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Constructing optimal polynomial meshes on planar starlike
domains

Federico Piazzon a · Marco Vianello a

Abstract

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike
domains that satisfy a Uniform Interior Ball Condition (UIBC).

1 Introduction
In the recent literature on multivariate polynomial approximation, the concept of polynomial mesh (also called admissible mesh)
has begun to play an important role; cf., e.g., the seminal paper [8] and [6, 13] and the references therein. Polynomial meshes
are sequences {An} of finite norming sets (in the uniform norm) on a multidimensional polynomial determining compact K ⊂ Rd

or K ⊂ Cd (i.e., a polynomial vanishing there vanishes everywhere), such that the following polynomial inequality holds

‖p‖K ≤ C ‖p‖An
, ∀p ∈ Pd

n , (1)

with a cardinality increasing at most like O(ns), s ≥ d (here and below, ‖ f ‖X denotes the sup-norm of a function f bounded on
the set X ). Among their properties, we recall that admissible meshes are preserved by affine transformations, and can be easily
extended by finite union and product [8]. In the present note, we restrict our attention to the real case, i.e., real polynomials and
K ⊂ Rd .

Polynomial meshes provide a “good discrete model” of a compact set for many practical purposes. For example, they are nearly
optimal for uniform least squares approximation [8], and contain Fekete-like interpolation subsets with the same asymptotic
behavior as the continuous Fekete points of K , that can be computed by numerical linear algebra techniques (cf., e.g., [4, 5, 18]).
Such approximate Fekete points have been used within spectral element and collocation methods for PDEs (cf. [14, 20]). For a
recent and deep survey on polynomial approximation and interpolation in several variables, we refer the reader to [2].

In [8, Thm.5], it has been shown that any (real) compact set which satisfies a Markov polynomial inequality with exponent r

‖∇p(x)‖2 ≤ Mnr‖p‖K , ∀x ∈ K , p ∈ Pd
n , (2)

has an admissible mesh with O(nrd) cardinality (for example, r = 2 for compact sets which satisfy a Uniform Interior Cone
Condition).

On the other hand, in applications it is important to control the cardinality of such discrete models. Indeed, some attention has
been devoted to the construction of optimal and near optimal polynomial meshes, which have cardinality O(nd) and O((n log n)d),
respectively, in compact sets with special geometries (observe that in (1) necessarily card(An) ≥ dim(Pd

n) ∼ nd/d!); cf.,e.g.,
[7, 13, 15, 16, 17]. Moreover, the polynomial inequality (1) can be relaxed, asking that it holds with C = Cn, a sequence of
constants increasing at most polynomially with n: in such a case, we speak of weakly admissible meshes. Weakly admissible
meshes with O(nd) cardinality and constants Cn =O((log n)d) are known in several instances, cf., e.g., [4, 11].

In the present note we prove constructively the existence of optimal polynomial meshes, i.e., with cardinality O(n2), on a
planar compact starlike domain (that is not restrictive to consider to be centered in the origin) assuming that it satisfies a classical
Uniform Interior Ball Condition (UIBC, cf., e.g., [1] and references therein). Special instances are C1,1 planar starlike domains,
thus generalizing in the planar case a recent result by A. Kroó on C2 starlike domains [13].

2 Optimal polynomial meshes by a UIBC
In the sequel, the notion of tangential Markov inequality on a rectifiable curve Γ with respect to a compact K will play a key role.
Given a rectifiable curve Γ ⊂ K ⊂ R2 (i.e., it has a continuous parametrization and finite length), this curve has a canonical
Lipschitz continuous parametrization with respect to the arclength, which is almost everywhere differentiable. Given the tangent
unit vector τ at a regular point x ∈ Γ (a point where the canonical parametrization is differentiable with nonzero derivative), a
tangential Markov inequality with exponent r for Γ w.r.t. K has the form

|〈∇p(x),τ〉| ≤ Mnr‖p‖K , ∀p ∈ Pd
n , (3)

where 〈·, ·〉 denotes the euclidean scalar product and M , r are independent of the (regular) point x .
The fulfillement of a tangential Markov inequality like (3) allows us to construct a suitable polynomial inequality on the

curve.
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Lemma 2.1. Let K ⊂ R2 be a compact set, and let Γ ⊂ K be a rectifiable curve that satisfies (3) at its regular points. Then, for any
α ∈ (0, 1), there exists a mesh of equally spaced points (with respect to the arclength) on Γ , say Xn = Xn(α), such that

‖p‖Γ ≤ ‖p‖Xn
+α‖p‖K , (4)

and card(Xn) =O(nr).

Proof. Let us term ω(s), s ∈ [0, L] the canonical parametrization of Γ with respect to the arclength (which is Lipschitz continuous
and thus almost everywhere differentiable in [a, b]), where L denotes the total length of Γ . For any pair x , y ∈ Γ =ω([0, L]),
take two values of the parameter, say s1, s2 ∈ [0, L], such that x = ω(s1), y = ω(s2) (the curve being not necessarily simple).
Then, for every polynomial p ∈ P2

n, we can write

|p(x )− p(y)|= |p(ω(s2))− p(ω(s1))|=

�

�

�

�

�

∫ s2

s1

d
ds

p(ω(s)) ds

�

�

�

�

�

≤
∫ s2

s1

�

�

�

�

d
ds

p(ω(s))

�

�

�

�

ds =

∫ s2

s1

|〈∇p(ω(s)),ω′(s)〉| ds ≤ Mnr ‖p‖K `(x , y) ,

where `(x , y) = s2 − s1 denotes the length of the corresponding arc of Γ connecting x and y . Observe that the integral
representation above holds since p(ω(·)) is absolutely continuous, as p is a polynomial and ω is Lipschitz continuous.

Fix α ∈ (0, 1). Taking N + 1 equally spaced points on Γ with respect to the arclength

Xn = {y k =ω(kL/N) , k = 0, . . . , N} , N =
¡

Mnr L
2α

¤

, (5)

and observing that for every x ∈ Γ there is a point y k(x) ∈ Xn such that `(x , y k(x))≤
1
2 L/N , we can write the inequality

|p(x )| ≤ |p(y k(x))|+ |p(x )− p(y k(x))| ≤ |p(y k(x))|+α‖p‖K ,

that implies (4). �

Observe that if the curve is open, then the cardinality of Xn is N + 1, whereas it is N if the curve is closed, ω(0) =ω(L).
We can now state and prove the following:

Theorem 2.2. Let K ⊂ R2 be a planar compact starlike domain. Assume that K satisfies a Uniform Interior Ball Condition (UIBC),
i.e., every point of ∂ K belongs to the boundary of a disk with radius ρ > 0, contained in K (geometrically, there is a fixed disk that
can roll along the boundary remaining inside K; cf., e.g., [1]).

Then, for every fixed α ∈ (0, 1/
p

2), K possesses a sequence of finite norming sets {An} such that

‖p‖K ≤
p

2

1−α
p

2
‖p‖An

, ∀p ∈ P2
n , (6)

with

card(An)≤ 2n
¡

n length(∂ K)
2αρ

¤

+ 1=O(n2) , (7)

i.e., an optimal admissible mesh.

Proof. We recall that a compact set K ⊂ R2 is termed starlike if there exists x 0 ∈ K (the “star center”) such that for every x ∈ K
the segment [x 0, x ] is contained in K . Without loss of generality, by making a translation if necessary, we can assume that the
star center is the origin.

First, we show that K has a norming set formed by n+ 1 curves, that are suitable scalings of the boundary. Being compact
and starlike with respect to the origin, K is the union of the rays [0, x ], x ∈ ∂ K. On each ray, a polynomial p ∈ P2

n becomes a
univariate polynomial of degree not greater than n, and thus by a well-known result of Ehlich and Zeller (cf. [9] and [7, 19]),
there is an admissible mesh for the ray with constant

p
2, given by 2n+ 1 Chebyshev-Lobatto points of [0, x ], namely

u j(x ) = a j x , a j =
1+ ξ j

2
, (8)

where ξ j = cos( jπ/(2n)), j = 0, . . . , 2n, are the Chebyshev-Lobatto points in [−1,1]. Then, the 2n+ 1 curves

Γ j = {u j(x ) , x ∈ ∂ K}= a j∂ K

form a norming set for K , i.e.,
‖p‖K ≤

p
2‖p‖⋃ Γ j

≤
p

2 max
j
‖p‖Γ j

, ∀p ∈ P2
n . (9)

Notice that Γ2n degenerates into a singleton, Γ2n = {0}.
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Second, we show that on each curve Γ j an inequality like (4) is satisfied, with r = 1. Now, observe that the UIBC condition
implies the (weaker) Uniform Interior Cone Condition, which in turn ensures that the boundary is a rectifiable curve (cf. [10, Thm.
4.5.11]). Moreover, the UIBC condition implies that a tangential Markov inequality w.r.t. K such as (3) holds with exponent r = 1,
at the regular points of the boundary. Indeed, for any x ∈ ∂ K there is x ∗ ∈ int(K) such x ∈ ∂ D, D ⊂ K being the disk centered at
x ∗ with radius ρ. If we take the parametrization of ∂ D in polar coordinates centered at x ∗, say z(φ) = x ∗ + (ρ cos(φ),ρ sin(φ)),
φ ∈ [0,2π], then every p ∈ P2

n restricted to ∂ D becomes a univariate trigonometric polynomial t(φ) = p(z(φ)) ∈ Tn.
Consider a regular point x ∈ ∂ K , i.e., a point where the canonical parametrization with respect to the arclength is differentiable

with nonzero derivative: then, the disk D is tangent to ∂ K at x . By the classical Markov inequality for trigonometric polynomials
(cf., e.g., [3])

|t ′(φ)| ≤ n‖t‖[0,2π] ,

and the fact that |t ′(φ)|= |〈∇p(z(φ)), z′(φ)〉|, |z′(φ))|= ρ, and x = z(φ∗) for a certain φ∗, we get immediately

|〈∇p(x ),τ〉|= |〈∇p(z(φ∗)),τ〉| ≤
n
ρ
‖p‖∂ D ≤

n
ρ
‖p‖K , (10)

where τ = ±z′(φ∗)/ρ are the common unit tangent vectors to ∂ K and ∂ D at x . This shows that (3) holds with M = 1/ρ.
By (10) and Lemma with Γ = ∂ K

‖p‖∂ K ≤ ‖p‖Xn
+α‖p‖K , ∀p ∈ P2

n , (11)

from which it follows that, setting q(x ) = p(a j x ),

‖p‖Γ j
= ‖q‖∂ K ≤ ‖q‖Xn

+α‖q‖K

= ‖p‖a j Xn
+α‖p‖a j K ≤ ‖p‖a j Xn

+α‖p‖K , ∀p ∈ P2
n , (12)

since each curve Γ j = a j∂ K is an affine transformation (scaling) of the boundary.
Fix α such that 0< α < 1/

p
2. By (12) and (9) we can write for every p ∈ P2

n

‖p‖K ≤
p

2 max
j

¦

‖p‖a j Xn

©

+α
p

2‖p‖K

=
p

2‖p‖An
+α
p

2‖p‖K , An =
2n
⋃

j=0

a j Xn = {0} ∪
2n−1
⋃

j=0

a j Xn , (13)

from which we finally get

‖p‖K ≤
p

2

1−α
p

2
‖p‖An

, ∀p ∈ P2
n , (14)

where by (5) card(An)≤ 2n card(Xn)+1 = 2nN +1 =O(n2). Observe, in fact, that card(An) = 2n(N −1)+1 if 0 ∈ Xn, otherwise
card(An) = 2nN + 1. �

The theorem above generalizes, in the planar case, a recent result proved by A. Kroó in arbitrary dimension for C2 starlike
domains; cf. [13]. Indeed,

Corollary 2.3. Let K ⊂ R2 be the closure of an open, bounded, starlike, and C1,1 subset. Then, K has an optimal admissible mesh.

Proof. We recall that a closed domain K ⊂ Rd (the closure of an open connected subset) is termed C1,1 if there are a fixed radius,
say R> 0, and a constant L > 0 such that for each point ξ ∈ ∂ K there exists a C1,1 function f : I → R (I compact interval) such
that after a suitable rotation, K ∩ B(ξ, R) = {x = (x1, x2) ∈ K : x2 ≤ f (x1)}, where ‖ f ′‖I and the Lipschitz constant of f ′ are
uniformly bounded by L.

Now, it is known that a closed domain is C1,1 if and only if it satisfies a uniform two-sided (interior and exterior) ball condition;
cf., e.g., [1, Cor. 3.14]. Then, all the assumptions of Theorem 2.2 are satisfied, and the conclusion follows. �
Remark 1. The assumptions of Theorem 2.2 are much weaker than those of Corollary 2.3. In fact, the boundary of a C1,1 domain
is a regular curve, whereas Theorem 2.2 allows singular points, for example inward (but not outward) corners and cusps (the
domain does not even need to be Lipschitz).
Remark 2. In the special case of C2 convex domains, the maximal ρ in Theorem 2.2 is equal to the minimal ray of curvature, in
view of the so called Blaschke’s rolling ball theorem, cf., e.g., [12]. This fact could be used as the basis of an algorithm for the
computation of optimal polynomial meshes on C2 convex domains.
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