,0174 1,8250 1,0080 1,2747

50 Min Value 1,0398 – 1,0149 – 1,0081 1,5787 1,0028 1,1435
Mean Value 1,0541 – 1,0260 – 1,0126 1,6950 1,0048 1,1696
Max Value 1,1652 – 1,0854 – 1,0359 – 1,0137 –

100 Min Value 1,0684 – 1,0388 – 1,0176 – 1,0067 –
Mean Value 1,1134 – 1,0546 – 1,0255 – 1,0096 –
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