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Joukowski and Green, Chebyshev and Julia

Marta Kosek a

Dedicated to Mirosław Baran on the occasion of his 60th birthday.

Abstract

We deal with the Joukowski transformation, the Green function (mainly that of the interval [−1, 1]), the
Chebyshev polynomials and the filled Julia sets for polynomial mappings. We show that the functional
sequence
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1
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log+
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�Tdk
◦ ... ◦ Td1
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�∞

k=1
,

where Td is the d-th Chebyshev polynomial, is uniformly convergent toC ∋ ζ 7−→ log
�

�ζ+ (ζ2 − 1)1/2
�

� ∈ C
for any sequence of integers (dk)∞k=1 ⊂ {2, 3, ...}.
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1 Introduction
Let us start with the main result
Main Result 1.1. For any sequence (dk)∞k=1 ⊂ {2, 3, ....} the functional sequence

�

1
d1
· ... ·

1
dk

log+
�

�Tdk
◦ ... ◦ Td1

�

�

�∞

k=1

(where Td is the d-th Chebyshev polynomial) is uniformly convergent to the complex Green function of the interval [−1,1], i.e.
to log |h|.

To define the function h consider first the Joukowski transformation

J : C \ D(1) ∋ ζ 7−→
1
2

�

ζ+ ζ−1
�

∈ C \ [−1, 1] (1.1)

(in this paper D(1) stands for the closed disk with origin at 0 and radius 1) and then its inverse is

h := J−1. (1.2)

It is known (see e.g. [9, §5.4]) that |h| can be extended continuously to whole C via formula

|h|
�

�

[−1,1] ≡ 1. (1.3)

The fact that log |h| is the Green function of [−1,1] is due to Lundin ([13]).
Main Result 1.1 deals with notions connected with the names of Joukowski, Green and Tchebyshev. An inspiration for this

paper was given by two articles [1] and [2] published by Baran in 1988 and 1989. In [1] the author used transformations of
Joukowski’s type to give another proof of Lundin’s formula ([13]) for Green’s function. In [2] he proposed a functional equation
for the Joukowski transformation in which the Chebyshev polynomials are also present. That is why the first three names appear
in the title of this note. The fourth one is added since we will use the theory of Julia sets of polynomial mappings.

Apart from the main result and its consequences we want to recall a couple of examples arising from the complex dynamics.
The key fact will be that [−1,1] is the (filled) Julia set of every Chebyshev polynomial (cf. [15, Problem 7-c]) and that – as
mentioned in Main Result 1.1 – its complex Green function is log |h| (see e.g. [9, Lemma 5.4.2 (d)]).

aInstitute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland, E-mail:
Marta.Kosek@im.uj.edu.pl



Kosek 60

2 The four names

2.1 Joukowski

Note that Joukowski’s transformation J given by (1.1) is a conformal bijection.
Recall (see e.g. [9, §5.4]) that h given by (1.2) can be written as follows

h : C \ [−1,1] ∋ ζ 7−→ ζ+
�

ζ2 − 1
�1/2
∈ C \ D(1), (2.1)

where the branch of the square root is chosen so that t > 1=⇒ h(t)> 1.
Note also that both Joukowski’s transformation J and its inverse h can be continuously prolonged to∞ by J(∞) = h(∞) =∞.

Furthermore, the mapping J can be actually defined on the whole sphere, namely

J : bC ∋ ζ 7−→
1
2

�

ζ+
1
ζ

�

∈ bC

and in such a setting we have J(∂ D(1)) = [−1,1] and J(D(1)) = bC \ D(1) (set D(1) is defined just below).
In this paper we put for r > 0

D(r) := {ζ ∈ C : |z|< r} and D(r) := {ζ ∈ C : |z| ≤ r}

and for r > 1

E(r) :=

�

z = (x , y) ∈ R2 = C :
4x2

(r + r−1)2
+

4y2

(r − r−1)2
≤ 1

�

.

It is easy to check that for r > 1
J(∂ D(r)) = J
�

∂ D
�

r−1
��

= ∂ E(r). (2.2)

Note finally that J
�

�

R\{0} and |h|
�

�

R are even and |h|
�

�

[1,+∞) is nonnegative and increasing, and in consequence the same is true

for log |h|
�

�

[1,+∞). We note also that

∀x ∈ (−∞,−1]∪ [1,+∞) : log |h(x)| ≤ log |2x | ≤ |x |.

2.2 Green

Let K ⊂ CN be a compact set. Its (pluricomplex) Green function is defined as follows

VK(z) := sup
�

u(z) : u ∈ L(CN ) and u|K ≤ 0
	

for z ∈ CN ,

where L(CN ) is the Lelong class, i.e. the family of all plurisubharmonic functions on CN with logarythmic grow at the infinity. For
the background see [9, Chapter 5]. In the one dimensional case VK is the complex Green function of the C \ bK , the unbounded
component of C \ K (we use the standard notation bK for the polynomially convex hull of K) extended by 0 on bK .

Recall that for any complex norm ∥ · ∥ in CN and the closed ball B :=
�

z ∈ CN : ∥z − a∥ ≤ R
	

we have

VB : CN ∋ z 7−→ log+
∥z − a∥

R
∈ R.

In particular
VD(1) : C ∋ ζ 7−→ log+|z| ∈ R. (2.3)

Recall also (see e.g. [9, Lemma 5.4.2 (d)]) that

V[−1,1] = log |h|. (2.4)

Consider a polynomial mapping P : CN −→ CN . The Łojasiewicz exponent at infinity of P (see e.g. [17]) is defined as

L∞(P) := sup
§

δ ∈ R : lim inf
||z||→∞

||P(z)||
||z||δ

> 0
ª

.

If N = 1, the Łojasiewicz exponent is equal to deg(P), in higher dimensions it can be strictly smaller. If L∞(P) = deg(P), we say
that P is regular. The mapping P is proper if and only if L∞(P)> 0. For a proper polynomial map the following transformation
formula holds (see [9, Theorem 5.3.1])

L∞(P)VP−1(K) ≤ VK ◦ P ≤ deg(P)VP−1(K) for any compact K ⊂ CN . (2.5)

Note that if L∞(P) = deg(P), in particular if N = 1, we have equalities in (2.5).
A compact set K ⊂ CN is called (pluri)regular if its Green function VK is continuous. We use the following notation

R=R(CN ) = {K ⊂ CN : K is nonempty, compact, pluriregular and polynomially convex}.

Klimek defined in [8] for E, F ∈R their distance

Γ (E, F) := sup
z∈CN
|VE(z)− VF (z)|=max

�

sup
z∈E

VF (z), sup
z∈F

VE(z)
�

and showed that (R, Γ ) is a complete metric space. Note that a sequence (En)∞n=1 is convergent to F in (R, Γ ) if and only if the
functional sequence (VEn

)∞n=1 is uniformly convergent to VF .
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2.3 Chebyshev

Chebyshev’s polynomials can be defined recursively by the formula

T0(z) = 1, T1(z) = z,

Tn+1(z) = 2zTn(z)− Tn−1(z) for z ∈ C, n ∈ {1, 2,3, ...}.

It follows that we can write
Tn(z) = 2n−1zn + Rn(z) for z ∈ C, n ∈ {1,2, 3, ...}, (2.6)

where deg(Rn)< n.
It is well known that

Tn ◦ Tm = Tnm for n, m ∈ {0,1, ...}. (2.7)

Number 1 is a fixed point of Tn (for any n) just as it is that for Joukowski’s transformation J. Baran noted in [2] that

Tn(J(z)) = J(zn), for z ∈ C \ {0}, n ∈ {1, 2,3, ...}. (2.8)

Let us recall that (2.8) appears also in [5, §1.4], but Beardon does not mention Joukowski’s name. Note also that the right hand
side of the equation is a generalized Joukowski transformation (see [3]).

It is known that
Tn([−1,1]) = [−1, 1] (2.9)

and this together with (2.8) yield that

C \ [−1,1] = {z ∈ C : lim
k→∞
|T k

n (z)|=∞} for n≥ 2. (2.10)

Note also that
T−1

n ([−1,1]) = [−1,1] (2.11)

and Tn and −Tn are the only polynomials of degree n satisfying (2.9) and (2.11) in view of [5, Theorem 1.4.1].
We will need information on the image and inverse image of the unit disk under the Chebyshev polynomials. We have

T1

�

D(1)
�

= D(1) and −3= T2(i) ∈ T2

�

D(1)
�

, hence T2

�

D(1)
�

is not included in D(1).

Proposition 2.1.
∀n ∈ {1,2, ...} : Tn

�

D(1)
�

⊂ D(3n−1).

Proof: Assume that |z| ≤ 1. We have |T1(z)| = |z| ≤ 1 = 30 and |T2(z)| ≤ 2|z|2 + 1 ≤ 3 = 31. By the recurrence formula if
|Tn(z)| ≤ 3n−1 and |Tn−1(z)| ≤ 3n−2, then |Tn+1(z)| ≤ 3n for n≥ 2. The assertion follows by complete induction on n.

Now we turn to the inverse image. It is easy to check that T−1
k

�

D(1)
�

⊂ D(1) for k ∈ {1, 2, 3, 4}, but to our aim it is sufficient
to show the following inclusion.

Proposition 2.2.
∀n ∈ {1,2, ...} : T−1

n

�

D(1)
�

⊂ D(3).

Proof: The assertion is true for n= 1.
Fix an integer n≥ 2 and put Zn : C ∋ ζ 7−→ ζn ∈ C.
Fix a point z ∈ C\ [−1, 1]. Then there exists a number r = rz > 1 such that z ∈ ∂ E(r). It follows from (2.2) that h(z) ∈ ∂ D(r)

and therefore J(Zn(h(z))) ∈ ∂ E(rn). Since by (2.8)

Tn(z) = J(Zn(h(z))),

we obtain the following implication
|Tn(z)| ≤ 1 =⇒ rn ≤ 1+

p
2,

because ∂ E(ϱ)∩ D(1) ̸= ; if and only if ϱ ∈
�

1, 1+
p

2
�

. Thus

|z| ≤ r + r−1 ≤
n
Æ

1+
p

2+
�

n
Æ

1+
p

2
�−1

≤ 3.

Let us recall that a compact set E ⊂ C is said to have Markov’s property if there exist constants M > 0, m> 0 such that

sup
z∈E
|p′(z)| ≤ M(deg p)m sup

z∈E
|p(z)|

for any polynomial p. Markov showed in [14] that for E = [−1, 1] one can take M = 1 and m = 2. Moreover these constants are
best possible and here the Chebyshev polynomials play an important role, since for them the inequality becomes equality, as

T ′n(1) = n2 (2.12)

for any integer n.
Note also that if E ⊂ C has Markov’s property, then the exponent m is not smaller than 1.
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2.4 Julia

If P : CN −→ CN is a polynomial mapping and k is an integer, then Pk denotes the k-th iteration given recursively by P1 =
P, Pk+1 = P ◦ Pk for k ∈ {1, 2, ...}.

Let P be a polynomial mapping. The (autonomous filled) Julia set of P is defined as

K[P] :=
¦

z ∈ CN :
�

Pk(z)
�∞

k=1
is bounded
©

.

If L∞(P)> 1, then K[P] ∈R (see [8]). Moreover, the Green function VK[P] of the Julia set K[P] is Hölder continuous (see [11]).
By the standard proof of Banach’s Contraction Principle

∀E ∈R : lim
k→∞

Γ
�

�

Pk
�−1
(E), K[P]
�

= 0 (2.13)

and moreover if R> 0 is big enough, then

K[P] =
∞
⋂

k=1

(Pk)−1({z ∈ CN : ∥z∥ ≤ R}).

It follows from (2.5) that K[P] = CN \
�

z ∈ CN : limk→∞



Pk(z)


=∞
	

. Thus by (2.10) we have [−1, 1] = K[Tn] for n≥ 2
(cf. [15, Problem 7-c]). In consequence e.g. K[Tn × Td] = [−1, 1]2 if n, d ≥ 2.

3 Preliminaries
We recall some results which we will use later.

First we want to have a limit of a sequence of polynomial inverse images of one set.

Proposition 3.1. ([10, Proposition 1]) Let Pn : CN −→ CN be a regular polynomial mapping of degree dn ≥ 2 for n ∈ {1,2, ...}.
Let K ∈R and define En := (Pn ◦ ... ◦ P1)−1(K) for n ∈ {1, 2, ...}. If

∞
∑

n=1

Γ (P−1
n+1(K), K)

d1d2 · · · dn
<∞, (3.1)

then the sequence (En)∞n=1 is convergent in (R, Γ ) to a set E. Any other choice of K ∈R for which (3.1) is satisfied, results in the same
limit E.

Now we turn to some compact subsets of algebraic sets. We start with a comparison of the Green functions of a set and its
holomorphic image contained in an algebraic set.

Proposition 3.2. ([4, Proposition 1.3]) Let k be an integer not greater than n and letM be an algebraic set in Cn of pure dimension
k. Assume that E ⊂ Ck is compact and non-pluripolar, W is an open neighbourhood of bE and f : W −→M is a holomorphic mapping.
If rankE f = k, then there exist C > 0 and δ0 > 0 such that

Vf (E)( f (z))≤ CVE(z) if dist(z, E)≤ δ0.

For some more regular subsets of algebraic sets one has a so called tangential Markov’s property.

Theorem 3.3. ([4, Theorem 2.1]) Let k ∈ {1, ..., n} and letM be an algebraic set in Cn of pure dimension k. Assume that the Green
function VE of a compact set E ⊂ Ck is Hölder continuous with exponent 1

m . Let W be an open connected neighbourhood of bE and
f : W −→M be a holomorphic mapping. If rankE f = k, then there exists M > 0 such that

|DT (t,v)p( f (t))| ≤ Mdm sup
w∈ f (t)
|p(w)| if t ∈ E, v ∈ Sk−1 and p ∈ Cd[z1, ..., zn],

where Sk−1 denotes the unit sphere in Ck and T (t, v) := Dv f (t).

4 The main result and its consequence
Proof of Main Result 1.1:

We have Γ
�

T−1
dk+1
([−1,1]), [−1, 1]

�

= 0 in view of (2.11), hence by Proposition 3.1 the sequence
�

(Tdk
◦....◦Td1

)−1([−1, 1])
�∞

k=1

is convergent to a set E. It follows from (2.7) and (2.11) that this sequence is constant and E = [−1,1].
Fix an integer d ≥ 2. In view of (2.5) and (2.3)

VT−1
d (D(1)) =

1
d

log+ |Td |.

Thus by Proposition 2.1

sup
z∈D(1)

VT−1
d (D(1))(z)≤

d − 1
d

log 3≤ 2.
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On the other hand (2.3) and Proposition 2.2 imply

sup
z∈T−1

d (D(1))
VD(1)(z)≤ sup

z∈D(3)
log+ |z|= log 3≤ 2.

Combining these estimations we obtain

Γ
�

T−1
d (D(1)), D(1)
�

≤ 2.

It follows that
∞
∑

n=1

Γ
�

T−1
dn+1
(D(1)), D(1)
�

d1d2 · · · dn
<∞.

Therefore by Proposition 3.1 the sequence
�

(Tdk
◦ .... ◦ Td1

)−1(D(1))
�∞

k=1
is also convergent to [−1,1] and this means that

sup
z∈CN

�

�

�

�

1
d1
· ... ·

1
dk

log+
�

�(Td1
◦ ... ◦ Tdk

)(z)
�

�− V[−1,1](z)

�

�

�

�

−→ 0 if k→∞

once again thanks to (2.5) and (2.3).

Corollary 4.1. For any d ≥ 2 the sequence
�

1
dk

log+
�

�T k
d

�

�

�∞

k=1

is uniformly convergent to the complex Green function of [−1,1], i.e. to log |h|.
Proof: It is a consequence of Main Result 1.1 for a constant sequence (dk)∞k=1 of integers.

The fact from this corollary is actually well known, since [−1, 1] = K[Td]. Let namely d ≥ 2 and p be a polynomial of degree
d. Consider the sequence

�

1
dk

log+
�

�pk
�

�

�∞

k=1
. (4.1)

The locally uniform convergence of this sequence in C \ K[p] can be deduced from an analogue of Böttcher theorem (see e.g.
[15, §9]). The locally uniform convergence in the whole complex plane can be also proved by means of currents, see e.g. [6,
Proposition 4.2]. The uniform convergence of the sequence given in (4.1) follows from a rather complicated approach developed
by Ueda [19] and Hubbard and Papadol [7]. Note however that the fact that the limit of this sequence is the Green function VK[p]
was shown in [18, Proposition 3].

On the other hand, one can obtain the uniform convergence of the sequence given in (4.1) to the Green function VK[p] directly
from (2.13), i.e. from the argument developed by Klimek in [8]. Note that articles [19], [7] and [8], which show the uniform
convergence, were published almost simultanously.

5 A regular set without Markov’s property
Because of the title of this section we would like first refer the reader to [16]. We will give here an example similar to that given
in [10, Corollary 2].

Example 5.1. Fix a bounded sequence (dn)∞n=1 of integers not smaller than 2. Let Pn := (n+ 1)Tdn
− n for any integer n. Then

the sequence
�

(Pn ◦ ... ◦ P1)
−1([−1, 1])
�∞

n=1

is convergent in (R, Γ ) to a set E, which does not have Markov’s property.

Proof: It follows from (2.11) that P−1
n ([−1, 1]) ⊂ [−1, 1]. On the other hand (2.9) yields max{|Pn(x)| : x ∈ [−1, 1]} = 2n+1.

Therefore combining (2.5), (2.4) and the properties of function |h| (see the end of Subsection 2.1) we obtain

Γ
�

P−1
n ([−1,1]), [−1,1]

�

= sup
x∈[−1,1]

VP−1
n ([−1,1])(x) =

= sup
x∈[−1,1]

1
dn

log
�

�h(Pn(x))
�

�≤
2n+ 1

dn
.

Therefore
∞
∑

n=1

Γ
�

P−1
n+1([−1, 1]), [−1, 1]

�

d1d2 · · · dn
<∞

and we may use Proposition 3.1 to obtain
E = lim

n→∞
(Pn ◦ ... ◦ P1)

−1([−1, 1]).

Moreover,

E =
∞
⋂

n=1

(Pn ◦ ... ◦ P1)
−1([−1, 1]).
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Note that 1 is a fixed point of every Pn and therefore 1 ∈ E. For any integer n consider the polynomial qn := Pn ◦ ... ◦ P1. In
view of (2.12) we have q′n(1) = (n+ 1)!d1 · · · dn. On the other hand q−1

n ([−1,1]) is decreasing (with respect to inclusion) to E,
hence qn(E) ⊂ [−1, 1]. If E had Markov’s property, there would exist positive constants M , m such that

(n+ 1)!d1 · · · dn ≤ M(d1 · · · dn)
m. (5.1)

The sequence (dn)∞n=1 is bounded, say d =max{dn : n≥ 1}. Note that (5.1) implies

(n+ 1)!≤ Md(m−1)n,

which is impossible.

6 A Julia set on an algebraic set
Here we turn to [12]. This article was devoted to some examples of iteration on algebraic sets. Portions of Julia sets contained in
algebraic sets turned up to be good examples for the setting dscribed in [4] (see Proposition 3.2 and Theorem 3.3 above). We
will describe here the case of such iteration on algebraic sets. For proofs and details we refer the reader to [12].

Let P : CN −→ CN be a polynomial mapping. If a setM ⊂ CN satisfies P(M) ⊂M, we can consider a Julia type set of the form

K[P|M] :=
¦

z ∈M : ((P|M) j(z))∞j=1 is bounded
©

.

It is obvious that K[P|M] = K[P]∩M. In our caseM is an algebraic set, which is a natural choice since P is a polynomial mapping.
We consider now namely k ∈ {1, ..., N} and let M be an algebraic set in CN of pure dimension k. Let P : CN → CN be a

polynomial mapping such that P(M) ⊂M. Suppose that there exists a biholomorphic polynomial mapping f : Ck ∋ ζ 7−→ f (ζ) ∈M
and write Q := f −1 ◦ P ◦ f . Then Q is a polynomial mapping and we have K[P|M] = f (K[Q]) (see [12, proof of Proposition
2.2]). If L∞(Q)> 1, then K[Q] ∈R and its Green function is Hölder continuous (see Subsection 2.4). Hence in this case we can
apply both Proposition 3.2 and Theorem 3.3. The situation is more interesting if L∞(P)≤ 1, since in this case K[P] may be not
compact even if its portion contained inM is. Recall that we defined the Green function only for compact sets. Even though a
definition for noncompact sets is also possible, we do not have in general results about regularity of such sets like those we have
for compact sets.

In [12] some examples were given. Here we propose another one and its generalization.

Example 6.1. Let

M := {(z, w) ∈ C2 : w= z2}, f : C ∋ ζ 7−→ f (ζ) := (ζ,ζ2) ∈M,

P : C2 ∋ (z, w) 7−→ P(z, w) := (2w− 1,4wz2 − 4w+ 1) ∈ C2.

Then K[P] is not compact, but K[P|M] is and there exist C > 0 and δ > 0 such that

VK[P|M]( f (ζ))≤ C log |h(ζ)| if dist(ζ, [−1,1])< δ.

Furthermore, there exist positive constants M and m such that

|DT (ζ,v)p( f (ζ))| ≤ Mdm sup
w∈K[P|M]

|p(w)|,

where ζ ∈ [−1, 1], v ∈ ∂ D(1) and p ∈ Cd[z1, z2].
Proof: Since P(z, 0) = (−1,1) for any z ∈ C, the Julia set K[P] is unbounded.
One can check straightforward that f −1 :M ∋ (z, w) 7−→ z ∈ C and f −1 ◦ P ◦ f = T2.
We are ready to apply Proposition 3.2 and Theorem 3.3.

In Example 6.1 we have K[Q] = [−1,1] and this means that f (K[Q]) is actually very simple. Therefore the tangential
Markov’s inequality is not surprising here at all. The more interesting fact is that K[P|M] is of this simple form, since K[P] is
unbounded.

In this example T2 played a role. The following example is actually the generalization of the previous one, here we have Td
for any d ≥ 2.

Example 6.2. Let d ∈ {2,3, 4, ...}, Rd be as in (2.6) and let

Md := {(z, w) ∈ C2 : w= zd}, fd : C ∋ ζ 7−→ f (ζ) := (ζ,ζd) ∈M,

Pd : C2 −→ C2 be given by the formula

Pd(z, w) :=

�

2d−1w+ Rd(z),
d
∑

j=1

2(d−1) jzd( j−1)w · (Rd(z))
d− j + (Rd(z))

d

�

.

Then L∞(Pd)≤ 1, but K[Pd |Md
] is compact and there exist C > 0 and δ > 0 such that

VK[Pd |Md
]( fd(ζ))≤ C log |h(ζ)| if dist(ζ, [−1,1])< δ.

Furthermore, there exist positive constants M and m such that

|DT (ζ,v)p( fd(ζ))| ≤ Mdm sup
w∈K[Pd |Md

]
|p(w)|,

where ζ ∈ [−1,1], v ∈ ∂ D(1) and p ∈ Cd[z1, z2].
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Proof: Since Pd(0, w) =
�

2d−1w+ Rd(0), 2d−1w · (Rd(0))d−1 + (Rd(0))d
�

is a polynomial mapping of degree 1 with respect to
w, it follows from the definition of the Łojasiewicz exponent that L∞(Pd)≤ 1.

As in the previous case f −1
d :Md ∋ (z, w) 7−→ z ∈ C. Moreover, f −1

d ◦ Pd ◦ fd = Td .
Apply Proposition 3.2 and Theorem 3.3.
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