## Adaptive Wavelet Methods for the Efficient Approximation of Images

Gerlind Plonka

Institute for Numerical and Applied Mathematics University of Göttingen

in collaboration with Dennis Heinen, Armin Iske Daniela Roşca, Stefanie Tenorth

**Dolomites Research Week on Approximation** 

September, 2014

### Adaptive Wavelet Methods for Image Approximation

#### Outline

- Introduction: Adaptive wavelet transforms
  - Generalized lifting schemes
  - Geometric approaches with adaptivity costs
- Description of the EPWT algorithm
- Examples and experiments
- A hybrid method using the EPWT
- Numerical experiments
- Denoising of scattered data
- References

#### Introduction

Idea Design adaptive approximation schemes respecting the local geometric regularity of two-dimensional functions

#### Basic adaptive wavelet approaches

- a) Apply a generalized lifting scheme to the data using (nonlinear) data-dependent prediction and update operators
- b) Adaptive approximation schemes using geometric image information, usually with extra adaptivity costs

#### Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear) data-dependent prediction and update operators

#### Literature (incomplete)

- discrete MRA and generalized wavelets (Harten '93)
- second generation wavelets (Sweldens '97)
- edge adapted multiscale transform (Cohen & Matei '01)
- Nonlinear wavelet transforms (Claypoole et al. '03)
- adaptive lifting schemes (Heijmans et al. '06)
- adaptive directional lifting based wavelet transf. (Ding et al. '06)
- edge-adapted nonlinear MRA (ENO-EA) (Arandiga et al. '08)
- meshless multiscale decompositions (Baraniuk et al. '08)
- nonlinear locally adaptive filter banks (Plonka & Tenorth '09)

#### How does it work?

The general lifting scheme consists of three steps.

- 1. Split Split the given data  $\mathbf{a} = (a(i,j))_{i,j=0}^{N-1}$  into two sets  $\mathbf{a}^e$  and  $\mathbf{a}^o$
- 2. Predict Find a good approximation  $\tilde{\mathbf{a}}^o$  of  $\mathbf{a}^o$  of the form

$$\tilde{\mathbf{a}}^o = P_1 \mathbf{a}^o + P_2 \mathbf{a}^e$$

Put

$$\mathbf{d}^o := \tilde{\mathbf{a}}^o - \mathbf{a}^o$$

Assume that  $(\mathbf{a}^e, \mathbf{a}^o) \mapsto (\mathbf{a}^e, \mathbf{d}^o)$  is invertible, i.e.,  $I - P_1$  is invertible.

3. Update Find a "smoothed" approximation of  $\mathbf{a}^e$ (a low-pass filtered subsampled version of  $\mathbf{a}$ )  $\tilde{\mathbf{a}}^e := U_1(\mathbf{d}^o) + U_2(\mathbf{a}^e)$ 

Assume that  $(\mathbf{a}^e, \mathbf{d}^o) \mapsto (\tilde{\mathbf{a}}^e, \mathbf{d}^o)$  is invertible, i.e., that  $U_2$  is invertible.

Example 1.

- Fix a stencil at a neighborhood of  $a^{o}(i, j)$  (adaptively)
- Compute a polynomial p by interpolating/approximating the data on the stencil
- Choose p(i, j) to approximate  $a^{o}(i, j)$ .

**Example 2.** Use nonlinear diffusion filters to determine the prediction operator

Update operator usually linear, non-adaptive

#### Basic adaptive wavelet approaches

b) Adaptive wavelet approximation schemes using geometric image information, usually with extra adaptivity costs

#### Literature (incomplete)

- wedgelets (Donoho '99)
- **bandelets** (Le Pennec & Mallat '05)
- geometric wavelets (Dekel & Leviatan '05)
- geometrical grouplets (Mallat '09)
- **EPWT** (Plonka et al. 09)
- tetrolets (Krommweh '10)
- generalized tree-based wavelet transform (Ram, Elad et al. '11)

```
wedgelets (Donoho '99)
```

approximation of images using an adaptively chosen domain decomposition

```
bandelets (Le Pennec & Mallat '05)
```

wavelet filter bank followed by adaptive geometric orthogonal filters

geometric wavelets (Dekel & Leviatan '05)

binary space partition and polynomial approximations in subdomains

#### geometrical grouplets (Mallat '09)

association fields that group points, generalized Haar wavelets

```
EPWT (Plonka et al. 09)
```

```
tetrolets (Krommweh '10)
```

generalized Haar wavelets on adaptively chosen tetrolet partitions

Comparison of basic adaptive wavelet approaches

a) Generalized lifting scheme with nonlinear prediction

Advantages invertible transform, no side information necessary usually a justifiable computational effort

**Drawbacks** bad stability of the reconstruction scheme only slightly better approximation results compared with linear (nonadaptive) transforms

b) Adaptive wavelet approximation using geometric image information

Advantages very good approximation results

**Drawbacks** adaptivity costs for encoding usually high computational effort **Problem** Given a matrix of data points (image values), how to compress the data by a wavelet transform thereby exploiting the local correlations efficiently?

#### Idea

- 1. Find a (one-dimensional) path through all data points such that there is a strong correlation between neighboring data points.
- 2. Apply a one-dimensional wavelet transform along the path.
- 3. Apply the idea repeatedly to the low-pass filtered array of data.

#### Toy Example

$$\mathbf{f} = \begin{bmatrix} 115 & 108 & 109 & 112 \\ 106 & 116 & 107 & 109 \\ 112 & 110 & 108 & 108 \\ 108 & 109 & 103 & 106 \end{bmatrix}$$

array of data.



 $\mathbf{p}^{4} = ((0, 5, 8, 9, 13, 12), (1, 6, 11, 10, 7, 2, 3), (4), (15, 14)),$  $\mathbf{f}^{3} = (115.5, 111, 108.5, 107.5, 108, 109, 109, 104.5),$  $\mathbf{p}^{3} = ((0, 1, 6, 5, 4, 3), (2, 7)), \qquad \mathbf{p}^{2} = (0, 1, 2, 3).$ 

#### The relaxed EPWT

Idea: Change the direction of the path only if the difference of data values is greater than a predetermined value  $\theta$ .



rigorous EPWT ( $\theta = 0$ ) Entropy 2.08 bit per pixel



relaxed EPWT ( $\theta = 0.14$ ) Entropy 0.39 bit per pixel

#### Numerical results

#### Test: door lock image $(128 \times 128)$

|                   | $\theta_1$ | levels | nonzero | PSNR  | entropy                      |
|-------------------|------------|--------|---------|-------|------------------------------|
| WT                |            |        | coeff   |       | of $\tilde{\mathbf{p}}^{14}$ |
| tensor prod. Haar | -          | 7      | 512     | 22.16 | -                            |
| tensor prod Daub. | -          | 6      | 512     | 22.94 | -                            |
| tensor prod 7-9   | -          | 4      | 512     | 22.49 | -                            |
| EPWT Haar         | 0.00       | 14     | 512     | 28.04 | 2.22                         |
| EPWT Haar         | 0.05       | 14     | 512     | 28.37 | 1.11                         |
| EPWT Haar         | 0.10       | 14     | 512     | 27.74 | 0.55                         |
| EPWT Daub.        | 0.00       | 12     | 512     | 28.63 | 2.22                         |
| EPWT Daub.        | 0.05       | 12     | 512     | 29.23 | 1.11                         |
| EPWT Daub.        | 0.10       | 12     | 512     | 28.67 | 0.55                         |
| EPWT Daub.        | 0.15       | 12     | 512     | 27.65 | 0.32                         |
| EPWT 7-9          | 0.00       | 10     | 512     | 28.35 | 2.22                         |
| EPWT <b>7-</b> 9  | 0.05       | 10     | 512     | 28.99 | 1.11                         |
| EPWT <b>7-</b> 9  | 0.10       | 10     | 512     | 28.38 | 0.55                         |



PSNR = 29.23 dB



 $EPWT, \theta_1 = 0.05$ PSNR=29.23



D4, 512 coeff. PSNR = 22.94

PSNR = 28.67 dB

 $EPWT, \theta_1 = 0.1$ PSNR=28.67

PSNR = 28.63 dB



PSNR = 27.65 dB



 $EPWT, \ \theta_1 = 0.15$ PSNR = 27.65

#### **Results for N-term approximation**

#### Theorem 1 (Plonka, Tenorth, Iske (2011))

The EPWT (with the Haar wavelet transform) leads for suitable path vectors to an N-term approximation of the form

$$\|f - f_N\|_2^2 \le C N^{-\alpha}$$

for piecewise Hölder continuous functions of order  $\alpha$  (with  $0 < \alpha \leq 1$ ) possessing discontinuities along curves of finite length.

#### Theorem 2 (Plonka, Iske, Tenorth (2013))

The application of the EPWT leads for suitably chosen path vectors to an N-term approximation of the form

$$||f - f_N||_2^2 \le C N^{-\alpha}$$

for piecewise Hölder smooth functions of order  $\alpha > 0$  possessing discontinuities along curves of finite length.

#### Idea

1. Apply an image separation into a smooth image part and a remainder part containing edges and texture

$$u = u^{sm} + u^r$$

using e.g. a suitable smoothing filter.

- 2. Apply a tensor product wavelet transform to the smooth image part  $u^{sm}$  to get an N-term approximation  $u_N^{sm}$ .
- 3. Apply the EPWT to the (shrinked) remainder  $u^r$  to get am *M*-term approximation  $u_M^r$ .
- 4. Add  $u_N^{sm}$  and  $u_M^r$  to find a good approximation of u.

#### A sketch of the hybrid method

We use the tensor-product wavelet transform for the smoothed image and the EPWT for the (shrunken) difference image.



#### Example



Original image



smoothed image  $u^{sm}$ 



wavelet approximation  $u_{1200}^{sm}$ 



difference image  $u^r$ 



shrunken difference  $u_{1/4}^r$ 



EPWT approximation  $u_{800}^r$  17

#### Example continued

N-term approximation with N = 2000.

- (a)  $u_{1200+800}$  using the new hybrid method
- (b)  $u_{2000}$  using the 9/7 wavelet transform with 2000 non-zero elements



(a)



#### Numerical results for the hybrid method

|           |     | 9/7   | Hybrid |         |
|-----------|-----|-------|--------|---------|
| image     | nzc | PSNR  | PSNR   | entropy |
| barbara   | 500 | 23.33 | 27.28  | 1.0070  |
| cameraman | 500 | 22.54 | 27.49  | 0.9893  |
| clock     | 500 | 24.61 | 30.87  | 0.8742  |
| goldhill  | 500 | 24.18 | 28.19  | 0.8408  |
| lena      | 500 | 23.21 | 27.91  | 0.9022  |
| pepper    | 500 | 23.41 | 28.03  | 0.8795  |
| sails     | 500 | 21.32 | 25.42  | 0.9190  |

Hybrid: Search for suitable path vectors in each level



Original image



Original image



7/9, 500 coeff.PSNR= 23.21



7/9, 500 coeff. PSNR=23.41



Hybrid, 500 coeff. PSNR=27.91



Hybrid, 500 coeff. PSNR = 28.03

#### Denoising of scattered data using the EPWT approach

#### Given

a set of d-dimensional points  $\Gamma = \{x_1, x_2, \dots, x_N\} \subset \mathbb{R}^d$ noisy function values  $\tilde{f}(x_j) = f(x_j) + z_j, \ j = 1, \dots, N$ where

- $f: \mathbb{R}^d \to \mathbb{R}$  piecewise smooth
- $z_j$  independent and  $\mathcal{N}(0, \sigma_j^2)$  distributed (Gaussian noise)

**Wanted** denoised function values  $f(x_j)$ 

#### Classical wavelet shrinkage

wavelet decomposition

shrinkage: set small high-pass coefficients to zero

wavelet reconstruction

Analogon of cycle shift:

average [ shift  $\rightarrow$  wavelet shrinkage  $\rightarrow$  un-shift ]

• find path through all points



• find path through all points



- find path through all points
- apply 1D wavelet transform along the path low pass coefficients (3, 10, 8, 1) high pass coefficients (1, 2, 2, 1)



- find path through all points
- apply 1D wavelet transform along the path low pass coefficients (3, 10, 8, 1) high pass coefficients (1, 2, 2, 1)
- update point set
- apply shrinkage to wavelet coefficients



- find path through all points
- apply 1D wavelet transform along the path low pass coefficients (3, 10, 8, 1) high pass coefficients (1, 2, 2, 1)
- update point set
- apply shrinkage to wavelet coefficients
- relate low pass coefficients to the updated point set



- find path through all points
- apply 1D wavelet transform along the path low pass coefficients (3, 10, 8, 1) high pass coefficients (1, 2, 2, 1)
- update point set
- apply shrinkage to wavelet coefficients
- relate low pass coefficients to the updated point set
- continue at the next level



#### Adaptive path reconstruction

- Choose first path index p(1) randomly from  $\Gamma := \{1, \ldots, N\}$ .
- For k = 1, ..., N 1 choose p(k + 1) such that

$$x_{p(k+1)} = \operatorname*{argmax}_{x \in N_{C,\theta}(x_{p(k)})} \frac{\langle x_{p(k)} - x_{p(k-1)}, x - x_{p(k)} \rangle}{\|x_{p(k)} - x_{p(k-1)}\| \cdot \|x - x_{p(k)}\|}$$

where  $N_{C,\theta}(x_{p(k)})$  contains all points  $x_r \in \Gamma$  fulfilling: 1.  $r \notin \{p(1), \dots, p(k)\}$ 2.  $||x_r - x_{p(k)}||_2 \leq C$ 3.  $|f(x_r) - f(x_{p(k)})| \leq \theta$ . If  $N_{C,\theta}(x_{p(k)}) = \emptyset$ , randomly choose p(k+1) among the indices fulfilling 1 & 2 or only 1.

#### Example: Adaptive path reconstruction







Original image



adaptive path constr. PSNR 29.01



noisy image PSNR = 19.97



random path constr. PSNR = 27.96

$$\sigma = 0.1$$



Original image



adaptive path constr. PSNR 26.44



noisy image PSNR = 16.45



random path constr. PSNR = 25.69

$$\sigma = 0.15$$

#### Comparison of denoising results

|                                  | peppers | peppers | cameraman | cameraman |
|----------------------------------|---------|---------|-----------|-----------|
| noisy image                      | 19.97   | 16.45   | 19.97     | 16.45     |
| tensor product wavelet shrinkage | 24.91   | 23.20   | 24.74     | 22.86     |
| with cycle spinning              | 28.11   | 25.86   | 27.19     | 25.14     |
| 4-pixel scheme                   | 28.26   | 26.13   | 27.64     | 25.73     |
| curvelet shrinkage               | 26.36   | 23.95   | 25.48     | 23.73     |
| shearlet shrinkage               | 26.82   | 25.04   | 26.07     | 24.23     |
| deterministic path               | 29.01   | 26.44   | 28.28     | 26.15     |
| random path                      | 27.96   | 25.69   | 27.44     | 24.85     |

#### Denoising of non-rectangular domains



Original image



noisy image PSNR = 19.97



denoised image PSNR=27.77



Original image



Original image



noisy image PSNR = 19.98



noisy image PSNR=19.96



denoised image PSNR=26.31



denoised image PSNR = 28.71

• Gerlind Plonka.

The easy path wavelet transform: A new adaptive wavelet transform for sparse representation of two-dimensional data. SIAM Multiscale Modeling and Simulation 7(3) (2009), 1474-1496.

- Gerlind Plonka, Daniela Roşca.
  Easy Path Wavelet Transform on triangulations of the sphere.
  Mathematical Geosciences 42(7) (2010), 839-855.
- Jianwei Ma, Gerlind Plonka, Hervé Chauris. A new sparse representation of seismic data using adaptive easypath wavelet transform. IEEE Geoscience and Remote Sensing Letters 7(3) (2010), 540-544.
- Gerlind Plonka, Stefanie Tenorth, Daniela Roşca.
  A hybrid method for image approximation using the easy path wavelet transform.
   IEEE Trans. Image Process. 20(2) (2011), 372-381.

• Gerlind Plonka, Stefanie Tenorth, Armin Iske.

Optimally sparse image representation by the easy path wavelet transform.

International Journal of Wavelets, Multiresolution and Information Processing 10(1) (2012), 1250007 (20 pages).

Dennis Heinen, Gerlind Plonka.
 Wavelet shrinkage on paths for denoising of scattered data.
 Results in Mathematics 62(3) (2012), 337-354.

 Gerlind Plonka, Armin Iske, Stefanie Tenorth.
 Optimal representation of piecewise Hölder smooth bivariate functions by the easy path wavelet transform.
 Journal of Approximation Theory 176 (2013), 42-67.

# \thankyou