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Abstract

Using the notion of Dubiner distance, we give an elementary proof of the fact that good covering point
configurations on the 2-sphere are optimal polynomial meshes. From these we extract Caratheodory-
Tchakaloff (CATCH) submeshes for compressed Least Squares fitting.

2010 AMS subject classification: 41A10, 65D32.

Keywords: optimal polynomial meshes, Dubiner distance, sphere, good covering point configurations, Caratheodory-Tchakaloff subsampling,
compressed Least Squares.

1 Dubiner distance and polynomial meshes
In this note we focus on two notions that have played a relevant role in the theory of multivariate polynomial approximation during the last 20
years: the notion of polynomial mesh and the notion of Dubiner distance in a compact set or manifold K ⊂ Rd . Moreover, we connect the theory of
polynomial meshes with the recent method of Caratheodory-Tchakaloff (CATCH) subsampling, working in particular on the sphere S2.

In what follows we denote by Pd
n(K) the subspace of d-variate polynomials of total degree not exceeding n restricted to K, and by

Nn = Nn(K) = dim(Pd
n(K)) its dimension. For example we have that Nn =

�n+3
3

�

= (n+ 1)(n+ 2)(n+ 3)/6 for the ball in R3 and Nn = (n+ 1)2 for
the sphere S2.

We briefly recall that a polynomial mesh on K is a sequence of finite norming subsets An ⊂ K such that the following polynomial inequality
holds

‖p‖L∞(K) ≤ C ‖p‖`∞(An) , ∀p ∈ Pd
n(K) , (1)

where Mn = card(An) = O(Nβn ), β ≥ 1 and C is a constant independent of n. Indeed, since An is automatically Pd
n(K)-determining (i.e.,

polynomials vanishing there vanish everywhere on K), then Mn ≥ Nn = dim(Pd
n(K)) = dim(Pd

n(An)). Such a mesh is termed optimal when β = 1.
In the case where C is substituted by a sequence Cn that increases subexponentially,

‖p‖L∞(K) ≤ Cn ‖p‖`∞(An) , ∀p ∈ Pd
n(K) , (2)

in particular when Cn =O(ns), s ≥ 0, we speak of a weakly admissible polynomial mesh. All these notions can be given for K ⊂ Cd but we restrict
here to the real case.

The notion of polynomial mesh was introduced in the seminal paper [11] and then used from both the theoretical and the computational
point of view, cf. e.g. [1, 4, 6, 10, 17, 21, 26, 24] and the references therein.

Polynomial meshes have indeed interesting computational features, e.g. they

• are affinely invariant and are stable under small perturbations [23]

• can be extended by algebraic transforms, finite union and product [6, 11]

• contain computable near optimal interpolation sets [4, 5]

• are near optimal for uniform Least Squares (LS) approximation (cf. [11, Thm. 1]), namely

Λ(An) = ‖LAn
‖= sup

f ∈C(K), f 6=0

‖LAn
f ‖L∞(K)

‖ f ‖L∞(K)
≤ C

p

Mn , (3)

where LAn
is the `2(An)-orthogonal projection operator C(K)→ Pd

n(K) (the discrete LS operator at An), from which easily follows

‖ f −LAn
f ‖L∞(K) ≤

�

1+ C
p

Mn
�

min
p∈Pd

n (K)
‖ f − p‖L∞(K) . (4)
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We turn now to the notion of Dubiner distance in a compact set or manifold. Such a distance is defined as

distD(x , y) = sup
deg(p)≥1

§

1
deg(p)

| cos−1(p(x))− cos−1(p(y))|
ª

, (5)

where the sup is taken over the polynomials p ∈ Pd
n(K) such that ‖p‖L∞(K) ≤ 1.

Introduced by M. Dubiner in the seminal paper [12], it belongs to a family of three distances (the other two are the Markov distance and the
Baran distance) that play an important role in multivariate polynomial approximation and have deep connections with multivariate polynomial
inequalities. We refer the readers, e.g., to [7, 8, 9] and to the references therein for relevant properties and results.

It is worth recalling that the Dubiner distance is known analytically only in very few instances: the interval (where it coincides with the usual
distance | cos−1(x)− cos−1(y)|), the cube, the simplex, the ball, and the sphere. All these cases are treated in [7]. In particular, it can be proved
via the classical van der Corput-Schaake inequality that on the sphere it coincides with the usual geodesic distance, namely

distD(x , y) = γ(x , y) = cos−1(〈x , y〉) , ∀x , y ∈ S2 , (6)

where 〈x , y〉 denotes the Euclidean scalar product in R3.
A simple connection of the Dubiner distance with the theory of polynomial meshes is given by the following

Proposition 1.1. Let An be a compact subset of a compact set or manifold K ⊂ Rd whose covering radius with respect to the Dubiner distance does
not exceed θ/n, where θ ∈ (0,1) and n≥ 1, i.e.

∀x ∈ K ∃y ∈An : distD(x , y)≤
θ

n
. (7)

Then, the following inequality holds

‖p‖L∞(K) ≤
1

1− θ
‖p‖L∞(An) , ∀p ∈ Pd

n(K) . (8)

In view of (7), the proof of Proposition 1 is an immediate consequence of the elementary inequality

|p(x)| ≤ |p(y)|+ |p(x)− p(y)| ≤ |p(y)|+ n distD(x , y)‖p‖L∞(K) . (9)

Observe, in particular, that An need not be discrete. In the case where (7) is satisfied by a sequence of finite subsets with card(An) =O(Nβn ),
β ≥ 1, then these subsets clearly form a polynomial mesh like (1) for K , with C = 1/(1− θ ).

Let us now focus on the case of the sphere, K = S2. We recall that a sequence of finite point configurations XM ⊂ S2, with cardinality M ≥ 2,
is termed a “good covering” of the sphere if its covering radius

η(XM ) =max
x∈S2

min
y∈XM

|x − y| (10)

satisfies the inequality

η(XM )≤
α
p

M
, (11)

for some α > 0 (cf., e.g., the survey paper [14]). It is then easy to prove the following result (that can be obtained also via a tangential Markov
inequality on the sphere with exponent 1, cf. [15, 16])

Proposition 1.2. Let {XM }, M ≥ 1, be a good covering of S2. Then for every fixed θ ∈ (0,1) the sequence An = XMn
, with

Mn = dσ2
nn2e , σn =

2πα
θ (2π− θ/n)

∼
α

θ
, n→∞ . (12)

is an optimal polynomial mesh of S2 with C = 1/(1− θ ).

Proof. By (10)-(11) and simple geometric considerations, for every x ∈ S2 there exists y ∈ XM such that we have the estimate

γ(x , y) = 2sin−1
� |x − y|

2

�

≤ 2sin−1
�

α

2
p

M

�

(provided that α/(2
p

M) ≤ 1 that is
p

M ≥ α/2), where γ is the geodesic distance, i.e., the Dubiner distance. By Proposition 1, in order to
determine Mn it is the sufficient to fulfill the inequality

2 sin−1
�

α

2
p

M

�

≤
θ

n
or equivalently

α

2
p

M
≤ sin

�

θ

2n

�

. (13)

By the trigonometric inequality sin(t)≥ t(1− t/π), valid for 0≤ t ≤ π, we get

sin
�

θ

2n

�

≥
θ

2n

�

1−
θ

2πn

�

,

and thus (13) is satisfied if
α

2
p

M
≤
θ

2n

�

1−
θ

2πn

�

,

i.e. for M ≥ σ2
nn2. �

Among good covering configurations of S2, an important role is played by the so-called “quasi-uniform” ones, that are those configurations with
bounded ratio between the covering radius and the point separation (mesh ratio). Indeed, quasi-uniform configurations provide discretizations
of the sphere that keep a low information redundancy. In [14] several quasi-uniform configurations are listed and their properties discussed.
An interesting instance is the zonal equal area configurations (generated by zonal equal area partitions of the sphere), that turn out to be both,
quasi-uniform and equidistributed in the sense of the surface area measure. In particular, they are theoretically good covering with α = 3.5
(but the numerical experiments suggest α= 2.5, cf. [18, 20]), and can be efficiently computed by the Matlab toolbox [19]. For example, taking
θ = 1/2 by Proposition 2 we have the following quantitative result:
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Corollary 1.3. The zonal equal area configurations with Mn =
 

49
�

n− 1
4π

�2£
points are an optimal polynomial mesh of the sphere with C = 2.

The situation above is typical: polynomial meshes, even optimal ones, have often a large cardinality (though optimal as order of growth in n),
which means large samples in the applications, for example in polynomial Least Squares. To this respect, it is useful to seek weakly admissible
meshes with lower cardinality. This is exactly what we are going to do in the next Section, by the method of Caratheodory-Tchakaloff subsampling.

To conclude this Section, we observe that Proposition 1 can be used to generate optimal polynomial meshes in other cases where the Dubiner
distance is explicitly known. For example, in the square K = [−1,1]2

distD(x , y) =max
�

| cos−1(x1)− cos−1(y1)|, | cos−1(x1)− cos−1(y2)|
	

. (14)

We can then construct optimal polynomial meshes in [−1, 1]2 by the so-called Padua points. We recall that the Padua points of degree k for
the square [−1,1]2 are given by the union of two Chebyshev-Lobatto subgrids

Pk = Ceven
k+1 × Codd

k+2 ∪ C
odd
k+1 × Ceven

k+2 , (15)

where Cs+1 = {cos( jπ/s) , 0≤ j ≤ s}, and the supscripts mean that only even or odd indexes are considered. They are a near-optimal point set
for polynomial interpolation of total degree k, with a Lebesgue constant increasing as log square of the degree; cf., e.g., [3]. Extending a similar
result for univariate Chebyshev-like points, we can prove the following

Proposition 1.4. The Padua points Pνn
, νn =

�

πn
θ

�

, 0< θ < 1 (cf. (15)), are an optimal polynomial mesh of the square with C = (1− θ )−1 and
cardinality Mn = (νn + 1)(νn + 2)/2.

Proof. In view of (14), by simple geometric considerations we get easily that distD(x ,Pνn
)≤ π/νn ≤ θ/n, for every x ∈ [−1, 1]2. The result then

follows immediately by Proposition 1. �

We stress that the cardinality of the Padua points Pνn
is asymptotically ν2

n/2, that is essentially half the cardinality obtainable by embedding
the problem in the tensorial polynomial space P1

n ⊗ P
1
n, and using for example product Chebyshev points of degree νn (cf. [10]).

2 Caratheodory-Tchakaloff (CATCH) submeshes
In order to reduce the cardinality of a polynomial mesh, a feature that is relevant in applications, we may try to relax the boundedness requirement
for the ratio ‖p‖L∞(K)/‖p‖`∞(An), seeking a weakly admissible mesh contained in the original one, where the ratio is allowed to increase
subexponentially with respect to the degree.

In principle, this can be done by computing Fekete points Fn ⊂An. These are a subset of An that maximizes the Vandermonde determinant
(not unique in general), so that the corresponding cardinal polynomials are bounded by 1 in `∞(An), and by C in L∞(K). This entails that such
discrete Fekete points are unisolvent and form a weakly admissible mesh of cardinality Nn, Cn = CNn being a bound on their Lebesgue constant
[11]. Unfortunately, even the discrete Fekete points (as the continuum ones) are difficult and costly to compute. In several papers, approximate
Fekete points extracted from polynomial meshes have been computed by greedy algorithms based on standard numerical linear algebra routines;
cf., e.g., [4, 5, 6]. These points work effectively for interpolation, and are asymptotically distributed as the continuum Fekete points, but no
rigorous bound has been proved for their Lebesgue constant.

In the case of the sphere, the continuum Fekete (maximum determinant) points have been computed by a difficult numerical nonconvex
optimization up to degrees in the hundreds, estimating also numerically the corresponding Lebesgue constants; cf. [33]. As it is well-known, the
difficulties of polynomial interpolation on the sphere have led to the alternative approach of hyperinterpolation, cf. the seminal paper [28] and
the numerous developments in the following 20 years.

In the present note, starting from optimal polynomial meshes of the sphere, we explore an alternative discrete approach, that can be
considered a sort of fully discrete hyperinterpolation, namely the extraction of Caratheodory-Tchakaloff submeshes. These are computable by
Linear or Quadratic Programming, and there are rigorous bounds for the corresponding constants Cn.

First, we recall a discrete version of the Tchakaloff theorem, a cornerstone of quadrature theory, whose proof is based on the Caratheodory
theorem about finite dimensional conic combinations (cf., e.g., [2]). We focus here on total-degree polynomial spaces and we recall the proof to
exhibit the connection with the Caratheodory theorem.

Theorem 2.1. Let µ be a multivariate discrete measure supported at a finite set X = {x i} ⊂ Rd , with correspondent positive weights (masses)
λ= {λi}, i = 1, . . . , M.

Then, there exists a quadrature formula with nodes T = {t j} ⊆ X and positive weights w = {w j}, 1≤ j ≤ m≤ Nν = dim(Pd
ν(X )), such that

∫

X
p(x) dµ=

M
∑

i=1

λi p(x i) =
m
∑

j=1

w j p(t j) , ∀p ∈ Pd
ν(X ) . (16)

Proof (cf., e.g., [22]). Let {p1, . . . , pNν} be a basis of Pd
ν(X ), and V = (vi j) = (p j(x i)) the Vandermonde-like matrix of the basis computed at the

support points. If M > Nν (otherwise there is nothing to prove), existence of a positive quadrature formula for µ with cardinality not exceeding
Nν can be immediately translated into existence of a nonnegative solution with at most Nν nonvanishing components to the underdetermined
linear system

V t u = b , u ≥ 0 , (17)

where

b = V tλ=

�∫

X
p j(x) dµ

�

, 1≤ j ≤ Nν , (18)

is the vector of µ-moments of the basis {p j}.
Existence then holds by the well-known Caratheodory theorem applied to the columns of V t , which asserts that a conic (i.e., with positive

coefficients) combination of any number of vectors in RN can be rewritten as a conic combination of a linearly independent subset of at most Nν
of them. �

We may term T = {t j} a set of Caratheodory-Tchakaloff (CATCH) quadrature points. We apply now the Tchakaloff theorem to the extraction
of a weakly admissible submesh from a polynomial mesh.
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Proposition 2.2. Let An ⊂ K be a polynomial mesh like (1) for K with cardinality Mn > N2n = dim(Pd
2n(K)), let µ be the discrete measure with unit

weights supported at An, and let T2n = {t j} be the m≤ N2n Caratheodory-Tchakaloff quadrature points for exactness degree ν= 2n extracted from
An, with corresponding weights w = {w j}, 1 ≤ j ≤ m. Moreover, let Lw

T2n
f ∈ Pd

n(K) be the weighted discrete least squares polynomial on T2n for
f ∈ C(K).

Then T2n is a weakly-admissible polynomial mesh like (2) for K with

Cn = C
p

Mn (19)

(that we may term a Caratheodory-Tchakaloff submesh), and the following estimate holds for the corresponding weighted least squares approximation

‖ f −Lw
T2n

f ‖L∞(K) ≤ (1+ Cn) min
p∈Pd

n (K)
‖ f − p‖L∞(K) . (20)

Proof (cf., e.g., [32]). Since the Caratheodory-Tchakaloff quadrature is exact in Pd
2n(K), we get the basic `2-identity

‖p‖2
`2(An)

=
Mn
∑

i=1

p2(x i) =
m
∑

j=1

w j p2(t j) = ‖p‖2`2w (T2n)
, ∀p ∈ Pd

n(K) . (21)

Then we can write
‖p‖L∞(K) ≤ C ‖p‖`∞(An) ≤ C ‖p‖`2(An) = C ‖p‖`2w (T2n)

≤ C

√

√

√

√

m
∑

j=1

w j ‖p‖`∞(T2n) = C
p

Mn ‖p‖`∞(T2n) , (22)

i.e., T2n is a weakly-admissible polynomial mesh for K with Cn = C
p

Mn.
Concerning the weighted Least Squares polynomial approximation on T2n, we recall that it is defined by

‖ f −Lw
T2n

f ‖`2w (T2n)
= min

p∈Pd
n (K)
‖ f − p‖`2w (T2n)

(23)

for f ∈ C(K), and that Lw
T2n

f is a `2
w (T2n)-orthogonal projection, i.e., f −Lw

T2n
f is `2

w (T2n)-orthogonal to Pd
n(K) and

‖ f ‖2
`2w (T2n)

= ‖ f −Lw
T2n

f ‖2
`2w (T2n)

+ ‖Lw
T2n

f ‖2
`2w (T2n)

by the Pythagorean theorem. The latter entails that ‖Lw
T2n

f ‖`2w (T2n)
≤ ‖ f ‖`2w (T2n)

. Then, we can write the chain of inequalities

‖Lw
T2n

f ‖L∞(K) ≤ C ‖Lw
T2n

f ‖`∞(An) ≤ C ‖Lw
T2n

f ‖`2(An)

= C ‖Lw
T2n

f ‖`2w (T2n)
≤ C ‖ f ‖`2w (T2n)

≤ C

√

√

√

√

m
∑

j=1

w j ‖ f ‖`∞(T2n)

= C
p

Mn ‖ f ‖`∞(T2n) ≤ C
p

Mn ‖ f ‖L∞(K) ,

that is

Λw(T2n) = ‖Lw
T2n
‖= sup

f ∈C(K), f 6=0

‖Lw
T2n

f ‖L∞(K)

‖ f ‖L∞(K)
≤ Cn = C

p

Mn , (24)

from which (20) easily follows. �

Observe that the error estimate (20) for weighted discrete Least Squares on the Caratheodory-Tchakaloff submesh, turns out to coincide with
the natural error estimate (4) for unweighted Least Squares on the original polynomial mesh. In some sense, Caratheodory-Tchakaloff weighted
Least Squares on the submesh catches all the relevant information from the polynomial mesh, as far as polynomial approximation in Pd

n(K) is
concerned. We recall that the best uniform approximation error in Pd

n(K) can be estimated by the regularity of f , on compact sets K admitting a
Jackson-like theorem; cf., e.g., [25].

We can now apply the results above to optimal polynomial meshes on the sphere. Indeed, from Proposition 2 and 4 and Corollary 1 and 2 we
get immediately the following

Corollary 2.3. Let An be a good covering optimal polynomial mesh as in Proposition 2, and let T2n be the extracted Caratheodory-Tchakaloff submesh
(with corresponding weights).

Then, T2n is a weakly admissible mesh for the sphere with cardinality N2n = dim(P3
2n(S

2)) = (2n+ 1)2, and (20) holds for the corresponding
weighted Least Squares polynomial approximation Lw

T2n
f to f ∈ C(S2), where

Cn =
σn n
1− θ

∼
αn

θ (1− θ )
, n→∞ . (25)

In particular, for a Caratheodory-Tchakaloff submesh of the zonal equal area configurations of Corollary 1, we have

Cn =
14n

1− (4πn)−1
∼ 14n , n→∞ . (26)

We observe that by ((3), (24) and (25) we get O(n) estimates for the least squares operator norms, whereas the best projection operators on
P3

n(S
2) have a O(n1/2) norm; cf., e.g., [29]. On the other hand, (24) turns out to be an overestimate of the actual norm, as we shall see in the

numerical examples.
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Table 1: Cardinality of zonal equal area meshes An and of their CATCH submeshes T2n, Compression Ratio, weight ratios, discrete least squares
operator norms (the CATCH weights and submeshes have been obtained by (27) via lsqnonneg and by (28) via CPLEX).

deg n 2 5 8 11 14 17 20
card(An) 181 1187 3074 5844 9496 14029 19445
card(T2n) 25 121 289 529 841 1225 1681

Crat io (= wavg ) 7.2 9.8 10.6 11.0 11.3 11.5 11.6
QP: wmax/wavg 2.2 2.6 2.5 2.5 2.6 2.4 2.6
LP: wmax/wavg 2.1 3.1 2.8 3.1 3.1 3.0 3.0
QP: wmin/wavg 2.1e-2 5.4e-4 7.6e-5 8.8e-6 2.4e-6 8.1e-6 2.6e-6
LP: wmin/wavg 9.1e-2 4.3e-4 2.3e-3 6.2e-4 1.1e-3 2.4e-3 1.3e-3
Λ(An) 2.2 3.3 4.2 4.9 5.6 6.2 6.7
1.5 n1/2 2.1 3.4 4.2 5.0 5.6 6.2 6.7

QP: Λw(T2n) 2.5 3.7 4.6 5.4 6.0 6.5 7.1
LP: Λw(T2n) 2.6 4.2 5.6 6.6 7.4 7.5 8.4

3 Computational issues and numerical examples
In order to compute a sparse nonnegative solution to the underdermined system (17)-(18), that exists by Tchakaloff theorem (Theorem 1 above),
there are a number of different approaches available. We focus here on the case of the sphere, where we use the classical spherical harmonics
basis to define the Vandermonde-like matrix V .

A first approach resorts to Quadratic Programming, namely to the NonNegative Least Squares problem

QP :
§

min‖V t u − b‖2
u ≥ 0 (27)

which can be solved by the Lawson-Hanson active set method, which naturally seeks a sparse solution; cf. [22, 30] and the references therein.
The nonzero components of u identify the weights w = {w j} and the corresponding CATCH submesh T2n.

A second approach is based on Linear Programming (cf. [22, 27, 31]), namely

LP :
§

min c t u
V t u = b , u ≥ 0 (28)

where the constraints identify a polytope (the feasible region), and the vector c is suitably chosen (cf. [22, 27]). Solving the problem by the
classical Simplex Method, we get a vertex of the polytope, that is a nonnegative sparse solution to the underdetermined system.

A third combinatorial approach (Recursive Halving Forest), based on the SVD, is proposed in [31] and essentially applied to the reduction of
Cartesian tensor cubature measures.

It is worth observing that sparsity cannot be ensured by the standard Compressive Sensing approach to underdetermined systems, such
as the Basis Pursuit algorithm that minimizes ‖u‖1 (cf., e.g., [13]), since ‖u‖1 =

p

Mn is here constant by construction (being the quadrature
formula applied to the constant polynomial p ≡ 1).

In our Matlab codes for Caratheodory-Tchakaloff Least Squares we have adopted both the QP approach (via an optimized version of the
lsqnonneg function), and the LP approach (via the Simplex Method in the Matlab interface of the CPLEX package); cf. [22].

In Table 1, we report the numerical results corresponding to the extraction of CATCH submeshes from zonal equal area meshes of S2,
for a sequence of degrees. All the quantities are rounded to the first decimal digit. We have that the cardinality of the CATCH submeshes
is dim(P3

2n(S
2)) = (2n + 1)2, and that the Compression Ratio, Crat io = card(An)/card(T2n), increases, approaching the asymptotic value

49/4 = 12.25, cf. Corollary 1. Since
∑

w j = card(An), the average CATCH weight turns out to coincide with the Compression Ratio. Notice that
the minimum of the CATCH weights computed by QP is much smaller than the minimum of the CATCH weights computed by LP.

Moreover, we see that the compressed least squares operator norms Λw(T2n) are close to the norm Λ(An) of the least squares operator on
the starting mesh, with a slightly better behavior of CATCH submeshes extracted by QP with respect to those extracted by LP. On the other hand,
all the norms are much lower than the theoretical overestimate Cn ∼ 14n in Corollary 2, having substantially a O(n1/2) increase (at least in the
considered degree range).

In Table 2, we report the reconstruction errors by Least Squares (in the L∞(S2)-norm, numerically evaluated on a fine control grid), for
three test functions with different degree of regularity

f1(x1, x2, x3) = (x1 + x2 + x3)
15 , f2(x1, x2, x3) = exp(x1 + x2 + x3)/10 ,

f3(x1, x2, x3) = (|x1|+ |x2|+ |x3|)/10 , (29)

namely a polynomial, a smooth function and a function with singular points on the sphere (the latter two taken from [33]).
Finally, in Figure 1 we display the CATCH submesh extracted by QP from a zonal equal area mesh for degree n= 5.
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deg n 2 5 8 11 14 17 20
LS 1.4e+5 4.1e+4 1.5e+4 5.3e+2 3.7e+1 8.4e-10 9.1e-10

f1 CATCHQP 1.7e+5 4.8e+4 1.4e+4 5.1e+2 3.7e+1 8.4e-10 6.4e-10
CATCHLP 2.0e+5 4.6e+4 1.6e+4 6.5e+2 4.3e+1 5.8e-10 6.7e-10

LS 1.3e-1 1.6e-3 5.1e-6 5.9e-9 3.3e-12 5.6e-15 6.2e-15
f2 CATCHQP 1.7e-1 1.7e-3 5.1e-6 6.0e-9 3.3e-12 2.8e-15 1.9e-15

CATCHLP 1.3e-1 1.7e-3 4.5e-6 6.7e-9 3.3e-12 2.1e-15 2.6e-15
LS 5.0e-1 3.2e-1 1.5e-1 1.4e-1 9.5e-2 9.2e-2 7.4e-2

f3 CATCHQP 6.0e-1 3.4e-1 1.9e-1 1.6e-1 1.2e-1 9.7e-2 7.4e-2
CATCHLP 6.0e-1 3.7e-1 1.9e-1 1.5e-1 1.3e-1 1.0e-1 1.1e-1

Figure 1: CATCH submesh (121 points, bullets) extracted by NNLS from a zonal equal area mesh (1187 points, dots) of the sphere for degree
n= 5.

Dolomites Research Notes on Approximation ISSN 2035-6803



Leopardi · Sommariva · Vianello 24

[5] L. Bos, S. De Marchi, A. Sommariva and M. Vianello. Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J.
Numer. Anal., 48:1984–1999, 2010.

[6] L. Bos, S. De Marchi, A. Sommariva and M.Vianello. Weakly Admissible Meshes and Discrete Extremal Sets. Numer. Math. Theory Methods
Appl., 4:1–12, 2011.

[7] L. Bos, N. Levenberg and S. Waldron. Metrics associated to multivariate polynomial inequalities. Advances in Constructive Approximation, M.
Neamtu and E. B. Saff eds., Nashboro Press, Nashville, 133–147: 2004.

[8] L. Bos, N. Levenberg and S. Waldron. Pseudometrics, distances and multivariate polynomial inequalities. J. Approx. Theory, 153:80–96:
2008.

[9] L. Bos, N. Levenberg and S. Waldron. On the spacing of Fekete points for a sphere, ball or simplex. Indag. Math., 19:163–176, 2008.

[10] L. Bos and M. Vianello. Low cardinality admissible meshes on quadrangles, triangles and disks. Math. Inequal. Appl., 15:229–235, 2012.

[11] J.P. Calvi and N. Levenberg. Uniform approximation by discrete least squares polynomials. J. Approx. Theory, 152:82–100, 2008.

[12] M. Dubiner. The theory of multidimensional polynomial approximation. J. Anal. Math., 67:39–116, 1995.

[13] S. Foucart and H. Rahut. A Mathematical Introduction to Compressive Sensing. Birkhäuser, 2013.

[14] D.P. Hardin, T. Michaels and E.B. Saff. A Comparison of Popular Point Configurations on S2. Dolomites Res. Notes Approx. DRNA, 9:16–49,
2016.

[15] K. Jetter, J. Stöckler and J.D. Ward. Norming sets and spherical cubature formulas. Advances in computational mathematics, (Guangzhou,
1997), 237–244, Lecture Notes in Pure and Appl. Math. 202, Marcel-Dekker, New York, 1998.

[16] K. Jetter, J. Stöckler and J.D. Ward. Error estimates for scattered data interpolation on spheres. Math. Comp., 68:733–747, 1999.

[17] A. Kroó. On optimal polynomial meshes. J. Approx. Theory 163:1107–1124, 2011.

[18] P. Leopardi A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. on Numer. Anal., 25:309–327, 2006.

[19] P. Leopardi. Recursive Zonal Equal Area Sphere Partitioning Toolbox, http://eqsp.sourceforge.net.

[20] P. Leopardi. Distributing points on the sphere: partitions, separation, quadrature and energy. Ph.D. Thesis, The University of New South
Wales, April 2007.

[21] F. Piazzon. Optimal polynomial admissible meshes on some classes of compact subsets of Rd . J. Approx. Theory, 207:241–264, 2016.

[22] F. Piazzon, A. Sommariva and M. Vianello. Caratheodory-Tchakaloff Least Squares (paper and codes). SampTA 2017 - IEEE Xplore Digital
Library, in press.

[23] F. Piazzon and M. Vianello. Small perturbations of polynomial meshes. Appl. Anal., 92:1063–1073, 2013.

[24] F. Piazzon and M. Vianello. Constructing optimal polynomial meshes on planar starlike domains. Dolomites Res. Notes Approx. DRNA,
7:22–25, 2014.

[25] W. Pleśniak. Multivariate Jackson Inequality. J. Comput. Appl. Math., 233:815–820, 2009.
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