
Special issue of the “Seminari Padovani di Analisi Numerica 2018” (SPAN2018), Volume 11 · 2018 · Pages 11–22

Recent advancements in preconditioning techniques for large size
linear systems suited for High Performance Computing

Andrea Franceschini a · Massimiliano Ferronato a · Carlo Janna a · Victor A. P. Magri a

Communicated by Ángeles Martínez

Abstract

The numerical simulations of real-world engineering problems create models with several millions or
even billions of degrees of freedom. Most of these simulations are centered on the solution of systems
of non-linear equations, that, once linearized, become a sequence of linear systems, whose solution is
often the most time-demanding task. Thus, in order to increase the capability of modeling larger cases,
it is of paramount importance to exploit the resources of High Performance Computing architectures.
In this framework, the development of new algorithms to accelerate the solution of linear systems for
many-core architectures is a really active research field. Our main focus is algebraic preconditioning
and, among the various options, we elect to develop approximate inverses for symmetric and positive
definite (SPD) linear systems [22], both as stand-alone preconditioner or smoother for AMG techniques.
This choice is mainly supported by the almost perfect parallelism that intrinsically characterizes these
algorithms. As basic kernel, the Factorized Sparse Approximate Inverse (FSAI) developed in its adaptive
form by Janna and Ferronato [18] is selected. Recent developments are i) a robust multilevel approach
for SPD problems based on FSAI preconditioning, which eliminates the chance of algorithmic breakdowns
independently of the preconditioner sparsity [14] and ii) a novel AMG approach featuring the adaptive
FSAI method as a flexible smoother as well as new approaches to adaptively compute the prolongation
operator. In this latter work, a new technique to build the prolongation is also presented.

1 Introduction
The current engineering simulation models are quickly growing up to millions or even billions of unknowns, and the efficient
solution to the related sparse linear systems of equations

Ax = b, (1)

with A ∈ Rn×n a symmetric and positive definite (SPD) matrix, b ∈ Rn and x ∈ Rn, is often one of the most expensive tasks in
several numerical applications. The linear system (1) can be solved by direct or iterative methods, but the last one is often the
choice for large-scale engineering problems due to their lower complexity and higher scalability. It is known that an iterative
method alone is not able to solve the linear system: a suitable preconditioner, imitating the action of A−1, is needed. Several
techniques for building preconditioners are available in the literature with the distinct classes: purely algebraic or physics-based
ones. In the first class, there are incomplete factorizations [30, 1], sparse approximate inverses [2, 17, 21], domain decomposition
techniques [10, 23] and algebraic multigrid methods (AMG) [26, 35]. All these approaches build the preconditioners based on
the matrix coefficients only.

Compared to incomplete factorizations, sparse approximate inverses are generally more robust and appropriate for parallel
computational architectures. In particular, the adaptive pattern factorized sparse approximate inverse (aFSAI) [18, 21] is an
algebraic preconditioner for SPD problems that proves effective in a wide range of applications. One of the most attractive
features of aFSAI for modern computers is its intrinsic high degree of parallelism, indeed each row of the preconditioner can be
fully formed independently of the others.

In this work, we review two ideas: i) the first one is based on the introduction of some sequentiality in the aFSAI computation,
developing a multilevel preconditioner; ii) the latter one is a novel AMG method, based on the adaptivity concept and suited for
high performance computing. The first idea is to use the information extracted from the earlier set-up stages for the remaining
rows. This concept has been already introduced in the field of approximate inverses in [8, 29], and more recently in [27], where
both a block tridiagonal and a domain decomposition approach have been used to improve the FSAI performance. Here, we
develop a more general multilevel framework. The second approach is an AMG method: aSP-AMG [28], where the acronym aSP
stands for adaptive Smoothing and Prolongation. In particular, the smoother is represented by the aFSAI and the prolongation
operator construction is based on a least squares minimization variant, with a dynamic pattern selection scheme. Finally, following
the adaptive and bootstrap AMG techniques [5, 6, 4], we assume no information about the near-null space of A. Instead, we

aUniversity of Padova

Franceschini · Ferronato · Janna · Magri 12

construct an approximation of this space by testing an initial set of candidates, both given as input (if available) or randomly
generated, without any use of self-improvement ideas.

2 aFSAI preconditioner
The FSAI preconditioner M−1 of a symmetric positive definite matrix A is given by:

M−1 = GT G≈ A−1, (2)

where the factor G is calculated by minimizing the Frobenius norm

||I−GL||F (3)

over the set of matrices with a given lower triangular nonzero pattern S. In Equation (3), the matrix L represents the exact lower
Cholesky factor of A, that is not required for the calculation of G. Developing the minimization, i.e., deriving the equation with
respect to the entries fi j , we have:

[GA]i j =

�

0, if i 6= j
lii , if i = j.

(4)

Introducing eG= D−1G, where D= [diag(G)]−1/2, it is possible to write:
�

eGA
�

i j
= δi j , (5)

which is used to calculate the factor eG and finally the matrix G.
The essential factor that determinates the performance of the FSAI preconditioner is the selection of the sparsity pattern. In

the literature, a lot of strategies are available, e.g., using low powers of A, but one of the most promising, based on the row-wise
minimization of the Kaporin conditioning number, was developed by [18] (aFSAI). In this strategy, the construction of G is
controlled by the following parameters:

• kmax : maximum number of steps for adding new entries.

• ρG: number of entries added to the sparsity pattern in each step.

• εG: stopping tolerance based on the relative reduction of the Kaporin number.

The main component of this algorithm is the gradient of the Kaporin number, computed row-wise, from which the indices of
the ρG largest entries are added to the tentative pattern. For each row, a small dense linear system, obtained from gathering
the components of the full matrix, is solved and the result is used to build the corresponding row of G. This iterative process is
repeated up to a kmax number of times or until the relative Kaporin number variation is below the input threshold εG . For more
details about this algorithm, the reader is referred to the paper by [21].

3 Multilevel FSAI preconditioning
In this section, the multilevel preconditioner is presented with some considerations on its computation and eigenvalues. Moreover,
we also show how to improve its quality with two different low-rank updates. This section is a review of the contents presented
in [14].

3.1 Standard multilevel approach

The standard multilevel approach applied to the SPD matrix A, with a total number nl of levels, is based on a sequence of matrices
Al , where each of them is the Schur complement at any levels l ∈ [0, nl − 1] of the previous level. Following for instance [19], we
can partition Al in four blocks and perform the factorization:

Al =
�

K B
BT C

�

=
�

LK 0
BT L−T

K I

��

I 0
0 S

��

LT
K L−1

K B
0 I

�

(6)

where LK is the exact Cholesky factorization of K ∈ Rn1×n1 , and S= C−BT K−1B, S ∈ Rn2×n2 , is the Schur complement of Al with
respect to the partition (n1, n2), i.e., Al+1 ≡ S. As usual, being our goal to build a preconditioner, each block at the right-hand
side of (6) is replaced with an approximation:

eL' LK , eH' L−1
K B, eS' S (7)

From the recursive computation of (6), using the approximations (7), we have a general framework for a multilevel preconditioner
M of A, made by the list of factors Ml , l ∈ [0, nl].

Due to the recursive nature of the M computation, we can restrict our analysis to the two-level case with no loss of generality.
Hence, Al in Equation (6) coincides with A and n1 + n2 = n. A widely used choice for the approximations in (7) is an incomplete
factorization, i.e. setting eL equal to the Incomplete Cholesky (IC) factor of K as in [32, 24, 19, 7]. In the same framework, the
use of aFSAI as the main kernel is straightforward. After computing G such that GT G' K, the approximations in (7) become:

eL' G−1, eH' GB, eS' C− eHT
eH (8)

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 13

10 100 1000

1×10
-2

1×10
-1

1×10
0

A

G
-1

G
-T

LL
T

Figure 1: Comparison between the eigenspectra of A, eLeLT and (GT G)−1 for the bcsstk16 matrix from the SuiteSparse Matrix Collection.

An interesting property related to the use of an aFSAI instead of an incomplete factorization is that no dropping is necessary to
compute efficiently eH and eS, because G is usually very sparse.

This straightforward implementation of the MF preconditioner is very prone to breakdowns. We observe that the Schur
complement approximation eS= C− eHT

eH is computed as the difference between two SPD matrices and can be indefinite. The
reason for this indefiniteness resides in the poor approximation of the leftmost eigenvalues usually obtained by aFSAI. Figure 1
compares the eigenspectra of the bcsstk16 matrix (structural problem, with 4,884 rows and 290,378 nonzero entries) from the
SuiteSparse Matrix Collection [9] with its approximations by IC and aFSAI, eLeLT and (GT G)−1, respectively. eL and G are computed
in such a way the number of nonzeros is approximately the same. From Figure 1, we have that both approximations are not able
to capture the smallest eigenvalues of the matrix, though IC is better, as generally happens. The smallest eigenvalues of K are the
largest of K−1 and control the most significant entries of BT K−1B. Thus, eHT

eH computed as in (8) often fails in approximating
accurately the largest entries of BT K−1B, leading to the indefiniteness.

Our aim is to describe a robust version of the MF preconditioner. This can be ensured by computing eS using aFSAI
approximations only. To this aim, we can use the following result (Theorem 2.1 of [14]):

Theorem 3.1. Let A ∈ Rn×n be an SPD (2× 2)-block matrix:

A=
�

K B
BT C

�

, (9)

with K ∈ Rn1×n1 , B ∈ Rn1×n2 and C ∈ Rn2×n2 , and V ∈ Rn×n2 and D ∈ Rn2×n the 2-block rectangular matrices:

V=
�

FT

I

�

, D=
�

0 Z
�

, (10)

with F ∈ Rn2×n1 and Z ∈ Rn2×n2 , such that the Frobenius norm ‖D−VT L‖F is minimum for any Z, L being the lower Cholesky factor
of A. Then, S= VT AV is the Schur complement of A with respect to the partition (n1, n2).

For the proof, we refer the reader to the original work of [14]. The most important consequence of the previous theorem is
that the Schur complement approximation eS, obtained substituting V with an approximation eV, is always SPD.

Based on these results, the MF preconditioner is built as follows. The zero-level preconditioner M−1
0 is made by two factors:

M−1
0 = PbPa. (11)

An explicit approximation of K−1 is computed as GT G using the aFSAI procedure [21] and introduced in Pa:

Pa =
�

G 0
0 I

�

. (12)

Then, the first stage preconditioned matrix PaAPT
a is computed:

PaAPT
a =

�

GKGT GB
BT GT C

�

(13)

and the adaptive Block FSAI [18] of PaAPT
a is computed for the second factor:

Pb =
�

I 0
F I

�

. (14)

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 14

The zero-level preconditioned matrix M−1
0 AM−T

0 reads:

M−1
0 AM−T

0 =
�

I 0
F I

��

GKGT GB
BT GT C

��

I FT

0 I

�

=
�

GKGT −RT
F

−RF
eS

�

(15)

where RF = −F(GKGT)−BT GT is the residual on F, i.e., RF approaches the null matrix as the accuracy in the computation on F
increases. Finally, the (2,2) block of M−1

0 AM−T
0 is the approximation of the first-level Schur complement:

eS= C+ FGB+BT GT FT + FGKGT FT (16)

that becomes the new matrix for the next level. As eS in (16) is SPD for any F and G, no breakdown is possible.
The MF preconditioner construction is controlled by three user-specified parameters:

• nl : number of levels. Therefore, (nl − 1) is the number of computed Schur complements;

• εG: tolerance for the adaptive computation of G, see [21];

• εF : tolerance for the adaptive computation of F, see [18];

3.2 Improving the MF performance with Low-Rank corrections

In [34] is introduced the idea of using low-rank corrections in a multilevel framework, giving rise to the robust Multilevel Schur
complement-based Low-Rank (MSLR) preconditioner. The basic concept is as follows. Define the matrix:

Y= L−1
C BT K−1BL−T

C = L−1
C (C− S)L−T

C (17)

where LC is the exact lower factor of C. The eigenvalues σi of Y are bounded:

0≤ σn2
≤ · · · ≤ σ1 < 1 (18)

The separation of the eigenvalues θi of X= LT
C (S

−1 −C−1)LC is larger than that of Y, because:

θi =
σi

1−σi
i = 1, . . . , n2

θi − θi+1 =
σi −σi+1

(1−σi)(1−σi+1)
i = 1, . . . , n2 − 1

(19)

As shown in [34], the separation of the eigenvalues of L−T
C XL−1

C = S−1 − C−1 has a stronger impact on the performance of the
MSLR preconditioner, however studying X is easier. Equation (19) suggests that approximating with a low-rank matrix (S−1−C−1)
is easier than (S−C) because of the faster eigenvalue decay. An improved version of S−1 can be computed as:

S−1 ' C−1 +WkΘkWT
k (20)

with WkΘkWT
k a rank-k approximation of L−T

C XL−1
C , obtained from the eigendecomposition of Y. Retaining the k largest eigenvalues

and corresponding eigenvectors of Y we can write:
Y' UkΣkUT

k (21)

Noting that:
S−1 −C−1 = L−T

C [(I− Y)−1 − I]L−1
C = L−T

C [Y(I− Y)−1]L−1
C (22)

the rank-k correction to S−1 −C−1 is found by setting:

Θk = Σk(I−Σk)
−1 (23)

and Wk = L−T
C Uk.

In our framework, we have an already computed Schur complement and we want to improve the action of eS−1. Due to the
positive definiteness of eS−1, the eigenvalues σi of the matrix:

Y= L−1
eS
(eS− S)L−T

eS
(24)

satisfy the condition (18). Thus, with the same procedure outlined above, we can compute the k largest eigenpairs of Y:

Y' UkΣkU
T

k (25)

and get the expression of the corrected Schur complement inverse:

S−1 ' eS−1 +WkΘkW
T

k (26)

where Θk = Σk(I−Σk)−1 and W= L−T
eS

U.

Since we are working in a multilevel framework, eS−1 will not be used exactly. Instead a new approximation bS−1 ' eS−1 will
be computed. Thus, bS will be the new target of the low-rank correction. Moreover, the same idea can be used to improve the
approximation G used in the first stage, i.e. Pa. Therefore, we use two low-rank correction techniques for the preconditioner
set-up:

• Descending low-rank corrections: computed at each level, from the first to the last, to reduce ‖GKGT − I‖;
• Ascending low-rank corrections: computed at each level, from the last to the first, to reduce the gap between bS and eS.

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 15

3.2.1 Descending Low-Rank corrections

The aim of this correction is to enhance the approximation of the inverse of K. We can define the matrix:

Y= G[(GT G)−1 −K]GT = I−GKGT (27)

and compute its rank-k approximation:
Y' UkΣkU

T

k (28)

Now the computation of Uk and Σk is less expensive than in (25), because all components are explicitly known. The enhanced
preconditioner for K reads:

K−1 ' GT G+WkΘkW
T

k (29)

Due to the positive definiteness of GKGT , the eigenvalues of Y are bounded from above by 1, but a lower bound is missing.
This is not a problem, as our approach is based on the computation of the eigenvalues σi of Y closest to 1. To obtain a split
preconditioner, a symmetrically split operator is needed. Further details are provided in [14].

3.2.2 Ascending Low-Rank corrections

We define the matrix bY and compute its rank-k approximation:

bY= I− bGeSbGT ' bUk
bΣk
bUT

k (30)

where bG is the lower inverse factor of bS, i.e. (bGT
bG)−1 = bS, which is explicitly available by the approximation of lower levels.

Because the explicit expression of every matrix is known, the computation of (30) is quite cheap. The new approximation to eS is
given by:

eS−1 ' bGT
bG+ ÒWk

bΘk
ÒWT

k (31)

where ÒWk = bGT
bUk and bΘk = bΣk(I− bΣk)−1. Notice that, during the set-up, we use a split update because it is operatively necessary

to compute bGeSbGT , however, during the preconditioner application, the use of Equation (31) is more efficient as it only requires
one update.

The low-rank correction in the MFLR preconditioner depends on two parameters:

• dl r: Descending Low-Rank correction size, i.e., number of eigenpairs used to enrich G. This is a local improvement;

• al r: Ascending Low-Rank correction size, i.e., number of eigenpairs used to enrich bS−1. This is a global improvement,
being the Schur complement size increasing up to the size of the zero-level partition.

4 aSP-AMG: adaptive Smoothing and Prolongation MultiGrid
Standard components of all AMG methods are a multilevel hierarchy, interpolation operators, the use of smoothers and a
complementary between coarse-grid correction and relaxation. In aSP-AMG, to define coarse nodes, we adopt the classical AMG
approach, i.e., coarse variables are a subset of the fine level ones.

One of the main components for an AMG method is the smoother, which usually is a stationary iterative method whose task is
to eliminate the error components associated with larger eigenvalues of A, i.e., high-frequency errors. In many AMG methods,
the smoother is a pointwise relaxation method such as (block) Jacobi or Gauss-Seidel. The second one is often preferred, because
of its effectiveness, but its parallel implementation is not straightforward. In aSP-AMG, we use the aFSAI [21] as a smoother.

To build an effective AMG, the coarse grid must be able to correct errors that the smoother is not able to deal with. Defining
Ω as the index set 1,2, ..., n, with n the size of A, we need to find two disjoint sets F and C representing the fine and coarse nodes,
respectively, naming with n f = |F | and nc = |C| their size.

Numerous of the developed coarsening algorithms [36] are based on the classical concept of strength of connection (SoC).
This measure of the influences exerted between two nodes plays a fundamental role in the coarsening phase. However, it relies
on the assumption that A is an M-matrix, which is far to be true for general discretizations. We employ another definition of SoC
based on the concept of affinity recently introduced by [25]. The affinity-based SoC is more general but requires the availability
of a suitable test space representing the algebraically smooth vectors. In some problems, the test space is known a priori, e.g.,
the rigid body modes for the linear elasticity. Our current implementation can take advantage of an already existing kernel or
estimating it through a Lanczos process. Let us call X the n× nt matrix whose columns form a basis of the test space Φ and let us
denote as x T

i the i-th row of X . Using the same notation of [35], the connection strength between two nodes i and j is:

sc(i, j) =
(x T

i x j)
2

(x T
i x i)(x

T
j x j)

. (32)

The SoC matrix Sc is built on the same pattern of A, with entries defined by (32), then it is filtered by dropping weak
connections. Coarse nodes are finally chosen by finding a maximum independent set (MIS) of nodes on the filtered adjacency
graph. The sparsity of the SoC matrix is controlled specifying the integer parameter:

• θ : the average number of connections per node.

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 16

Once the nodes belonging to the fine level have been subdivided into the two sets F and C, it is possible to set-up the
prolongation operator who is responsible for transferring information from the coarse to the fine space. Using the conventional
F/C ordering (i.e., first fine nodes, then coarse nodes), the prolongation operator P will be written as:

P=
�

W
I

�

, (33)

where W is a n f × nc matrix containing the weights for coarse-to-fine variable interpolation. Finally, as we are dealing with an
SPD matrix, a Galerkin approach in defining the restriction operator is used, so R is the transpose of P, with the coarse level
matrix Ac given merely by the triple matrix product:

Ac = PT AP. (34)

It is straightforward to extend this two-level approach to a more efficient multilevel version by recursion.

4.1 Test space generation

As long as we base our multigrid method on the affinity measure (32), a key ingredient is an accurate representation of the
smooth vectors, i.e., a suitable test space Φ. As almost all single level preconditioners, aFSAI can accurately represent the higher
part of the spectrum of an SPD matrix while the approximation of lower eigenpairs is quite rough.

When aFSAI is used, the smoother operator takes the following form:

S= I−GT GA. (35)

Since the spectral radius of GT GA may be bigger than one, a relaxation factor ω is introduced to render the smoother
convergent:

Sω = I−ωGT GA, (36)

where:

ω<
2

λmax(G
T GA)

. (37)

This factor does not affect the lowest frequencies and the correction of the error components along the smooth vectors must
be committed to the coarse grid operator. We aim to find a good approximation of the eigenvectors of S paired to the eigenvalues
closer to 1, i.e., a consistent estimate of the near-null space of A. A simple plain Lanczos algorithm [31] is used to extract these
eigenpairs.

Being the Lanczos iterative method designed for symmetric matrices, we need to recast our problem as follows:

S= I−GAGT , (38)

where the matrix S is similar to S.
It is well known that the Lanczos algorithm converges rapidly to the extreme eigenvalues, thus, in this case, these eigenvalues

are close to 1 on the rightmost part of the spectrum and to 1−λmax(GAGT) on the other side. Both these extremes are necessary,
as the former one represents the smooth vector space Φ and the latter is used to compute ω, according to (37), to transform the
given smoother in a converging one, i.e. Sω.

The following user-specified parameters control the test space generation:

• nt : the dimension of the test space;

• εt : the relative accuracy in estimating eigenpairs, that is (λ, v) is added to the test space if it satisfies ‖Sv −λv‖ ≤ εt‖v‖.
The steps to build the test space are collected in Algorithm 1.

From a practical viewpoint, aSP-AMG needs an approximation of the test space. Lanczos algorithm does not provide the
whole extreme parts of the spectrum. We use anyway the nt rightmost converged eigenvectors for the test space and the leftmost
converged eigenvalue to compute ω. The number of Lanczos iterations is limited between 5 and 6 times the desired test space
dimension nt , with the accuracy εt usually ranging between 10−3 and 10−2.

4.2 Prolongation operators

Once the coarse nodes are selected, we can move to the computation of the prolongation operator P. Recalling that the
complementarity between smoothing and coarse-grid correction is essential for achieving an efficient multigrid method, it is
crucial to calculate a prolongation operator that represents accurately slow converging modes of the error. Assuming a fine-coarse
(F/C) ordering of nodes, we can define the prolongation operator by specifying the matrix W in (33).

For a given F/C partition of the system variables, the ideal interpolation, which minimizes a weak approximation property
[11], is defined as:

Wideal = −A−1
f f A f c . (39)

Although the ideal interpolation may give rise to the best convergence rate, its use is impractical because it is costly to
compute and to apply as Wideal as, in general, it is a dense matrix.

The prolongation P in several AMG methods is computed trying to approximate Wideal, for instance starting by a given
pattern of W and running a few Jacobi or Gauss-Seidel sweeps for the approximate solution to (39). Very often, to limit the
number of nonzeros in W, only strong connections are considered in the path. However, Sc connectivity may vary significantly,
especially in tough problems, and an a priori selected nonzero patterns may give rise to poor prolongation operator. The use of

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 17

Algorithm 1 Test space generation by Lanczos algorithm

1: procedure CPTTESTSPACE(N ,nt ,εt ,A,G,V, ω)
2: Set z1, random vector with ‖z1‖2 = 1, β1 = 0, z0 = 0;
3: for i = 1, N do
4: w j = (I−GAGT)z j − β jz j−1;
5: α j = wT

j z j;
6: w j = w j −α jz j;
7: β j+1 = ‖w j‖2;
8: z j+1 = w j/β j+1;
9: end for

10: Find eigenpairs of the matrix H, with hii = αi and hi−1,i = hi,i+1 = βi: H= UΛUT ;
11: Compute the approximate eigenvectors Z← ZU;
12: Compute residuals for all eigenvectors zi: ri = ‖(I−GAGT)zi −Λizi‖/‖Λizi‖;
13: Form the test space matrix V containing the first nt vectors with Λi closest to 1 satisfying ri < εt ;
14: Using the smallest (negative) converged Λi , compute ω= 2/(1−Λi);
15: end procedure

Algorithm 2 Dynamic Pattern Least Squares Prolongation

1: procedure CPTPROLONGATION(dp,εp,Sc ,V f ,Vc , W)
2: for all nodes i ∈ F do
3: k = 0; Ci =∅; r = v i;
4: Form Ji = { j ∈ C | there is a path from i to j shorter than dp};
5: while ‖r‖ ≥ εp‖vi‖ do
6: k = k+ 1;
7: Select j̄ ∈ Ji \ Ci for which v j has maximal affinity with r;
8: Update Ci = Ci ∪ { j̄};
9: Compute the Householder’s rotation able to zero v j̄ from component k+ 1;

10: Apply the Householder’s rotation to r;
11: for all j ∈ Ji \ Ci do
12: Apply the Householder’s rotation to v j;
13: end for
14: end while
15: Form the nt × k upper triangular matrix R collecting v j , for all j ∈ Ci;
16: Compute wi ← R−1r;
17: end for
18: end procedure

long-distance neighbors can alleviate these problems, however with the expense of producing denser coarser levels that might
require sparsification to reduce communication issues when running the algorithm in parallel [3].

For the above reasons, a novel iterative procedure called Dynamic Pattern Least Squares (DPLS) that shows a few analogies
with approximate inverses [15, 18] is established to construct the prolongation pattern dynamically during set-up. First of all, the
test space components vi are copied in v i . For any fine node i, we choose a set of coarse nodes that can be reached from i with a
path of strong connections shorter than a given distance dp, and form the set Ji of potential column indices to be considered in
the matrix row wT

i . Once Ji is formed, the problem is to choose a fixed number k of entries j ∈ Ji such that there exists a linear
combination of v j giving the best possible approximation of v i in the euclidean norm sense. When k = 1, the optimal solution is
easily found by selecting the index j̄ for which the angle comprised between v i and v j̄ is minimal. To choose the second most
promising entry, it is necessary to update the angle estimate by computing the residuals, i.e. removing the components of both v i
and all the v j along v j̄ . The selection of new entries stops when the following criterium is met:

‖v i −
∑

j∈J i

β j v j‖ ≤ εp‖vi‖, (40)

where J i ⊆ Ji contains only the selected entries. Two parameters control the construction of the DPLS prolongation, they are:

• dp: the maximum path length between fine nodes and interpolating coarse nodes;

• εp: the relative exit tolerance in the iterative procedure.

Algorithm 2 summarizes the procedure to compute the DPLS prolongation.

5 Numerical results
In this section, we evaluate the performance of the two proposed preconditioners for the solution of a set of real-world SPD
problems from the SuiteSparse Matrix Collection [9]. Precisely, we show the computational times for building the preconditioner

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 18

and solving the linear system; the number of iterations needed and density measures indicating RAM consumption. Moreover,
both methods are compared to the native aFSAI algorithm as implemented in the FSAIPACK package [21] and, for the aSP-AMG,
also to the BoomerAMG solver as provided by the Hypre package, version 2.13 [12].

The right hand side vector used in the test cases discussed here is unitary. The linear systems are solved by the preconditioned
conjugate gradient method (PCG) with initial solution equal to the null vector. Lastly, convergence is considered achieved when
the PCG iterative residual becomes smaller than 10−10 · ‖b‖2.

To evaluate the memory occupation and the cost of applying MFLR, we define the following preconditioner density ρl :

ρl =
1

nnz(A)

nl−1
∑

i=0

�

nnz(Qi
al r) + nnz(Qi

M)
�

(41)

where Qal r is a queue collecting all data structures to apply the Ascending Low-Rank corrections and QM is another queue, with
all matrices, such as G, F and the Descending Low-Rank corrections, to build Pa and Pb.

With the same aim, for aSP-AMG in a single V(1,1)-cycle, we use the classical definition of operator and grid complexities,
shown in Equation (42), respectively:

Cop =
nl−1
∑

l=0

nnz (Al)
À

nnz (A0), Cgd =
nl−1
∑

l=0

nrows (Al)
À

nrows (A0). (42)

The first accounts for the space needed to store the sparse systems belonging to the multigrid hierarchy while the second
measure is related to the size of auxiliary vectors employed in the preconditioner application.

Lastly, we consider the aFSAI density µG , i.e., the ratio between the nonzeros in the G factor and the nonzeros in A, which
gives an idea of the cost for storing as well as for applying of aFSAI preconditioner:

µG =
nnz (G)
nnz (A)

. (43)

In the aSP-AMG, when aFSAI is considered as a smoother, its density is simply given by an average through levels:

µG =

nl−1
∑

l=0
nnz (Gl)

nnz (A0)
. (44)

We present a shared memory implementation developed by using OpenMP directives for both algorithms and run all the tests
on a workstation equipped with two Intel Xeon E5-2643 processors at 3.30GHz with four physical cores each and 256 GB of RAM
memory.

5.1 MFLR performance

Since the main goal of this work is to prove the robustness and effectiveness of a multilevel framework in explicit preconditioning
and, in this stage, we are not looking for the optimal implementation, all the CPU times presented in this section are obtained
using 1 thread on the described computer.

The dimension, number of nonzeros, average number of nonzeros per row together with a brief description of the chosen
matrices are listed in Table 1.

Table 1: Test matrices for MFLR representing the real-world engineering problems.

Matrix name nrows nnz avg. nnzr Short description

af_shell3 504,855 17,588,875 35 3D elasticity
af_shell8 504,855 17,579,155 35 3D elasticity
Emilia_923 923,136 40,373,538 44 3D elasticity
StocF_1465 1,465,137 21,005,389 14 3D fluid flow

In Table 2 we reported densities, number of iterations and times to build the preconditioner and solve the linear system using
the presented multilevel approach. We note that these results were obtained with the best possible configuration for each of the
preconditioners tested regarding solution time.

For results in Table 2, the MFLR preconditioner set-up can be quite expensive, especially because of the computation of the
eigenpairs needed by the Low-Rank correction procedures. However, its effectiveness in the iteration count and CPU time can
be quite significant. For instance, in the af_shell3 and af_shell8 test cases, ni t is approximately reduced by a factor 10
and Ts is more than halved. Hence, the use of the MFLR preconditioner can be of great interest whenever the set-up time can
be amortized along several linear solves. On the other hand, if there is an increase in the number of iterations, such as in the
StocF_1465 test case, the aFSAI proves more efficient than the MFLR preconditioner.

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 19

Table 2: Performance comparison between aFSAI and MFLR preconditioners in the solution of the real-world engineering problems.

Matrix name method ρl µG ni t Tp[s] Ts[s] Tt [s]

af_shell3 aFSAI — 0.89 1059 75.3 59.6 135.0
MFLR 4.50 — 139 201.7 29.4 231.2

af_shell8 aFSAI — 0.86 1136 68.9 63.5 132.4
MFLR 3.22 — 144 148.3 26.7 175.0

Emilia_923 aFSAI — 0.11 1664 4.2 119.9 124.2
MFLR 0.25 — 633 70.3 75.0 145.3

StocF_1465 aFSAI — 1.45 598 106.0 86.8 192.8
MFLR 1.66 — 1028 220.8 188.3 409.1

Table 3: Test matrices for aSP-AMG representing the real-world engineering problems.

Matrix name nrows nnz avg. nnzr Short description

pflow742 742,793 37,138,461 49 3D fluid flow
spe10 1,122,005 7,780,175 6 3D fluid flow
StocF_1465 1,465,137 21,005,389 14 3D fluid flow
flan1565 1,564,794 114,165,372 72 3D elasticity
abq_powtrain 1,609,950 68,660,476 42 3D elasticity

Table 4: Parameters used to obtain the best performance of aSP-AMG preconditioners in the solution of the real-world engineering problems.

Matrix name
Smoother Coarsening Test space Prolongation

kmax ρG εG θ nt εt dp εp

pflow742 5 3 10−3 5 10 10−2 2 10−2

spe10 10 2 10−3 2 8 10−2 1 10−2

StocF_1465 10 1 10−3 2 10 10−2 2 10−2

flan1565 15 1 10−8 7 15 10−2 2 10−2

abq_powtrain 10 2 10−8 5 15 10−2 2 10−3

Table 5: Performance comparison between aFSAI, BoomerAMG and aSP-AMG preconditioners in the solution of the real-world engineering
problems.

Matrix name method Cgd Cop µG ni t Tp[s] Ts[s] Tt [s]

pflow742 aFSAI — — 0.28 1465 1.4 24.9 26.3
BoomerAMG 1.31 1.14 — 577 0.3 38.4 38.7
aSP-AMG 1.54 1.87 0.58 85 9.5 5.7 15.2

spe10 aFSAI — — 1.55 1767 1.0 22.7 23.7
BoomerAMG 1.55 2.23 — 36 0.4 2.2 2.6
aSP-AMG 1.90 2.68 1.10 64 5.3 3.5 8.8

StocF_1465 aFSAI — — 1.45 597 12.9 21.4 34.3
BoomerAMG 1.59 1.62 — 32 1.3 4.0 5.3
aSP-AMG 2.11 2.27 1.09 51 14.7 6.4 21.1

flan1565 aFSAI — — 0.22 4230 9.9 179.2 189.1
BoomerAMG 1.27 1.38 — 244 2.0 73.1 75.1
aSP-AMG 1.38 1.74 0.21 136 31.9 30.6 62.5

abq_powtrain aFSAI — — 0.72 2792 11.6 123.1 134.6
BoomerAMG 1.47 1.45 — 526 3.7 241.4 245.1
aSP-AMG 1.49 2.06 0.56 123 27.7 24.7 52.4

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 20

1/16

1/8

1/4

1/2

1

T
p
(t

)
/

T
p
(1

)

1 2 4 8 16
threads

1/16

1/8

1/4

1/2

1

T
s(t

)
/

T
s(1

)

aFSAI
MFLR

Figure 2: MFLR: strong scalability test for a regular 1503 Laplacian.

5.2 aSP-AMG performance

Unlike the other cases, here tests are performed with 16 threads, i.e. all the available cores in a shared-memory environment.
The description of the matrices used to evaluate aSP-AMG performance is given in Table 3. Table 4 shows the combination of
parameters used to obtain the best total solution time for the preconditioner considered here. Finally, Table 5 collects grid and
operator complexities, aFSAI density, number of iterations and computational times for all matrices.

Comparing the aSP-AMG to aFSAI, we see that the first one shows a reduction up to ten times in the number of iterations ni t .
Also, the total computational time Tt is smaller in all experiments. Another notable fact observed for our AMG is that its aFSAI
density µG is always smaller than the operator complexity Cop, which in turn gives the cost for Gauss-Seidel smoothing. Thus, the
aFSAI smoother yields a faster strategy, showing a higher degree of parallelism.

Comparing the results obtained with BoomerAMG and aSP-AMG, we note that the first one provides a faster set-up, which
can be explained by the construction of the smoother and the test space, phases owned by aSP-AMG only. However, aSP-AMG is
still competitive against BoomerAMG because the high set-up time is compensated by the faster convergence of the aSP-AMG
providing a smaller total computation time Tt . Ultimately, we observe that aSP-AMG tends to behave better in elasticity problems
in comparison to the diffusion problems. This fact suggests that this method proves to be more efficient when employed in the
solution of matrices with larger near-null space dimension.

To see how the presented approaches mutually compare, for the case StocF_1465 we run the MFLR preconditioner with 16
threads, obtaining a preconditioning time of Tp = 87.0s and a solution time of Ts = 82.9s, for a total time equal to Tt = 169.9s.
From this result, we can state that the aSP-AMG reveals to be superior to the MFLR approach.

6 Strong scalability
In this section the potential parallelism of the described algorithms is presented. The scalability test has been carried out on a
discrete Laplacian computed over a regular 150× 150× 150 grid. The numerical experiment is performed on a local cluster with
two Intel Xeon E5-2680 v2 processors at 2.80GHz with ten physical cores each, and 256 GB of RAM memory. As measure of the
speed-up we use the relative preconditioning and solution times with respect to times obtained using 1 thread:

Sp =
Tp(t)

Tp(1)
, Ss =

Ts(t)
Ts(1)

(45)

where Tp(t) and Ts(t) are the preconditioner set-up and solution phase wall-clock times measured with t threads, respectively.
Figures 2 and 3 show the speed-ups Sp and Ss compared to those of the aFSAI algorithm, which shows an almost ideal speed-up
[20]. The performance on the specific computational architecture used for the numerical experiments depends on the hardware
properties, such as speed of memory access.

It is well-known that bandwidth limited algorithms such as iterative solvers, characterized by a low bit per flop ratio, cannot
obtain ideal speed-ups in the case of the used multi-core processors. Nevertheless, both algorithms have a good degree of
parallelism, comparable with that of aFSAI.

7 Conclusions
In this work we presented two preconditioning approaches for SPD matrices. The first one is a robust multilevel framework,
which uses the FSAI preconditioner as basic kernel. We overcome the difficulties arising in a standard multilevel approach
with an alternative way of computing the Schur complement. In this way, the positive definiteness of all Schur complements is

Dolomites Research Notes on Approximation ISSN 2035-6803

Franceschini · Ferronato · Janna · Magri 21

1/16

1/8

1/4

1/2

1

T
p
(t

)
/

T
p
(1

)

1 2 4 8 16
threads

1/16

1/8

1/4

1/2

1

T
s(t

)
/

T
s(1

)

aFSAI
aSP-AMG

Figure 3: aSP-AMG: strong scalability test for a regular 1503 Laplacian.

ensured independently of the preconditioner sparsity. The multilevel FSAI preconditioner is further enhanced by introducing
Low-Rank corrections at both a local and a global level, namely Descending and Ascending Low-Rank corrections, respectively,
thus producing the MFLR preconditioning framework.

The MFLR preconditioner has been investigated in a set of test problems to analyze the computational performance. The
numerical results show that the proposed approach is generally able to significantly accelerate the solver convergence rate.
Mainly due to the computation of the eigenpairs needed by the Low-Rank corrections, we have large set-up costs, which make
this method attractive especially for those applications where the preconditioner can be effectively recycled along a number of
linear solves. Further investigations will be devoted in the development of a faster set-up stage, by using for instance randomized
approaches while computing low rank corrections [16].

The second idea presented in this work is a novel AMG package based on an approximate inverse as smoother and a new
adaptive strategy for computing the prolongation operator. Moreover, this method, named aSP-AMG, belongs to the bootstrap
AMG family, which may not assume any information about the near-null space of the original matrix.

We compared the performance of aSP-AMG to the aFSAI and BoomerAMG preconditioners in the solution of real-world
problems and proved that our method leads to the faster solution in most of the cases regarding both iteration time as well as
total execution time. The next steps of the present research will concern the development of new techniques for predicting the
smooth vector space aiming to reduce the set-up time. Lastly, a leading goal will be the efficient implementation of this package
on modern massively parallel computers for the solution of large-scale problems.

A topic of increasing interest is the development of similar preconditioners for non-symmetric linear systems. Currently, we
are working to extent the aSP-AMG to general system, using ideas such as those presented in [13, 33].

References
[1] M. BENZI, Preconditioning Techniques for Large Linear Systems: A Survey, Journal of Computational Physics, 182 (2002), pp. 418–477,

http://www.sciencedirect.com/science/article/pii/S0021999102971767.

[2] M. BENZI, C. D. MEYER, AND M. TŮMA, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM Journal on
Scientific Computing, 17 (1996), pp. 1135–1149, https://doi.org/10.1137/S1064827594271421.

[3] A. BIENZ, R. D. FALGOUT, W. GROPP, L. N. OLSON, AND J. B. SCHRODER, Reducing parallel communication in algebraic multigrid through
sparsification, SIAM Journal on Scientific Computing, 38 (2016), pp. S332–S357, https://doi.org/10.1137/15M1026341.

[4] A. BRANDT, J. BRANNICK, K. KAHL, AND I. LIVSHITS, Bootstrap Algebraic Multigrid: Status Report, Open Problems, and Outlook, Numerical
Mathematics: Theory, Methods and Applications, 8 (2015), pp. 112–135, https://doi.org/10.4208/nmtma.2015.w06si.

[5] M. BREZINA, R. FALGOUT, S. MACLACHLAN, T. MANTEUFFEL, S. MCCORMICK, AND J. RUGE, Adaptive Algebraic Multigrid, SIAM Journal on
Scientific Computing, 27 (2006), pp. 1261–1286, https://doi.org/10.1137/040614402.

[6] M. BREZINA, C. KETELSEN, T. MANTEUFFEL, S. MCCORMICK, M. PARK, AND J. RUGE, Relaxation-corrected Bootstrap Algebraic Multigrid
(rBAMG), Numerical Linear Algebra with Applications, 19 (2012), pp. 178–193, https://doi.org/10.1002/nla.1821.

[7] Y. BU, B. CARPENTIERI, Z. SHEN, AND T. HUANG, A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear
systems, Applied Numerical Mathematics, 104 (2016), pp. 141–157, http://www.sciencedirect.com/science/article/pii/
S0168927416000271.

[8] E. CHOW AND Y. SAAD, Approximate inverse preconditioners via sparse-sparse iterations, SIAM Journal on Scientific Computing, 19 (1998),
pp. 995–1023, https://doi.org/10.1137/S1064827594270415.

[9] T. A. DAVIS AND Y. HU, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw., 38 (2011), pp. 1:1–1:25, http:
//doi.acm.org/10.1145/2049662.2049663.

Dolomites Research Notes on Approximation ISSN 2035-6803

http://www.sciencedirect.com/science/article/pii/S0021999102971767
https://doi.org/10.1137/S1064827594271421
https://doi.org/10.1137/15M1026341
https://doi.org/10.4208/nmtma.2015.w06si
https://doi.org/10.1137/040614402
https://doi.org/10.1002/nla.1821
http://www.sciencedirect.com/science/article/pii/S0168927416000271
http://www.sciencedirect.com/science/article/pii/S0168927416000271
https://doi.org/10.1137/S1064827594270415
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663

Franceschini · Ferronato · Janna · Magri 22

[10] V. DOLEAN, P. JOLIVET, AND F. NATAF, An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation,
SIAM, 2015, https://hal.inria.fr/cel-01100932v3/document.

[11] R. D. FALGOUT AND P. S. VASSILEVSKI, On Generalizing the Algebraic Multigrid Framework, SIAM Journal on Numerical Analysis, 42 (2004),
pp. 1669–1693, https://doi.org/10.1137/S0036142903429742.

[12] R. D. FALGOUT AND U. M. YANG, hypre: a Library of High Performance Preconditioners, in Preconditioners, Lecture Notes in Computer Science,
2002, pp. 632–641, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.1202.

[13] M. FERRONATO, C. JANNA, AND G. PINI, A generalized Block FSAI preconditioner for nonsymmetric linear systems, Journal of Computational
and Applied Mathematics, 256 (2014), pp. 230–241.

[14] A. FRANCESCHINI, V. A. PALUDETTO MAGRI, M. FERRONATO, AND C. JANNA, A robust multilevel approximate inverse preconditioner for symmetric
positive definite matrices, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 123–147, https://doi.org/10.1137/
16M1109503.

[15] M. J. GROTE AND T. HUCKLE, Parallel Preconditioning with Sparse Approximate Inverses, SIAM Journal on Scientific Computing, 18 (1997),
pp. 838–853, https://doi.org/10.1137/S1064827594276552.

[16] N. HALKO, P.-G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions, SIAM review, 53 (2011), pp. 217–288, https://doi.org/10.1137/090771806.

[17] T. HUCKLE, Factorized Sparse Approximate Inverses for Preconditioning, The Journal of Supercomputing, 25 (2003), pp. 109–117, https:
//doi.org/10.1023/A:1023988426844.

[18] C. JANNA AND M. FERRONATO, Adaptive Pattern Research for Block FSAI Preconditioning, SIAM Journal on Scientific Computing, 33 (2011),
pp. 3357–3380, https://doi.org/10.1137/100810368.

[19] C. JANNA, M. FERRONATO, AND G. GAMBOLATI, Multi-level incomplete factorizations for the iterative solution of non-linear finite element
problems, International journal for numerical methods in engineering, 80 (2009), pp. 651–670, https://doi.org/10.1002/nme.2664.

[20] C. JANNA, M. FERRONATO, AND G. GAMBOLATI, The use of supernodes in factored sparse approximate inverse preconditioning, SIAM Journal on
Scientific Computing, 37 (2015), pp. C72–C94, https://doi.org/10.1137/140956026.

[21] C. JANNA, M. FERRONATO, F. SARTORETTO, AND G. GAMBOLATI, FSAIPACK: A Software Package for High-Performance Factored Sparse
Approximate Inverse Preconditioning, ACM Trans. Math. Softw., 41 (2015), pp. 10:1–10:26, http://doi.acm.org/10.1145/2629475.

[22] L. Y. KOLOTILINA AND A. Y. YEREMIN, Factorized sparse approximate inverse preconditionings I. Theory, SIAM Journal on Matrix Analysis and
Applications, 14 (1993), pp. 45–58, https://doi.org/10.1137/0614004.

[23] R. LI AND Y. SAAD, Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners, SIAM Journal on Matrix Analysis and
Applications, 38 (2017), pp. 807–828, https://doi.org/10.1137/16M110486X.

[24] Z. LI, Y. SAAD, AND M. SOSONKINA, pARMS: a parallel version of the algebraic recursive multilevel solver, Numerical linear algebra with
applications, 10 (2003), pp. 485–509, https://doi.org/10.1002/nla.325.

[25] O. E. LIVNE AND A. BRANDT, Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver, SIAM Journal on Scientific Computing, 34
(2012), pp. B499–B522, https://doi.org/10.1137/110843563.

[26] J. W. MCCORMICK, S. F.; RUGE, Multigrid Methods for Variational Problems, SIAM Journal on Numerical Analysis, 19 (1982), pp. 924–929,
https://doi.org/10.1137/0719067.

[27] V. A. PALUDETTO MAGRI, A. FRANCESCHINI, M. FERRONATO, AND C. JANNA, Multilevel approaches for FSAI preconditioning, Numerical Linear
Algebra with Applications, (2018), pp. 1–18, https://doi.org/10.1002/nla.2183.

[28] V. A. PALUDETTO MAGRI, A. FRANCESCHINI, AND C. JANNA, A novel AMG approach based on adaptive smoothing and prolongation for
ill-conditioned systems, SIAM Journal on Scientific Computing, (2018). Manuscript submitted for publication.

[29] P. RAGHAVAN AND K. TERANISHI, Parallel hybrid preconditioning: Incomplete factorization with selective sparse approximate inversion, SIAM
Journal on Scientific Computing, 32 (2010), pp. 1323–1345, https://doi.org/10.1137/080739987.

[30] Y. SAAD, ILUT: a Dual Threshold Incomplete LU Factorization, Numerical Linear Algebra with Applications, 1 (1994), pp. 387–402, http:
//dx.doi.org/10.1002/nla.1680010405.

[31] Y. SAAD, Numerical Methods for Large Eigenvalue Problems, SIAM, 2011, http://epubs.siam.org/doi/abs/10.1137/1.
9781611970739.

[32] Y. SAAD AND B. SUCHOMEL, ARMS: An algebraic recursive multilevel solver for general sparse linear systems, Numerical linear algebra with
applications, 9 (2002), pp. 359–378, https://doi.org/10.1002/nla.279.

[33] B. SOUTHWORTH, T. A. MANTEUFFEL, AND J. RUGE, Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (LAIR),
arXiv preprint arXiv:1708.06065, (2017).

[34] Y. XI, R. LI, AND S. Y., An Algebraic Multilevel Preconditioner with Low-Rank Corrections for Sparse Symmetric Matrices, SIAM Journal on
Matrix Analysis and Applications, 37 (2016), pp. 235–259, http://dx.doi.org/10.1137/15M1021830.

[35] J. XU AND L. ZIKATANOV, Algebraic multigrid methods, Acta Numerica, 26 (2017), pp. 591–721, https://doi.org/10.1017/
S0962492917000083.

[36] U. M. YANG, Parallel Algebraic Multigrid Methods — High Performance Preconditioners, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,
pp. 209–236, https://doi.org/10.1007/3-540-31619-1_6.

Dolomites Research Notes on Approximation ISSN 2035-6803

https://hal.inria.fr/cel-01100932v3/document
https://doi.org/10.1137/S0036142903429742
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.1202
https://doi.org/10.1137/16M1109503
https://doi.org/10.1137/16M1109503
https://doi.org/10.1137/S1064827594276552
https://doi.org/10.1137/090771806
https://doi.org/10.1023/A:1023988426844
https://doi.org/10.1023/A:1023988426844
https://doi.org/10.1137/100810368
https://doi.org/10.1002/nme.2664
https://doi.org/10.1137/140956026
http://doi.acm.org/10.1145/2629475
https://doi.org/10.1137/0614004
https://doi.org/10.1137/16M110486X
https://doi.org/10.1002/nla.325
https://doi.org/10.1137/110843563
https://doi.org/10.1137/0719067
https://doi.org/10.1002/nla.2183
https://doi.org/10.1137/080739987
http://dx.doi.org/10.1002/nla.1680010405
http://dx.doi.org/10.1002/nla.1680010405
http://epubs.siam.org/doi/abs/10.1137/1.9781611970739
http://epubs.siam.org/doi/abs/10.1137/1.9781611970739
https://doi.org/10.1002/nla.279
http://dx.doi.org/10.1137/15M1021830
https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1007/3-540-31619-1_6

	Introduction
	aFSAI preconditioner
	Multilevel FSAI preconditioning
	Standard multilevel approach
	Improving the MF performance with Low-Rank corrections
	Descending Low-Rank corrections
	Ascending Low-Rank corrections

	aSP-AMG: adaptive Smoothing and Prolongation MultiGrid
	Test space generation
	Prolongation operators

	Numerical results
	MFLR performance
	aSP-AMG performance

	Strong scalability
	Conclusions

