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A numerical investigation of some RBF-FD error estimates

Elisabeth Larsson a · Boštjan Mavrič a,b · Andreas Michael a · Fatemeh Pooladi a,c

Abstract

In a recent paper by Tominec, Larsson and Heryudono a convergence proof for an oversampled version of
the RBF-FD method, using polyharmonic spline basis functions augmented with polynomials, was derived.
In this paper, we take a closer look at the individual estimates involved in this proof. We investigate
how large the bounds are and how they depend on the node layout, the stencil size, and the polynomial
degree. We find that a moderate amount of oversampling is sufficient for the method to be stable when
Halton nodes are used for the stencil approximations, while a random node layout may require a very
high oversampling factor. From a practical perspective, this indicates the importance of having a locally
quasi uniform node layout for the method to be stable and give reliable results. We see an overall growth
of the error constant with the polynomial degree and with the stencil size.

1 Introduction
In a finite difference method, an unknown function is represented as a (tensor product) polynomial interpolant of discrete
function values on a grid. As an example, for x1 = −h, x2 = 0, x3 = h, and corresponding function values u(x i) = ui we have

uh(x) =
x(x − h)

2h2
u1 −

(x + h)(x − h)
h2

u2 +
(x + h)x

2h2
u3 ≡

3
∑

i=1

Li(x)ui . (1)

If we differentiate the approximation and evaluate the result at x = 0, we get the well known results u′h(0) =
u3−u1

2h and
u′′h (0) =

u1−2u2+u3
h2 . However, we can also evaluate the function u′h(x) =

2x−h
2h2 u1−

2x
h2 u2+

2x+h
2h2 u3 at any other point in the interval to

get, e.g., u′h
�

h
2

�

= u3−u2
h . The Lagrange interpolation polynomial basis functions L j(x) used here are the cardinal basis functions

of the finite difference stencil, meaning that L j(x i) = δi j .
In the radial basis function-generated finite difference method (RBF-FD) [6] a similar approach is taken, but function values

(nodal values) are instead given at scattered node locations and the underlying interpolation is multivariate and based on radial
basis functions (RBF) instead of polynomials. We pay particular attention to RBF-FD methods where the interpolant consists of a
combination of polyharmonic spline (PHS) basis functions φ(r) = r2i+1, i ≥ 0, and polynomial basis functions of degree ≤ p.
This combination has been shown to perform well in a series of papers [5, 4, 3, 2]. The order of convergence is determined by
the polynomial degree p, the approximations are comparatively well-behaved near boundaries, where stencils become skewed,
and there is no need to tune a shape parameter as for some other choices of RBFs.

In RBF-FD, for a point xk ∈ X⊂Rd , where X = {xk}Nk=1 is a global scattered node set, we form a stencil based on the set
Xk = {x

(k)
j }

n
j=1 of the n≪ N nearest neighbors of xk, and we let x (k)1 = xk. We form a local interpolant uh(x) using φ(r) = r3 and

monomials p j that form a basis for polynomials of degree p, such that

uh(x) =
n
∑

j=1

λ
(k)
j φ(∥x − x (k)j ∥2) +

m
∑

j=1

µ
(k)
j p j(x), (2)

under the constraint
∑n

j=1 λ
(k)
j pℓ(x

(k)
j ) = 0, ℓ= 1, . . . , m. This interpolant is not on cardinal form, i.e., the unknown coefficients

are not the nodal values. To transfer it to cardinal form, we use (2) for each stencil point, which results in the linear system
�

A(k) P(k)

(P(k))T 0

�

�

λ(k)

µ(k)

�

=
�

u(Xk)
0

�

⇒
�

λ(k)

µ(k)

�

=
�

A(k) P(k)

(P(k))T 0

�−1 �
u(Xk)

0

�

, (3)

where A(k) has elements ai j = φ(∥x
(k)
i − x (k)j ∥2) and P(k) has elements pi j = p j(x

(k)
i ). The vectors λ(k) = (λ(k)1 , . . . ,λ(k)n )

T ,

µ(k) = (µ(k)1 , . . . ,µ(k)m )
T , and u(Xk) = (u(x

(k)
1 ), . . . , u(x (k)n ))

T . The system matrix is non-singular if the node points are distinct,
and P has full rank. The latter puts some restrictions on the node layout. For example, Cartesian node layouts can lead to
rank deficiency in skewed stencils near the boundaries if the stencil size is too small. A method to overcome problems of rank
deficiency in the polynomial part of an RBF-FD approximation can be found in [7], but here, we restrict our investigations to
node layouts that are unisolvent for polynomials of degree p.
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In the same way as in the finite difference case, we can now evaluate the local interpolant or its derivatives at any point y .
We have

uh(y) =
n
∑

j=1

λ jφ(∥y − x (k)j ∥2) +
m
∑

j=1

µ j p j(y)

=
�

φ(∥y − x (k)1 ∥2) · · · φ(∥y − x (k)n ∥2) p1(y) · · · pm(y)
�

�

λ(k)

µ(k)

�

=
�

φ(∥y − x (k)1 ∥2) · · · φ(∥y − x (k)n ∥2) p1(y) · · · pm(y)
�

�

A(k) P(k)

(P(k))T 0

�−1 �
u(Xk)

0

�

≡
�

ψ
(k)
1 (y) · · · ψ(k)n (y) η

(k)
1 (y) · · ·η

(k)
m (y)
�

�

u(Xk)
0

�

. (4)

That is, we can express the local interpolant on cardinal form as

uh(y) =
n
∑

j=1

u(x (k)j )ψ
(k)
j (y), (5)

and the cardinal functions (weights) are computed from the vector of PHS and polynomial basis functions and the inverse of the
local interpolation matrix as shown in (4). Weights for differentiation are found by differentiating the cardinal basis functions. If
we apply a linear differential operator to the local interpolant we get

Luh(y) =
n
∑

j=1

u(x (k)j )Lψ
(k)
j (y). (6)

In [10], we used the capability of the method to evaluate the approximation anywhere to construct a least-squares or
oversampled RBF-FD method. For each evaluation point y , in our method, we choose the stencil with its center xk closest to y for
evaluation. This corresponds to an implicit Voronoi decomposition of the computational domain (see Figure 1), and it results in
the global solution/interpolant having a (small) jump across each Voronoi region edge, where we switch stencils. For further
discussion of the global discontinuous trial space Vh, see [10]. A small stencil with seven evaluation points in the corresponding
Voronoi region is shown in the left part of Figure 1.

Figure 1: Left: A scattered node stencil, the Voronoi region belonging to the center point, and seven evaluation points (small, blue) in the
Voronoi region. Right: A Voronoi tessellation over Halton nodes, a stencil with n= 20 node points (round markers), the convex hull of the node
points (shaded), the Voronoi region (thick black line) of the center point (red), the circles defining the fill distance (solid circle), and the doubled
separation distance (dashed circle).

In [10], we also analyzed the convergence properties of the oversampled RBF-FD method for a Poisson problem with mixed
boundary conditions.

(

∆u = f2, in Ω,
∇u · n̂ = f1, on ∂Ω1,

u = f0, on ∂Ω0,
(7)

where n̂ is the outward unit normal and ∂Ω = ∂Ω0 ∪ ∂Ω1. We used estimates involving norms over the Voronoi regions Vk where,
due to the cubic PHS basis, the local interpolants uh|Vk

∈ C2. As an introduction to the estimates, we first introduce the L2-norm
over one Voronoi region Vk, associated with one nodal point xk

∥uh∥2L2(Vk)
=

∫

Vk

uh(y)
2 dy = uh(Xk)

T Muh(Xk), (8)
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where the elements of the local mass matrix M are given by mi j =
∫

Vk
ψ
(k)
i (y)ψ

(k)
j (y)dy. When several local matrices are

involved, we also use the notation M k = M . We note that the eigenvalues of the mass matrix provide an upper bound for the
norm in relation to the discrete values

∥uh∥2L2(Vk)
≤max

i
αi ∥uh(Xk)∥22, (9)

where αi > 0 are the eigenvalues of the mass matrix. We also introduce the discrete counterpart, where we define the norm as

∥uh∥2ℓ2(Vk)
=
|Vk|
|Yk|

uh(Yk)
T uh(Yk) = uh(Xk)

T ET
h Ehuh(Xk) = uh(Xk)

T Mhuh(Xk), (10)

where Yk ∈ Vk are the evaluation points associated with stencil k, where the elements of the local evaluation matrix Eh are given

by eqi =
Ç

|Vk |
|Yk |
ψ
(k)
i (yq), and where the elements of the discrete mass matrix are given by mi j =

|Vk |
|Yk |

∑

yq∈Yk
ψ
(k)
i (yq)ψ

(k)
j (yq). We

note that the discrete norm can be interpreted as an approximation of the continuous norm, where a discrete quadrature has
been introduced. We get the corresponding global discrete norm by summing over all Voronoi regions such that

∥uh∥2ℓ2(Ω) =
N
∑

k=1

∥uh∥2ℓ2(Vk)
. (11)

When solving the PDE (7), we introduce three different global point sets Y i , i = 0, 1, 2, to discretize the three equations on their
respective domains. The discrete norms on the boundary are, similarly to (10) and (11), given by

∥uh∥2ℓ2(∂Ωi )
=

N
∑

k=1

∥uh∥2ℓ2(Vk∩∂Ωi )
=
|Vk ∩ ∂Ωi |
|Y i

k |
uh(Y

i
k )

T uh(Y
i

k ). (12)

The total number of unknowns in the PDE discretization is equal to the number of node points |X | = N and the unknowns are the
nodal values uh(X ). If |Y |= |Y 0|+ |Y 1|+ |Y 2|= Ny > N , then the discrete system of equations is overdetermined and we solve
the problem in the least squares sense. That is, we minimize the square residual of the PDE problem, which is given by

∥rh∥2ℓ2(Ω) = β
2
2 ∥∆(uh − u)∥2

ℓ2(Ω)
+ β2

1 ∥∇(uh − u) · n̂∥2
ℓ2(∂Ω1)

+ β2
0 ∥uh − u∥2

ℓ2(∂Ω0)
, (13)

where βi represent the scaling of the different equations in the residual minimization. We choose the scaling to balance the three
contributions across a Voronoi region during refinement, taking both the derivatives and the size of the local domain into account,
which up to a constant factor leads to β2

2 = 1, β2
1 = h−1, and β2

0 = h−3 in two spatial dimensions, where h is the fill distance of
the node set X , see Section 2 for a definition. We can rewrite the minimization problem in terms of a bilinear and a linear form in
the following way:

Find uh ∈ Vh such that ah(uh, vh) = ℓh( f , vh), ∀vh ∈ Vh, (14)

where
ah(uh, vh) = β

2
2 (∆uh,∆vh)ℓ2(Ω) + β

2
1 (∇uh · n̂,∇vh · n̂)ℓ2(∂Ω1) + β

2
0 (uh, vh)ℓ2(∂Ω0), (15)

ℓh( f , vh) = β
2
2 ( f2,∆vh)ℓ2(Ω) + β

2
1 ( f1,∇vh · n̂)ℓ2(∂Ω1) + β

2
0 ( f0, vh)ℓ2(∂Ω0). (16)

Just as for a finite element method, we want to show coercivity of the bilinear form, because this guarantees that the discrete
problem has a unique solution and that the approximation is stable, which is needed together with consistency for convergence.
In [10], it was shown that this can be done with the help of an auxiliary function v = S(vh) ∈W 2

2 (Ω), where S(·) is a smoothing
operator, further described in Section 3 and W 2

2 (·) is a Sobolev space. We introduce a continuous bilinear form a(·, ·) similar
to (15), but with the ℓ2 inner product replaced by the L2 inner product, for functions in W 2

2 (Ω). We also need a semi discrete
norm

∥uh∥2L∗2(Ω) =
N
∑

k=1

∥uh∥2L2(Vk)
, (17)

which ignores any discontinuities between Voronoi regions. We associate a semi-discrete bilinear form a∗(·, ·) for functions in Vh
with the L∗2 inner product.

The coercivity is shown in a series of steps, which include integration errors, τ0 and τa when we pass between the discrete
and semi discrete norms, and smoothing errors η0 and ηa when we pass between the discontinuous trial space and the smoothed
function space. Together with coercivity for the continuous PDE problem ∥v∥L2(Ω) ≤ C2a(v, v) these estimates yield

∥vh∥2ℓ2(Ω) ≤ (1+τ0)∥vh∥2L∗2(Ω)

≤ (1+τ0)(1+η0)∥v∥2L2(Ω)

≤ (1+τ0)(1+η0)C
2a(v, v)

≤ (1+τ0)(1+η0)C
2(1+ηa)a

∗(vh, vh)

≤
(1+τ0)(1+η0)C2(1+ηa)

1−τa
ah(vh, vh).
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Combined with an estimate for the interpolation error [2, 10], the coercivity provides the final error estimate

∥uh − u∥ℓ2(Ω) ≤
p

2C
�

(1+τ0)(1+η0)(1+ηa)
(1−τa)

�
1
2
�

c0hp+1 + c1hp + c2hp−1
�

|u|W p+1
∞ (Ω), (18)

assuming that u has sufficient smoothness.
In this paper we look more carefully into the error constants that affect the approximation stability of the method, to see

how they depend on properties of the node layout and the basis functions. Section 2 introduces some general concepts. In
Sections 3 and 4, we discuss the theoretical properties of the smoothing errors and the integration errors. Sections 5 and 6
contain numerical results for the two types of errors, and we finish the paper with a discussion of the results in Section 7.

2 General stencil, node, and approximation properties
The local fill distance h is the radius of the largest ball empty of nodes within the stencil

h= sup
x∈Ωk

min
x j∈Xk
∥x − x j∥2, (19)

where Ωk, e.g., can be chosen as the convex hull of the stencil nodes as in the right part of Figure 1. We define the local separation
distance s as half of the smallest distance between two points in the stencil

s =
1
2

min
j ̸=k

x j ,xk∈Xk

∥x j − xk∥2. (20)

We measure node quality as cq = s/h < 1, which is largest for a quasi uniform node layout and small for a random node
distribution.

When we compare results for different stencils, we scale the nodes such that h= 1, which corresponds to a transformation
x̃ = x/h. This means that if we compute derivatives (or integrals) for h ̸= 1, the fill distance appears as a metric coefficient that
needs to be taken into account. That is, ∂ α

∂ xα = h|α| ∂
α

∂ x̃α and dx = hdd x̃ for a differential element in d dimensions.
When we investigate local estimates of derivatives, the polynomial part of the trial space has a null space. This null space is

in general not harmful to the estimates as polynomial data up to degree p is represented exactly, but the null space needs to be
removed from the generalized eigenproblems that we study in order to have reliable computations. We use the following general
strategy for null space removal in the case where B has a nullspace in the generalized eigenproblem Av = λBv of size n:

1. Perform the singular value decomposition B = USV T .

2. Let r < n be the rank of B and write the decomposition on block form such that U = (Ur U0), S =
�

Sr 0
0 0

�

, and V = (Vr V0).

We note that B = USV T = UrSr V T
r .

3. We write the eigenvectors as v = Vr V T
r v + V0V T

0 v and multiply the eigenproblem from the left by U T
r to get

U T
r AVr V T

r v + U T
r AV0V T

0 v = λSr V T
r v + 0V T

0 v.

4. We let C = U T
r AVr and note that the relevant eigenvalues correspond to the transformed generalized eigenproblem

CV T
r v = λSr V T

r v.

5. We recover the original eigenvectors from y = V T
r v as v = Vr y .

Note that we can find the dimensions of the polynomial null spaces analytically, such that we do not need to rely on a numerical
estimate of the rank. Throughout the paper, all numerical experiments are performed using MATLAB. The generalized eigenvalue
problem is computed with eig, which uses Cholesky factorization for a symmetric A and symmetric positive definite B, and the
QZ algorithm for general matrices.

3 The smoothing error estimates
The smoothing error measures the distance between the discontinuous trial space and the Sobolev space W 2

2 (Ω), for the norm
and for the bilinear form. In order to derive these estimates, in [10], we (theoretically) formed a smoothing operator based on
partition of unity blending of the local stencil approximations evaluated on overlapping extended Voronoi regions, which we
denote by V δk . The smoothed function has the form

v = S(vh) =
N
∑

j=1

ω j(y)v
j
h(y) =
∑

j∈Jk

ω j(y)v
j
h(y), y ∈ Vk,

where ω j(y) are partition of unity weight functions supported on V δj and Jk contains the indices of the extended Voronoi regions

that overlap with Vk. We also define J̃k = Jk \ k for later use.
An illustration of how this smoothing works in one dimension is shown in Figure 2. For each Voronoi region Vk the trial space

functions have the property vh ∈ C2(Vk). That is, the Laplacian shown in the left part of the figure is continuous within each
region (same color), but is slightly different at each Voronoi interface (color change). A close-up of the overlap region around the
interface is shown in the right part of the figure. To connect the functions coming from the left and right sides such that the
overall result is C2, the blended function needs to make a wiggle.
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∆v

∆vh

Figure 2: To the left, the Laplacian of a one-dimensional trial space function with random nodal data is shown. To the right, a region with two
overlapping stencil functions (solid lines) is shown. The function v is a C2 blending of the two and its Laplacian (dashed line) performs a wiggle
that compensates for the local discontinuity.

To make the realizations of the smoothing error bounds computable, we need to go a little bit further with the actual
construction of the extended Voronoi regions than we did in [10]. To make an extension of relative size δ of the Voronoi region
belonging to the point xk, for each vertex vi , we compute the extended vertex vδi = (1+δ)vi −δxk. The right part of Figure 3
provides a visualization of the extended Voronoi regions. Note that the width of the overlap between two Voronoi regions varies
with the distance between the respective points associated with the regions. We let Vδk denote the extended Voronoi region, we

let Γ δk, j = Vk ∩ Vδj (illustrated with colored point markers in Figure 3), we let V−δk = Vk \
�

∪ j∈J̃k
Γ δk, j

�

denote the non-overlapped

part of the Voronoi region, and we let Γ δk = Vk \V−δk .

Figure 3: Left: A Voronoi region divided into the non-overlapped part V−δk and the band Γδk for δ = 0.2. Right: The same Voronoi region and its
neighbors are shown with different fill colors. The intersections between the extended neighbor regions (colored lines) and the central region are
shown with colored point markers. Note that the different intersections overlap where they meet.

We have not actually constructed the weight functions for the Voronoi regions, but we suggest the following steps as a potential
approach. First, we define appropriate barycentric coordinates z1(y), . . . , znv

(y), 0 ≤ zi ≤ 1, in Vk, where nv is the number of
vertices of the region. A method to construct non-negative barycentric coordinates with sufficient continuity is provided in [1].
Then we can construct a non-negative tensor product generating function over the region as ϕk(y) = ϕ0(z1) · · ·ϕ0(zv), where
ϕ0(x) is positive on (0, 1) and ϕ0(0) = ϕ0(1) = 0. Finally, we use Shepard’s method [8] to compute the weight functions as

ωk(y) =
ϕk(y)
∑

j∈Jk
ϕ j(y)

. (21)

We need to estimate the derivatives of the weight functions that go into the smoothing estimates. In the numerical experiments,
we do this by computing a one-dimensional weight function with the correct node distance and overlap and its derivatives.
Here we note that for an overlap region of width δh and a generating function that depends polynomially on the argument, a
derivative of order k across the overlap is proportional to (δh)−k. That is, a small overlap gives very large derivatives. In our way
of constructing the overlap regions, this happens when two node points x j and xk are close to each other. That is, when the
separation distance s, and hence the node quality cq, is small.

The smoothing error estimates in [10, Theorem 4.3] that we want to investigate are ∥vh∥2L2(Ω)
≤ (1 + η0)∥v∥2L2(Ω)

, and
a(v, v)≤ (1+ηa)a∗(vh, vh). The global error constants η0 and ηa are derived based on local estimates over each Voronoi region.
For the first estimate we need the local bound ηk,0 given by

∥vh∥2L2(Vk)

∥v∥2L2(Vk)

=
∥vh∥2L2(V−δk )

+ ∥vh∥2L2(Γδk )

∥vh∥2L2(V−δk )
+ ∥v∥2

L2(Γδk )

≤ 1+
∥vh∥2L2(Γδk )

∥vh∥2L2(V−δk )

= 1+
vh(Xk)T MΓδk vh(Xk)

vh(Xk)T MV−δk
vh(Xk)

≤ 1+ηk,0, (22)
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where ηk,0 is the largest eigenvalue of the generalized eigenproblem MΓδk vh = ηMV−δk
vh, and where MD denotes the continuous

norm mass matrix with integration restricted to the domain D. The global constant is the maximum over the Voronoi regions of
the local constant. The bound is expected to be pessimistic due to the following reasons:

• We replace the smoothed function v in the overlap region by 0 in the denominator. However, since the neighboring stencils
share a significant part of their data, we expect v and vh to be similar in the overlap region. The size of the jumps in the
global cardinal functions between Voronoi regions was investigated in [9], and shown to be small, especially for large
stencils.

• The global bound uses the worst case estimate for every stencil, but since the stencils share nodal values it is not realistic
that the worst case scenario occurs in every Voronoi region simultaneously. The actual global smoothing error should
therefore be smaller.

For the second smoothing error estimate, we first expand the bilinear form applied to the smoothed function on one Voronoi
region

a(v, v)Vk
= a(v, v)V−δk

+ a(v, v)Γδk = a(vk
h , vk

h )V−δk
+
∑

i∈Jk

∑

j∈Jk

a(ωi v
i
h,ω j v

j
h)Γδk ∩Vδi ∩Vδj

≤ a(vk
h , vk

h )Vk
+Q
∑

j∈Jk

a(ω j v
j
h,ω j v

j
h)Γδk ∩Vδj , (23)

where Q is the maximum number of extended Voronoi regions that overlap at any one point. To get the global estimate, we again
first study local bounds for the sum. This estimate is more involved due to the fact that the Laplacian operator (as well as the
gradient operator) has a polynomial nullspace, and the bilinear form involving the smoothed function may be non-zero in Γ δk, j

even if the bilinear form applied to the trial space function is zero in Vk [10]. To make sure that the numerator and denominator
are either both zero or both non-zero, the estimate involves all the Voronoi regions in Jk. We are not going to make a full study of
the local estimates for the bilinear form. Instead, for simplicity, we focus on the main case of a Voronoi region and its neighboring
regions located in the interior of the domain such that the bilinear form does not include the boundary terms. With this restriction,
the local estimates to investigate become

∑

j∈Jk
a(ω j v

j
h,ω j v

j
h)Γδk, j

∑

j∈Jk
a(v j

h, v j
h)V j

≤

∑

j∈Jk
∥∆(ω j v

j
h)∥

2
L2(Γδk, j )

∑

j∈Jk
∥∆v j

h∥
2
L2(V j )

≤
2
∑

j∈Jk
∥ω j∥2L2(Γδk, j )

∥∆v j
h∥

2
L2(Γδk, j )

+ 2∥∇ω j∥2L2(Γδk, j )
∥∇v j

h∥
2
L2(Γδk, j )

+ ∥∆ω j∥2L2(Γδk, j )
∥v j

h∥
2
L2(Γδk, j )

∑

j∈Jk
∥∆v j

h∥
2
L2(V j )

=
2
∑

j∈Jk
vh(X j)T
�

∥ω j∥2L2(Γδk, j )
L j

Γδk, j
+ 2∥∇ω j∥2L2(Γδk, j )

K j

Γδk, j
+ ∥∆ω j∥2L2(Γδk, j )

M j

Γδk, j

�

vh(X j)
∑

j∈Jk
vh(X j)T L j

V j
vh(X j)

, (24)

where L j
D is the matrix corresponding to the squared continuous norm of the Laplacian based on the stencil centered in x j with

nodes X j , K j
D is the corresponding matrix for the squared gradient, and M j

D is the mass matrix associated with stencil j. We can
again use a generalized eigenvalue problem to bound the local estimate, but we need to i) assemble the matrices associated
with different stencils into larger matrices, and ii) remove the nullspace of the denominator, see Section 2. The vectors in the
nullspace are harmless for the global estimate as in this case, the trial space function and the smoothed function are locally equal.
The local upper bound ηk,a is the largest eigenvalue of the generalized eigenvalue problem with an eigenvector not in the null
space. The global constant is given by ηa = 2Q maxk ηk,a|Jk|. This bound is also pessimistic, since we have made several worst
case estimates and the bound is based on a worst case behaviour in each stencil.

4 The integration error estimates
The integration error estimate for the norm ∥vh∥2ℓ2(Ω) ≤ (1+τ0)∥vh∥2L∗2(Ω) relates the discrete and continuous norms. We note that

the bound breaks down when τ0 = −1, which corresponds to the case of the discrete norm being zero for a non-zero function. It
was shown in [10] that this cannot happen in the global problem if X ⊂ Y . Then any non-zero data will be sampled at least once
by the discrete norm. Our task is therefore to investigate the upper bound for τ0.

In [10], a Monte Carlo integration bound was used in the theoretical discussion of the integration error. For a quasi uniform
node set Y this leads to convergence approximately proportional to 1/Ny . However, the Koksma-Hlawka variation that is included
in the bound is difficult to estimate or compute, especially when the integration domain is not the unit square. In the paper, the
total variation was mistakenly used, but this cannot be used to replace the Koksma-Hlawka variation. Then in [11], a simplified
integration error estimate for evaluation points on a grid was derived. Here, we extend the simplified bound to quasi uniform
evaluation points. We make the following assumption: The Voronoi region Vk contains qk evaluation points {y (k)i }

qk
i=1 = Yk and

can be divided into qk smaller regions Vk,i of (equal) size |Vk|/qk, such that y (k)i ∈ Vk,i . We include the size of the local region in
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the quadrature formula, which is possible, but not necessary for the oversampled RBF-FD method. We divide both the continuous
global integral I and discrete global integral Ih into a sum of integrals over these smaller regions such that

I =

∫

Ω

vh(y)d y =
N
∑

k=1

∫

Vk

vh(y)d y =
N
∑

k=1

qk
∑

i=1

∫

Vk,i

vh(y)d y, (25)

Ih =
N
∑

k=1

|Vk|
qk

qk
∑

i=1

vh(y
(k)
i ) =

N
∑

k=1

qk
∑

i=1

∫

Vk,i

vh(y
(k)
i )d y. (26)

To bound the integration error, we first make an upper bound for the difference of the integrands over a small region, using that
vh ∈ C2 and letting hy denote the fill distance of the evaluation point set Y ,

max
y∈Vk,i
|vh(y)− vh(y

(k)
i )| ≤ max

y∈Vk,i
|y − y (k)i | max

y∈Vk,i
|∇vh(y)| ≤ ck,ihy max

y∈Vk
|∇vh(y)|, (27)

where ck,i measures the variation in the largest distance inside the small regions. If we use this estimate for the global integration
error we get

|I − Ih| ≤
N
∑

k=1

qk
∑

i=1

|Vk|
qk

ck,ihy max
y∈Vk
|∇vh(y)|= hy |Ω|

1
N

N
∑

k=1

ck max
y∈Vk
|∇vh(y)|

1
qk

qk
∑

i=1

ck,i , (28)

where ck measures that variation in the size of the Voronoi regions. We note that the variation in size and shape of the Voronoi
regions and their subdivisions contributes to increase the error constant. This bound implies linear convergence in hy of the
integration error, which is proportional to 1/

p

Ny in two dimensions. In our preliminary numerical experiments for the integration
error, we computed the worst case estimate for the gradient over a Voronoi region. However, this resulted in very large bounds,
suggesting that hy would need to be very small and consequently, the oversampling would need to be very large.

Instead, when we investigate the bound numerically, we first consider the local error in one Voronoi region explicitly and
write it on the form

∥vh∥2ℓ2(Vk)
− ∥vh∥2L2(Vk)

∥vh∥2L2(Vk)

=
vh(Xk)T (Mh −M)vh(Xk)

vh(Xk)T M vh(Xk)
≤ τk,0, (29)

where τk,0 is the largest positive generalized eigenvalue. The global constant τ0 is found as the maximum of the local constants.
When we make this estimate over one Voronoi region, we need Mh to be full rank for all functions to be integrable. That is,
we need to look at the subproblem as a global overdetermined problem. The oversampling factor in this case becomes qk/n,
indicating that we need qk ≥ n. For a global problem, we can typically use a qk that is much smaller than n. The reason is that
stencils overlap and share unknowns. For the global problem to be overdetermined we only need qk > 1.

The difference between the global problem and the one Voronoi region problem is that in the first case, all nodes are inside
some Voronoi region over which we integrate, due to skewed stencils at the boundary, while in the second case, only one node is
inside the single Voronoi region and the other nodes are outside. This also means that qk and hy have slightly different relations.
To make a generalizable estimate in between the two extremes, we choose to assemble the generalized eigenproblem for the
Voronoi regions belonging to all points in a stencil. We let Ik be the set of indices of the points in the stencil associated with xk
and compute

∑

j∈Ik

�

∥vh∥2ℓ2(V j )
− ∥vh∥2L2(V j )

�

∑

j∈Ik
∥vh∥2L2(V j )

=

∑

j∈Ik
vh(X j)T (M

j
h −M j)vh(X j)

∑

j∈Ik
vh(X j)T M j vh(X j)

≤ τ̃k,0. (30)

This system includes the nodes Xk of the central stencil as well as the nodes of the stencils centered at all the nodes in Xk.
This means that the combined node layout extends around half a stencil outside of the central stencil. If a stencil of size n is
approximately round, then the radius of the stencil rs ≈

Æ

n
π and the circumference os ≈ 2πrs. This means that the size of the

extended system is approximately n+ rsos = 3n and the oversampling factor becomes qkn/3n, leading to the requirement qk ≳ 3,
since there are n Voronoi regions with qk points each.

For the bilinear form, the error estimate we need is a∗(vh, vh)≤
1

1−τa
ah(vh, vh). If we restrict this to one Voronoi region and

reorganize the terms we get
a(vh, vh)Vk

− ah(vh, vh)Vk

a(vh, vh)Vk

≤ τk,a. (31)

If we further restrict ourselves to Voronoi regions where the bilinear form does not involve any boundary terms and make the
estimate over all the Voronoi regions in one stencil as for the norm estimate (30), we have

∑

j∈Ik

�

∥∆vh∥2L2(V j )
− ∥∆vh∥2ℓ2(V j )

�

∑

j∈Ik
∥∆vh∥2L2(V j )

=

∑

j∈Ik
vh(X j)T (L j − L j

h)vh(X j)
∑

j∈Ik
vh(X j)T L j vh(X j)

≤ τ̃k,a. (32)

As for the smoothing error, the matrix in the denominator has a polynomial nullspace, which is harmless, but needs to be removed
when studying the eigenvalues, see Section 2.

For coercivity, we need the global constant to satisfy τa < 1. Equality occurs when the discrete bilinear form is zero while the
continuous bilinear form is non-zero. In the numerical experiments, we look for the smallest qk for which this does not happen
for any stencil in the test set.
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5 Numerical experiments for the smoothing errors
To numerically calculate the bound in equation (24) we require two components. The first component is (continuous) norms of
trial space functions and their derivatives over the overlapping regions and the second one is norms of weight functions and their
derivatives over the same regions. The former are approximated by Monte Carlo integration on NH = 1500 Halton nodes. To
calculate the latter exactly, we would need to explicitly calculate the weight functions, which is beyond the scope of this paper.
We instead consider one-dimensional problems along the lines between xk and each interacting stencil center x j for j ∈ Jk and
assume that the weight functions remain constant in the direction parallel with the shared edge of the central Voronoi region.
This allows us to use one-dimensional integration over the direction normal to the edge, and then multiply the result by the
length of the edge to obtain an approximation for the weight function integrals. The one-dimensional weight functions were
computed using a C1 B-spline as the generating function. This leads to a slight overestimate of the magnitude of the weight
function where more than two patches overlap, but should not have a large effect on the overall bounds. Since the overlap at a
corner in the outward edge direction is larger than the side overlap, also the derivatives should be slightly overestimated.

As is mentioned in Section 3, the smoothing error bounds are based on stencil-wise estimates and depend on the relative
positions of the stencil nodes. It is therefore necessary to calculate the estimates on an ensemble of stencils to obtain a distribution
of the possible values for the stencil-based estimates. The results presented in this section have been obtained from an ensemble
of 500 stencils. The stencils are generated in the following way:

1. A set of Ng = 10n background nodes are generated on the unit square. These are either random nodes drawn from a
uniform distribution or Halton nodes selected as a subset of a longer sequence, where the starting point of the subset is
randomized.

2. The most central node is selected as the stencil center.

3. The n nearest neighbours, including the center, are chosen as the stencil nodes.

It is often postulated in literature that the estimates of the type made in equation (18) depend on the node quality cq. This
was the first claim we wanted to put to the test. For each of the stencils generated on random nodes we calculated the node
quality and plotted the smoothing error estimates against it. Such plots are given in Figure 4 for δ = 0.2, n= 2m and different
values of p. We can see that there is no discernible relation between the node quality and the maximum eigenvalue when p is
fixed. In our experiments, we did observe some dependence of the norm bound on the distance to the nearest node x j with an
overlapping Vδj , but the dependence is not visible if the results are given in terms of node quality. However, as p is increased we
can see a shift in the data towards lower node quality and towards higher values of the error estimates. These two effects are
independent and the shift in the error estimates is the focus of this paper and is further investigated in the subsequent sections.
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(a) Norm estimate.
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(b) Bilinear form estimate.

Figure 4: Plots of the maximum eigenvalues versus node quality for relative overlap parameter δ = 0.2, and stencil size n= 2m. The square
markers represent the geometric means of the respective point clouds.

The shift in node quality comes from two contributions related to the way the node quality is calculated for each generated
stencil. The first contribution comes from the fact that we introduce the convex hull of the stencil nodes as the stencil boundary.
When the ball which is used to determine the fill distance intersects the convex hull we need to reduce its diameter, which reduces
the average fill distance. For polynomial degree p = 2 and p = 4, this happens in approximately half of the generated stencils.
The second contribution comes from the fact that as more and more nodes are added to the stencil, the separation distance
typically becomes smaller.

None of the contributions listed above introduce any significant dependence between the error estimates and the node quality
and we can therefore assume that the node quality does not have a significant effect on these particular results, which means that
we can focus on the behavior of the distribution of the error estimates without controlling for the node quality.

5.1 The norm bound

The distributions of the stencil estimates for the norm bound, over an ensemble of 500 stencils, are shown as box plots in Figure 5.
The results are computed for relative overlap parameter values δ = 0.05, 0.2 and 0.5 and polynomial degrees p = 1, . . . , 6. We
produced results for three different stencil sizes for each polynomial degree p. A stencil size n = 2m, where m is the dimension of
the polynomial basis, was recommended in [5] for approximations in two dimensions. We use this size, as well as a smaller size
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n = m+ 1 and a larger size n = 3m. We can see that in general, the bound increases as p and n are increased. By increasing
these two parameters we get access to increasingly rich function spaces which allow us to construct functions that are more and
more problematic for the kinds of estimates we are trying to make. For the same reason, the spread of the calculated estimates
increases. As we increase the relative overlap δ, we notice that the trend breaks for large stencil sizes at p = 5 for δ = 0.2 and
p = 4 for δ = 0.5. This happens because the matrix MVk,−δ

becomes numerically rank deficient and we have discarded the infinite
eigenvalues of the generalized eigenproblem.

The second trend that we can observe is that on average the bound increases as δ is increased. This is expected, since we are
trying to bound the norm of the function over the strip along the Voronoi region boundary in terms of the norm of the function in
the interior of the region and the strip is getting wider as the overlap is increased. Another important observation that can be
made about the data presented in Figure 5 is that there is no significant difference between Halton and random nodes. We can
see that in general the boxes are slightly tighter for Halton nodes, but the extreme values have a similar order of magnitude.
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(a) Random nodes, δ = 0.05
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Figure 5: The distribution of stencil norm estimates for random nodes (top row) and for Halton nodes (bottom row). For each subplot, each
stencil size n, and each polynomial degree p, a box plot illustrates the distribution of stencil estimates over 500 stencil realizations. The median
stencil estimate is the center of the box, the box extends from the first to the third quartile of the results, and the extremal results are the endpoints
of the lines with the same color as the box. Each box plot is produced by a separate set of 500 stencil realizations.

In Figure 6, we illustrate the type of function that corresponds to the worst case scenario for the norm bound. These are
associated with the largest eigenvalue in the norm estimate. We evaluate and plot the function corresponding to the nodal values
of the eigenvector over the stencil domain using (6). Functions are shown for several values of p and n, keeping δ = 0.5. All of
them are constructed from the same node arrangement. The central Voronoi region is labeled by a black polygon. We can see that
the worst-case functions are almost zero on V−δk and increase rapidly over Γ δk . Even though the function space gets enriched both
by increasing p and m, we can see that the two parameters contribute differently to the worst-case functions. When increasing p
we can see that the function gets flatter and closer to zero on V−δk and only rarely changes sign outside V−δk . In contrast, increasing
n allows the function to be closer to zero on V−δk , but causes the function to change sign more often outside of V−δk .

5.2 The bilinear form bound

The distributions of the calculated bilinear form stencil estimates are shown in Figure 7 for the same parameters and stencil
realizations as the norm estimates. The eigenproblem associated with the bilinear form estimate (24) involves the Laplacian
matrices L j

V j
in the denominator and we have to use the strategy described in Section 2 to remove the polynomial null space. We

observe as a general trend that the distribution of the estimates gets worse as the polynomial degree is increased, but in contrast
with the norm bound, the estimates generally decrease as δ is increased. The reason for this behaviour is that the weight function
derivative estimates decrease for a larger overlap parameter δ. The opposite behaviour of the bilinear form estimates and the
norm estimates means that there is an optimal δ that minimizes the overall error estimate.

Comparing these plots with the norm bound plots in Figure 5 we also notice that the type of node arrangement used to
construct the stencil significantly changes both the impact of n and the spread of the bilinear form bounds. For small p the
increase in n improves the bounds in the case of random nodes but worsens the bound for Halton nodes. Importantly, the use of
Halton nodes significantly reduces the range of the distribution of the estimates, regardless of n and p.

Dolomites Research Notes on Approximation ISSN 2035-6803



Larsson · Mavrič · Michael · Pooladi 87

p\n m+ 1 2m 3m

2

4

6

Figure 6: The functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the norm estimate (22) for
relative overlap parameter δ = 0.5, polynomial degree p = 2, 4, 6, and stencil size n= m+ 1, 2m, 3m. Note that we plot log10 |vh| and that the
range of the colour bar changes between subfigures.
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Figure 7: The distribution of stencil bilinear form estimates for random nodes (top row) and Halton nodes (bottom row). For each subplot,
each stencil size n, and each polynomial degree p, a box plot illustrates the distribution of stencil estimates over 500 stencil realizations. The
median stencil estimate is the center of the box, the box extends from the first to the third quartile of the results, and the extremal results are the
endpoints of the lines with the same color as the box. Each symbol is produced by a separate set of 500 stencil realizations, while these are the
same realizations as were used for the norm estimates shown in Figure 5.
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In Figure 8 we illustrate the functions corresponding to the worst-case eigenvectors and in Figure 9 we illustrate their
Laplacians. The definition of the generalized eigenvalue system in equation (24) combines the function values from several
stencils, but we neglect the additional nodal values when generating the illustrations of the eigenvectors and only give the
reconstruction on the central stencil. From the plots we can see that the function values illustrated in Figure 8 are dissimilar
to the worst-case functions for the norm bound, but we notice similarities with the Laplacians illustrated in Figure 9 and the
worst-case norm bound functions, with both types being flat and close to zero on V−δk .
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Figure 8: The functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the bilinear form estimate (24)
for relative overlap parameter δ = 0.5, polynomial degree p = 2, 4, 6, and stencil size n= m+ 1, 2m, 3m. Note that we plot log10 |vh| and that
the range of the colour bar changes between subfigures.

5.3 Smoothing experiments for a one-dimensional problem

As mentioned in Section 3, we believe that the smoothing error estimates are quite pessimistic both due to the use of a local
worst case over every stencil, and due to the upper bound on the partion of unity sum, including the norms of the differentiated
weight functions.

To further investigate this, we turn to a one-dimensional problem, where we can compute both local and global worst case
eigenfunctions directly with actual weight functions. We use the Wendland function [12] ϕ3,1(r) = (1− r)4+(4r + 1), which
is C2 and positive definite in one, two and three space dimensions, as generating function for the weights. We approximate
the generalized eigenvalue problems for the norms ∥vh∥2L2(·)

/∥v∥2L2(·)
(not for the bound) both locally in one Voronoi region and

globally over Ω. Figures 10a and 10b show the local and global functions with the largest eigenvalues. Locally, we get η0,k ≲ 70,
while globally η0 ≈ 0.002, which confirms that using a local bound affects the global estimate negatively.

The smoothing error depends on the size of the jumps at the Voronoi edges. As discussed in [10], the errors in the local
approximations, and consequently the jumps between Voronoi regions, depend on the p + 1-order derivative of the function
that the data is generated from. This tells us that oscillatory data, creating high derivatives at each Voronoi interface, should be
particularly challenging. This can also be understood from the perspective that such a function is not very well resolved by the
discretization. As can be seen in Figure 10b, the worst function for the overall smoothing error is oscillatory, but the error is still
small.

For the norm of the Laplacian, we have only computed the global worst case function, shown in Figures 10c and 10d. Again,
the worst case result is an oscillatory function. The smoothing error ηa ≈ 0.3 is larger than for the norm, but significantly smaller
than the computed bounds from the previous subsection. The results for this problem suggest that the smoothing error is likely to
be harmless also in higher dimensions as long as the node points are well distributed.
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Figure 9: The Laplacian of the functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the bilinear
form estimate (24) for relative overlap parameter δ = 0.5, polynomial degree p = 2, 4, 6, and stencil size n= m+ 1, 2m, 3m. Note that we plot
log10 |∆vh| and that the range of the colour bar changes between subfigures.
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Figure 10: The worst local and global eigenfunctions for the norm (top row) and the worst global eigenvector for the norm of the Laplacian
(bottom row) with overlap parameter δ = 0.5 polynomial degree p = 4, stencil size n= 7, over N = 30 uniform nodes. In each subfigure the
local stencil approximation(s) vk

h over the extended Voronoi region(s) (solid line) and the smoothed trial space function v (dashed line) are
shown. For the illustrated worst case functions the true smoothing errors are (a) η0,k ≈ 70 for the norm over one Voronoi region (b) η0 ≈ 0.002
for the norm globally (c)–(d) ηa ≈ 0.3 for the norm of the Laplacian globally.

Dolomites Research Notes on Approximation ISSN 2035-6803
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6 Numerical experiments for the integration errors
For our numerical experiments we compute the largest eigenvalue τ̃k,0 given by the generalized eigenproblem in equation (30)
and the largest eigenvalue τ̃k,a given by equation (32). The overall integration error estimate for one stencil is then given by
(1+ τ̃k,0)/(1− τ̃k,a). Both the norm and bilinear form bounds are computed over the domain D = ∪ j∈Ik

V j , where Ik contains
the indices of the nodes in stencil k. The local mass and stiffness matrices, M j

h , L j
h are computed for each contributing stencil

and are assembled to construct the global matrices Mh, Lh, where ∥vh∥2ℓ2(D) = vT
h (XD)Mhv(XD), ah(vh, vh)D = vT

h (XD)Lhv(XD),
XD is the combined node set, and |XD| ≡ Ne ≈ 3n is the size of the extended system used for the integration. The continuous
norm global matrices are similarly estimated using a large number, NH = 104, of Halton nodes over each of the involved Voronoi
regions.

An equal number of quadrature points, qk = q is used for all Voronoi regions. As explained in Section 4, the bounds break
down if τ̃k,0 = −1 or τ̃k,a = −1 which occurs if rank(Mh)< Ne or rank(Lh)< rank(L). Specifically, we expect the mass matrix
Mh to have full rank and we expect Lh and L to have the same nullspace.

The extended system size is dependent on the positions of the stencil nodes. Hence, just as in the smoothing error estimates
we compute results for an ensemble of stencils. The distribution of extended system sizes, Ne, is shown in Figure 11. The box
plots are constructed using data from 100 realizations.

Figure 11: Box plots of the extended problem size Ne used in the integration over stencil D for different stencil sizes n= m+ 1,2m, 3m. The
results were obtained from 100 realizations of stencils constructed using Halton nodes.

Additionally, we provide the numerically estimated minimal oversampling values for which the bounds do not break down.
Table 1 gives the minimum number of local quadrature points q for which, following 100 realizations, the global discrete mass
and stiffness matrices, Mh, Lh, have equal rank to their continuous counterparts, M, L. We provide the actual oversampling
used, based on the global definition of oversampling applied to the central stencil, |Y ||X | =

qn
Ne

. The results suggest that the minimum
oversampling is independent of the polynomial degree p and the stencil size n.

n= m+ 1 n= 2m n= 3m
qmin qminn/Ne qmin qminn/Ne qmin qminn/Ne

p = 2 7 2.57 5 1.62 8 2.44
p = 3 6 2.00 7 2.09 6 1.73
p = 4 7 2.15 6 1.73 7 1.93
p = 5 8 2.35 7 1.95 8 2.20
p = 6 6 1.74 7 1.94 6 1.66

Table 1: The smallest number of local quadrature points qmin and oversampling factor qminn/Ne for which the method is stable for polynomial
degree p and stencil size n. The median value of the extended system size Ne , see Figure 11, was used to calculate the oversampling.

The distributions of the local integration error bounds for polynomial orders p = 2, p = 4, p = 6 are provided in Figures 12,
13, 14, respectively. The bounds τ̃k,0 and τ̃k,a are computed for 100 different stencils and plotted against the local number of
quadrature points q, starting from q = 6 for each polynomial order, p and stencil size, n. We expect from the global integration
error estimate in equation (28), and the Monte Carlo integration bound in [10] that the bounds will decrease as the oversampling
is increased. This is also the case for the overall bound shown in the rightmost subfigures. It is less clear for the norm bound with
smaller stencil sizes, while the bilinear form also displays a decreasing trend.

It should be noted that what we see here is not the convergence of a quadrature rule for a given function. Instead, we observe
the worst overestimate of the norm for any function in the trial space and the worst underestimate of the bilinear form for any
function in the trial space. Since the quadrature points move, the worst function also changes with the point locations. The
results are consistently worse with larger m and larger p as for the smoothing error. This is expected since the function space
containing the functions over which we integrate is enlarged in both cases.

We also performed experiments for stencils generated from random nodes, but it is clear that it is hard or impossible to
guarantee stability, since the node quality can be arbitrarily bad. We made a slightly different definition of qmin and tried to locate
the smallest q such that no stencil is rank deficient for any q ∈ [qmin, qmin + 4], indicating a low probability of failure. Table 2
shows results for three polynomial degrees. For degree p = 6 we did not find a stable value for qmin for all stencil sizes, while for
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Figure 12: Box plots of integration error bounds against the number of local quadrature points q for polynomial degree p = 2. The results were
obtained from 100 stencils constructed using Halton nodes. From left to right: norm bound τ̃k,0, bilinear form bound τ̃k,a, integration bound
(1+ τ̃k,0)/(1− τ̃k,a).

Figure 13: Box plots of integration error bounds against the number of local quadrature points q for polynomial degree p = 4. The results were
obtained from 100 stencils constructed using Halton nodes. From left to right: norm bound τ̃k,0, bilinear form bound τ̃k,a, integration bound
(1+ τ̃k,0)/(1− τ̃k,a).

Figure 14: Box plots of integration error bounds against the number of local quadrature points q for polynomial degree p = 6. The results were
obtained from 100 stencils constructed using Halton nodes. From left to right: norm bound τ̃k,0, bilinear form bound τ̃k,a, integration bound
(1+ τ̃k,0)/(1− τ̃k,a).

p = 2 and p = 4 it was possible at an oversampling factor between 3 and 6, which is around double that needed for stencils based
on Halton nodes. Noteworthy, however, is perhaps that it was easier to find a stable result for n= 2m, the recommended stencil
size, than for both the smaller and larger stencil size. Figure 15 shows the distributions of the local integration error bounds for
100 stencils constructed using random nodes. We note that the relation of the bounds to the number of local quadrature points q,
and stencil size n is similar to the bounds computed using Halton nodes, however, at a significantly larger oversampling factor.

We go back to the results when the stencils are generated using Halton nodes, and in Figures 16 and 17, show plots of the
eigenvector corresponding to the largest eigenvalue from the generalized eigenproblems in equations (30) and (32), respectively.
The function is plotted over D and is evaluated on each contributing Voronoi region using the corresponding stencil. The central
Voronoi region is marked by black edges and the colour bar indicates the common logarithm of the function value. We note that
the function values in Figure 16 are very small in most of the domain. Each of these functions also have a small region adjacent
to the outer edge of the domain where it attains its maximum. The functions in Figure 17, for the bilinear form, are less localized,
but also show a preference for being larger towards an outer edge. Figure 18 shows the Laplacian of the same functions. This
shows the same behaviour as the worst functions for the norm, with a localized maximum at the outer edge. The Laplacian for
p = 2 and n = m+1 looks a bit odd, but this is because the Laplacian of the polynomial part of the approximation is constant and
the PHS basis functions only have one degree of freedom due to the m constraints, see equation (2).

To go a bit deeper into why these functions are the worst for integration, Figure 19 shows the worst cases for one particular
stencil both in linear and logarithmic scale. The worst function for the norm bound (left column) attains its maximum at the
southeast corner of the integration domain. One of the quadrature points is placed right at the maximum, which leads to an
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n= m+ 1 n= 2m n= 3m
qmin qminn/Ne qmin qminn/Ne qmin qminn/Ne

p = 2 7 2.88 10 3.53 12 3.79
p = 4 15 5.76 14 4.12 18 5.00
p = 6 >84 >24.4 54 14.9 >100 >27.0

Table 2: The smallest number of local quadrature points qmin and oversampling factor qminn/Ne for which the method is stable for polynomial
degree p and stencil size n when the stencils are based on random nodes. The median value of the extended system size Ne , was used to calculate
the oversampling. For the values with >, no stable qmin was found within the search range.

Figure 15: Box plots of integration error bounds against the number of local quadrature points q for polynomial degree p = 4. The results were
obtained from 100 stencils constructed using random nodes. From left to right: norm bound τ̃k,0, bilinear form bound τ̃k,a , integration bound
(1+ τ̃k,0)/(1− τ̃k,a).

overestimate of the continuous integral. The Laplacian of the worst function for the bilinear form bound (right column) attains
its maximum in the Voronoi region just to the right of the one where the other function had its maximum. In this case, the
quadrature points have a gap right there, such that the large values go undetected, leading to a gross underestimate of the
integral. The discrete quadrature in this case only yields 3% of the value of the continuous bilinear form. Both types of estimates
will improve as q is increased as the local maximum has to have a certain width, relating to p and n, and as we fill up the space,
it will be sampled more frequently. However, the node quality plays an important role here. A small separation distance leads to
high gradients in the cardinal functions, and in turn allows for functions that can be more localized. This is one argument for
why random node stencils require a much higher oversampling to ensure stability.

7 Discussion
When we started writing this paper, we thought that node quality would be very important for stability of the RBF-FD method. It
is the most important factor, but not in exactly the way we expected. For the smoothing errors, the node quality has no visible
effect on the norm bound. For the bilinear form bound, the eigenvalues of the terms based on the RBF-FD matrices are not
affected, while the weight function bounds depend on how close neighbouring nodes are to each other. For the integration error,
the amount of oversampling that is needed for stability is significantly larger for the low node quality stencils generated over
random nodes compared with the high node quality stencils generated over quasi uniform Halton nodes. Since random nodes
can have arbitrarily small separation distance, we may need a very high oversampling rendering the method so computationally
expensive that it cannot be practically used. That is, we need to ensure a reasonable node quality for example through using
quasi uniform nodes. That node quality is important is of course already well known, but we think that our experiments add
some understanding to how it interacts with stability.

We also note that at least in our experimental setup for the integration error, which can be seen as an unfitted RBF-FD
approximation, where some nodes are outside the domain [9], it would be beneficial to have more evaluation points in the
Voronoi regions close to the boundary to compensate for the lack of information outside of the domain. In this way, it would be
possible to decrease the overall oversampling factor.

The smoothing bounds give rather large results and are the main contributors to the numerical stability constant in (18),
assuming the node quality is bounded from below. Looking at which functions make these bounds large, we can draw a few
conclusions. The functions that make the smoothing bounds large are different from the ones that make the integration errors
large. The worst functions for the integration error are close to zero, or have a Laplacian that is close to zero, almost everywhere
and have an small region with larger values. For the smoothing bound, it is bad if the function or its Laplacian is almost zero in
the central Voronoi region, and then growing quickly towards the edges of the stencil. This cannot happen in all stencils at the
same time, which means that the actual overall result should be better than the smoothing bound. In fact, the discussion and
experiments for a one-dimensional problem in Section 5.3 indicate that the functions that give the worst smoothing errors are
highly oscillatory, and that the global smoothing errors are not that large for well-distributed nodes.

We have also investigated the influence of the polynomial degree and the stencil size. A higher polynomial degree makes all
bounds larger, such that there is a trade-off between error constant and convergence rate. We get a similar result for larger stencil
sizes, but we believe that this might change somewhat if the overlap between stencils was taken into account in the smoothing
error bounds. That is, it may be a result of our method of investigation rather than a real effect. As was shown in [9] the jumps
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Figure 16: The functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the norm integration error
estimate for q = qmin given in Table 1. The functions are evaluated using the central Voronoi region stencil and plotted over the whole stencil.
Note that we plot log10 |vh| and that the range of the colour bar changes between subfigures.
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Figure 17: The functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the bilinear form integration
error estimate for q = qmin given in Table 1. The functions are evaluated using the central Voronoi region stencil and plotted over the whole
stencil. Note that we plot log10 |vh| and that the range of the colour bar changes between subfigures.
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Figure 18: The Laplacian of the functions vh(y) corresponding to the largest eigenvalue of the generalized eigenvalue problem in the bilinear
form integration error estimate for q = qmin given in Table 1. The functions are evaluated using the central Voronoi region stencil and plotted
over the whole stencil. Note that we plot log10 |∆vh| and that the range of the colour bar changes between subfigures.

in the cardinal functions, which are the reason we need a smoothing error estimate, decrease with stencil size.
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Figure 19: The squared function corresponding to the maximum eigenvalue τ̃k,0 = 4.35 from the norm bound (left column) and the squared
Laplacian of the function corresponding to the maximum eigenvalue τ̃k,a = 0.97 from the bilinear form bound (right column) plotted together
with the qn quadrature points YD in linear scale (top row) and logarithmic scale (bottom row).

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	General stencil, node, and approximation properties
	The smoothing error estimates
	The integration error estimates
	Numerical experiments for the smoothing errors
	The norm bound
	The bilinear form bound
	Smoothing experiments for a one-dimensional problem

	Numerical experiments for the integration errors
	Discussion

