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Fast strategy for PU interpolation: An application for the
reconstruction of separatrix manifolds

Alessandra De Rossi a · Emma Perracchione a · Ezio Venturino a

Abstract

In this paper, the Partition of Unity (PU) method is performed by blending Radial Basis Functions
(RBFs) as local approximants and using locally supported weights. In particular, we present a new
multidimensional data structure which makes use of an integer-based scheme. This approach allows
to perform an optimized space-partitioning structure. Moreover, because of its flexibility, it turns out
to be extremely meaningful in the reconstruction of the attraction basins in dynamical systems.

1 Introduction
Over the last years, the topic of numerical approximation of multivariate data has gained popularity in various areas of
applied mathematics and scientific computing. Here, we analyze an application in the field of biomathematics. Precisely, we
consider the problem of reconstructing unknown surfaces partitioning the phase state into disjoint sets.

When a dynamical system admits more than one stable steady state, the phase space is thus partitioned into different
regions, called the basins of attraction of each equilibrium. In such case, the final outcome of a mathematical model depends
only on the basin of attraction to which the initial condition belongs. To establish the ultimate system behavior, it is therefore
important to assess for each possible attractor its domain of attraction.

More specifically, the approximation of the attraction basins leads to a method consisting of two steps [10]:

i. detection of the points lying on the separatrix manifolds;

ii. interpolation of such points in a suitable way.

For the first item we have implemented several routines, which will be presented in detail in this paper, allowing to detect
the points lying on the surfaces determining the basins of attraction. The MATLAB software here discussed is available in
[10].

Concerning the second item, we consider a meshfree approximation method and specifically we focus on RBF interpolation.
Meshless approaches take advantage of being flexible with respect to the geometry. They are also easy to implement in high
dimensions, but the computational cost associated with the solution of large linear systems is not affordable [13]. To avoid
this drawback, we focus on local techniques, such as the Partition of Unity (PU) scheme. It has been used for interpolation
since around 1960 [12, 29]. Later, it has been coupled with RBFs [14, 32]. Moreover, the PU method for solving Partial
Differential Equations (PDEs), first introduced in in the mid 1990s in [3, 25], is nowadays a popular technique [27, 28].

As the global RBF-based method, the PU scheme turns out to be accurate and moreover it is also efficient, but, on
the contrary, its implementation in high dimensions is far from being simple. In fact, in such local approach, the efficient
organization of the multivariate scattered data set turns out to be a challenging computational issue. Here, starting from the
2D and 3D searching procedures shown in [8, 9], we propose a new multidimensional partitioning structure, named the
Integer-based Partitioning Structure (I-PS), which, as a bonus, also reduces the complexity cost of the procedures presented
in the above mentioned papers.

The paper is organized as follows. In Section 2, after describing the PU method, we focus on the efficient multidimensional
partitioning structure. Then, in Section 3 we present the implicit PU approach and the general framework to detect the
points lying on the separatrix manifolds. Section 4 is devoted to numerical results. A final discussion in Section 5 concludes
the paper.

2 Efficient computation of PU interpolants
In order to reconstruct the separatrix manifolds, we use the PU method with local RBFs interpolants. Such approach allows
to deal with a large number of points in a reasonable time. To be more precise, since the attraction basins are usually
described by implicit equations, we perform an implicit PU approximation. Thus, before discussing how to find the separatrix
points, we briefly review the theoretical aspects concerning the PU interpolant.
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2.1 The partition of unity method
Given X N = {x i ∈ Ω, i = 1, . . . , N} a set of distinct data points (or data sites or nodes), distributed in a domain Ω ⊆ RM , and
an associated set FN = { fi , i = 1, . . . , N} of data values or function values, the problem consists in recovering the unknown
function f : Ω→ R. The PU method enables us to decompose this initial problem into many small ones; in fact its basic idea
is to start with a partition of the open and bounded domain Ω into d subdomains or patches Ω j , such that Ω ⊆ ∪d

j=1Ω j , with
some mild overlapping among them [3, 14, 25, 32].

Moreover, according to [32], some additional assumptions on the regularity of the covering {Ω j}dj=1 are needed. In
particular, we require a regular covering for (Ω,XN ), i.e. {Ω j}dj=1 must fulfill the following properties:

i. for each x ∈ Ω, the number of subdomains Ω j , with x ∈ Ω j is bounded by a global constant C;

ii. each subdomain Ω j satisfies an interior cone condition;

iii. the local fill distances hXNj
are uniformly bounded by the global fill distance hXN

, where XN j
= XN ∩Ω j and

hXN
= sup

x∈Ω

�

min
x k∈XN



x − x k





2

�

.

Associated with these subdomains, we consider a partition of unity, i.e. a family of non-negative, continuous functions
Wj , j = 1, . . . , d, which:

i. are compactly supported, for which precisely supp
�

Wj

�

⊆ Ω j;

ii. form a k-stable partition of unity, i.e.
d
∑

j=1

Wj (x ) = 1, x ∈ Ω,

and for every β ∈ NM , with |β | ≤ k, a constant Cβ > 0 exists such that



DβWj





L∞(Ω j )
≤

Cβ
�

supx ,y∈Ω j



x − y




2

�|β | , j = 1, . . . , d.

Among several weight functions Wj , a popular and widely used choice is given by the Shepard’s weights, defined as

Wj (x ) =
W̄j (x )

d
∑

k=1

W̄k (x )

, j = 1, . . . , d,

where W̄j are compactly supported functions, with support on Ω j . Moreover, such family forms a partition of unity.
Once we choose {Wj}dj=1, the global interpolant is given by

I (x ) =
d
∑

j=1

R j (x )Wj (x ) , x ∈ Ω, (1)

where R j denotes a RBF interpolant defined on a subdomain Ω j of the form (see [5, 15, 22])

R j (x ) =
N j
∑

k=1

c j
kφ(||x − x j

k||2), (2)

with N j indicating the number of points on Ω j , x j
k ∈ XN j

, k = 1, . . . , N j , and φ being the RBF. The coefficients {c j
k}

N j
k=1 in (2)

are determined by imposing that

R j(x
j
i ) = f j

i , i = 1, . . . , N j .

Thus, the problem of finding the PU interpolant (1) reduces to solve d linear systems of the form

A jc j = f j , (3)

where c j = (c
j
1, . . . , c j

N j
)T , f j = ( f

j
1 , . . . , f j

N j
)T and the entries of A j ∈ RN j×N j are given by (A j)ik = φ(||x

j
i − x j

k||2), i, k =
1, . . . , N j .

In order to give error bounds, we need to define the space C k
ν
(RM ) of all functions f ∈ C k whose derivatives of order

|β |= k satisfy Dβ f (x ) = O
�

||x ||ν2
�

for ||x ||2 −→ 0. We are now able to give the following convergence result [14, 31].
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Theorem 2.1. Let Ω ⊆ RM be open and bounded and suppose that XN = {x i , i = 1, . . . , N} ⊆ Ω. Let φ ∈ C k
ν
(RM ) be a

strictly positive definite function. Let {Ω j}dj=1 be a regular covering for
�

Ω,XN

�

and let {Wj}dj=1 be k-stable for {Ω j}dj=1. Then,
the error between f ∈ Nφ (Ω) = span{φ(||x − ·||2), x ∈ Ω}, where Nφ is the native space of φ, and its PU interpolant, with
R j ∈ TΦ = span{φ(||x j

k − ·||2), x j
k ∈ XN j

}, can be bounded by

|Dβ f (x )− DβI (x ) | ≤ C
′
h(k+ν)/2−|β |XN

| f |Nφ (Ω),

for all x ∈ Ω and all |β | ≤ k/2.

From Theorem 2.1 we can deduce that the PU interpolant allows to accurately compute large RBF interpolants by solving
small interpolation problems.

In the next subsection we focus on an efficient implementation of the PU method. In literature, techniques as kd-trees,
which allow to partition data in any dimension, have been successfully developed, see [1, 11, 14, 31]. However, they are
not specifically implemented for the PU method.

Other techniques, built ad hoc for bivariate and trivariate PU interpolation, can be found in [8, 9]. Unfortunately, even if
they turn out to be really efficient, none of them can be trivially generalized to work in higher dimensions. Thus in this
paper, we propose a new multidimensional partitioning structure especially useful for storing the points among the different
subdomains.

2.2 The integer-based partitioning structure
In order to implement the PU method, we need to define the so-called bounding box

L=
�

min
m=1,...,M

�

min
i=1,...,N

x im

�

, max
m=1,...,M

�

max
i=1,...,N

x im

��M

. (4)

Then, we generate both the set of evaluation points Es = {x̃ i , i = 1, . . . , s} ⊆ Ω and the set of PU subdomains centres
Cd = {x̄ j , j = 1, . . . , d} ⊆ Ω. Moreover, as usual, we consider hyperspherical patches of radius δ as subdomains. Such radius
is chosen so that the properties listed in Subsection 2.1 are satisfied; for reference values see [8, 14].

Afterwards, in order to solve the local interpolation problems, we need to develop a procedure enabling us to organize
the scattered data set in any dimension, as kd-trees [1, 11]. Now, referring to the 2D and 3D procedures [8, 9], that in what
follows we will call the Sorting-based Partitioning Structures (S-PSs), we can build a multidimensional procedure in which
points are stored into qM blocks, where

q =
¡ L

δ

¤

, (5)

with L denoting the edge of the bounding box L. More precisely, starting from the subspace of dimension M − 1, obtained
projecting along the first coordinate and thus parallel to the remaining ones, we number blocks from 1 to qM . In order to fix
the idea in a 2D context, refer to Figure 1.

From (5) we can deduce that our scheme, as the S-PS, depends on the PU radius δ. In such framework, we will be able
to get an efficient procedure to find the nearest points.

In bivariate interpolation, blocks are generated by the intersection of two orthogonal strips. In multivariate problems,
blocks are generated by the intersection of M hyperrectangles. In what follows, with abuse of notation, we will continue to
call such hyperrectangles with the term strips.

Then, to store the points among the different patches, the following computational issue, known as containing query,
needs to be solved, i.e.

• given a PU centre x̄ j , find the k-th block containing the centre.

Such problem can be easily solved taking into account that, given a PU centre x̄ j , if km is the index of the strip parallel to
the subspace of dimension M − 1 generated by x r , r = 1, . . . , M and r 6= m, containing the m-th coordinate of x̄ j , then the
index of the k-th block containing the subdomain centre is

k =
M−1
∑

m=1

�

km − 1
�

qM−m + kM . (6)

To find the indices km, m = 1, . . . , M , in (6), we use an integer-based procedure consisting in rounding off to an integer
value. Specifically, for each PU centre x̄ j = ( x̄ j1, . . . , x̄ jM ), we have that

km =
¡ x̄ jm

δ

¤

. (7)

Then, exactly the same procedure is adopted in order to store into the different blocks both scattered data and evaluation
points, i.e. the I-PS assigns:

i. to each scattered point x i , i = 1, . . . , N , the index of the block in which it lies;

ii. to each evaluation point x̃ i , i = 1, . . . , s, the index of the block in which it lies.

After organizing in blocks the data set, given a subdomain Ω j , we need to:
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i. find all data sites belonging to the subdomain Ω j;
ii. determine all evaluation points belonging to the subdomain Ω j .

To solve such computational issue, assuming that the j-th centre belongs to the k-th block, the fact that we search for the
points in the j-th patch among those in the k-th block and in its 3M − 1 neighboring blocks, i.e. in the k-th neighbourhood,
easily follows from (5). This is also graphically pointed out in Figure 1.

Figure 1: An example of a 2D integer-based partitioning structure: a set of scattered in L = [0, 1]2 (blue), the k-th block (red), a subdomain
centre belonging to the k-th block (cyan) and the neighbourhood set (green).

Remark 2.1. In [8, 9] the scattered data set is organized by means of recursive calls to a sorting routine. At first, in such
algorithm a sorting procedure is performed to order data sites along the first coordinate. Then, recursive sorting calls order
data along the other coordinates. Thus, such partitioning scheme and its complexity depend on the space dimension. Here,
such step is replaced by rounding off to an integer value as in (7). As a consequence, since there is no need to use a sorting
procedure, the partitioning structure successfully works for a generic dimension M . Moreover, aside from the fact that
the I-PS is multidimensional, again thanks to (7), it reduces the complexity of the sorting-based storing procedure from
O(N log N) to O(N) time complexity.

To conclude this subsection, we report in Table 1 the CPU times obtained by running the I-PS and the S-PS, considering
different sets of bivariate Halton data [14]. Tests have been carried out on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz
processor.

Table 1: CPU times (in seconds) obtained by running the sorting-based procedure (tS−PS) and the integer-based one (t I−PS).

N 25000 50000 100000 200000

t I−PS 5.13 10.68 21.99 45.00
tS−PS 5.21 12.40 28.77 71.55

Given this efficient and flexible routine, we can now focus on the problem of approximating basins of attraction in
dynamical systems.

3 Approximation of separatrix manifolds for three equilibria
The surfaces defining the domains of attraction are determined locally (by linearization) in well-known examples [26].
Specifically, even if some techniques to prove the existence of invariant sets have already been developed, none of them,
except for particular and well-known cases, allows to have a graphical representation of the separatrix manifolds [23]. Such
techniques are based on results from algebraic topology, and thus such methods are not constructive in the sense that they
do not give a precise structure and location of the invariant sets. For autonomous systems, the construction of a suitable
Lyapunov function can be reduced to the solution of a linear first order PDE. In so doing, such equation is then approximated
using meshless collocation methods [16, 17, 18].

In what follows, focusing on dynamical systems composed by three equations, we describe our routines used to detect
the separatrix points and we briefly review the implicit PU approach which is used to obtain a graphical representation of
the attraction basins.

3.1 Reconstruction of 3D objects via partition of unity interpolation
A common problem in computer aided design and computer graphics is the reconstruction of surfaces defined in terms
of point cloud data, i.e. a set of unorganized, irregular points in 3D. Such applications also arise in computer graphics,
modeling complicated 3D objects or in medical imaging [6, 14, 30].
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Given a point cloud data set, i.e. a data set of the form

XN = {x i ∈ R3, i = 1, . . . , N},

belonging to an unknown two dimensional manifold M , which can be seen as a surface in R3, we seek a reasonable
approximation toM .

Therefore, in this implicit approach,M is the surface of all points x ∈ R3 satisfying

f (x ) = 0, (8)

for some function f . In other words, the equation (8) is the zero iso-surface of the trivariate function f , and therefore this
iso-surface coincides withM . The approximated surface can be constructed via PU interpolation [14]. Unfortunately, the
solution of this problem, by imposing the interpolation conditions (8), leads to the trivial solution given by the identically zero
function. Therefore, in order to approximate the unknown surface we use additional significant interpolation conditions, i.e.
we add an extra set of off-surface points. Once we define the augmented data set, we can then compute a three dimensional
interpolant I to the total set of points [14].

Let us suppose that for each point x i the oriented normal n i ∈ R3 is also given. Then, we construct the extra off-surface
points by taking a small step away along the surface normals, i.e. we obtain for each data point x i two additional off-surface
points. One point lies outside the manifoldM and is given by

x N+i = x i +∆n i ,

whereas the other point lies insideM and is given by

x 2N+i = x i −∆n i ,

where ∆ is the stepsize. The union of the sets X+
∆
= {x N+1, . . . , x 2N}, X−∆ = {x 2N+1, . . . , x 3N} and XN gives the overall set

of points on which the interpolation conditions are assigned. Now, after creating the data set the process becomes fairly
simple; in fact we compute the interpolant I whose zero contour (iso-surface I = 0) interpolates the given point cloud data,
and whose iso-surfaces I = 1 and I = −1 interpolate X+

∆
and X−

∆
, respectively.

The estimation of the normal unit vectors has been carried out considering [4, 20, 21, 24].

3.2 Detection of separatrix points for three equilibria
In order to approximate the basins of attraction, when the system admits three stable equilibria, the general idea is to
find the points lying on the surfaces determining the domains of attraction and finally to interpolate them with a suitable
method. The steps of the so-called detection-interpolation algorithm are summarized in the 3D-Detec-Interp Algorithm

(see Algorithm 1).
Specifically, in the detection-interpolation scheme, after considering n equispaced initial conditions on each edge of a

cube [0,γ]3, with γ ∈ R+, we construct a grid on the faces of the cube (see Step 2 in the 3D-Detec-Interp Algorithm)

p(1)k1k2
=
�

pk11, pk22, 0
�

and p(2)k1k2
=
�

pk11, pk22,γ
�

,

p(3)k1k2
=
�

pk11, 0, pk23

�

and p(4)k1k2
=
�

pk11,γ, pk23

�

,

p(5)k1k2
=
�

0, pk12, pk23

�

and p(6)k1k2
=
�

γ, pk12, pk23

�

,

(9)

with k1, k2 = 1, . . . , n, and apply the Detec Algorithm (see Algorithm 2) with initial conditions (9), [10]. Essentially, the
detection routine performs a bisection algorithm between two initial conditions and determines a point lying on a surface
dividing the domains of attraction.

To describe our routines, we first analyze the inputs of the detection-interpolation algorithm:
n ∈ N+: number of equispaced points on each edge of the cube; used to define the set of initial data.
γ ∈ R+: edge of the cube.
τ ∈ R+: tolerance; used during the bisection routine.
t ∈ R+: integration time; used during an integration routine. We cannot provide a suitable choice for this parameter

because it depends on the dynamical system, but the algorithm checks if the integration time is sufficient.
λ ∈ Rl

+: vector of model parameters, where l is the number of model parameters.
Q ∈ N+: number of equilibrium points to be interpolated; typically the origin when it is unstable and the point having

all non zero coordinates, such as in population dynamics the coexistence equilibrium, if it is a saddle point.
E ∈ Rm×3: matrix of the equilibria, where m is the total number of equilibria. The matrix is organized as follows:

i. from row 1 to row 3: the three stable equilibrium points;

ii. from row 4 to row Q+ 3: the equilibrium points to be interpolated by the separating surfaces;

iii. from row Q+ 4 to row m: remaining equilibria (feasible or unfeasible).
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ε ∈ R3
+: vector of shape parameters.

dPU ∈ N3
+: the number of PU centres along one direction.

K ∈ N3
+: vector containing the number of the nearest points; used to estimate the normals.

As outputs three different sets of points are provided by the detection-interpolation algorithm:

XN
′
3
= {x (3)i3

=
�

x (3)i31, x (3)i32, x (3)i33

�

, i3 = 1, . . . , N
′

3},

XN
′
2
= {x (2)i2

=
�

x (2)i21, x (2)i22, x (2)i23

�

, i2 = 1, . . . , N
′

2},

XN
′
1
= {x (1)i1

=
�

x (1)i11, x (1)i12, x (1)i13

�

, i1 = 1, . . . , N
′

1},

where N
′

3, N
′

2 and N
′

1 are the number of points lying on the surfaces delimiting the domain of attraction of E1 and E2, E1 and
E3, and E2 and E3, respectively (see Step 5 in the 3D-Detec-Interp Algorithm). These sets in pairs, together with
the Q equilibria to be interpolated, provide the sets XN1

, XN2
and XN3

that identify the three basins of attraction (see Step
6 in the 3D-Detec-Interp Algorithm).
Remark 3.1. The number of equilibrium points Q to be interpolated depends on the dynamical system. Specifically, in case
of two stable equilibria a saddle point partitions the phase space into two regions. In case of three equilibria, several saddles
are involved in the dynamics. However, the three separating manifolds intersect together only at one saddle where all the
populations are nonnegative.

Finally, the algorithm interpolates such points and returns values of the interpolants I1, I2 and I3. They approximate the
basins of attraction of the first, second and third equilibrium point, respectively (see Step 7 of the 3D-Detec-Interp

Algorithm).

INPUTS: n,γ,τ, t,λ,Q, E,ε,dPU , K .
OUTPUTS: XN

′
1
, XN

′
2
, XN

′
3
, I1, I2, I3.

Step 1: Check if the system presents exactly three stable equilibria.

Step 2: Definition of initial conditions as in (9). Set i1 = i2 = i3 = 0, s = 1.

Step 3: While s <= 5

Step 4: For k1 = 1, . . . , n

Step 5: For k2 = 1, . . . , n

[x (3), x (2), x (1)] =Detec
�

p(s)k1k2
, p(s+1)

k1k2
, t,τ,λ, E

�

,

If Detec returns x (3),
i3 = i3 + 1,
add x (3) to XN

′
3
,

else if returns x (2),
i2 = i2 + 1,
add x (2) to XN

′
2
,

else if returns x (1),
i1 = i1 + 1,
add x (1) to XN

′
1
.

s = s+ 2.

Step 6: Define Q as the set composed by the Q equilibria which need to be interpolated.
Set XN1

= XN
′
2
∪ XN

′
3
∪Q, XN2

= XN
′
1
∪ XN

′
3
∪Q, XN3

= XN
′
1
∪ XN

′
2
∪Q.

Step 7: I1 = Interp(XN1
,ε1, dPU

1 , K1), I2 = Interp(XN2
,ε2, dPU

2 , K2),

I3 =Interp(XN3
,ε3, dPU

3 , K3).

Algorithm 1: The 3D-Detec-Interp Algorithm. The detection-interpolation pseudo-code. It summarizes the steps needed to determine
the points lying on the surfaces delimiting the basins of attraction and to reconstruct these surfaces.

More in detail, once we fix the model parameters, we check if the system has three stable equilibria. Then, the detection
routine is applied with the initial conditions (9) (see Step 2-5 in the 3D-Detec-Interp Algorithm).

The inputs of the Detec Algorithm are the parameters τ, t, λ, E described above and the two initial conditions p1
and p2. Starting from such initial conditions the routine, after performing a bisection algorithm, returns a point lying on a
separatrix surface. The output is a point, named

Dolomites Research Notes on Approximation ISSN 2035-6803
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i. x (3), if the point lies on the surface delimiting the domain of attraction of both the first and the second equilibrium
point, or

ii. x (2), if lies on the surface determining the basin of attraction of both the first and the third equilibrium point, or

iii. x (1), if the point lies on the surface delimiting the domain of attraction of both the second and the third equilibrium
point.

Note that, after defining the tolerances used to check where the initial conditions stabilize (see Step 1 in the Detec
Algorithm), we integrate the system and check if the trajectories stabilize to certain equilibria. Then, we check if an initial
condition coincides with an unstable steady state or if it lies on a stable submanifold of a saddle point. Let us assume that the
first initial data p1 either overlaps an unstable equilibrium or lies on a stable submanifold of a saddle point. In that case p1
is moved away from it in order to obtain, by the bisection routine, a point lying on a separatrix surface (see Step 3 in the
Detec Algorithm). In fact the fundamental assumption to perform the bisection is that the two initial conditions evolve
towards different attractors. Specifically, in such situation we replace p1 = (p11, p12, p13) with either one of the formulae:











p
′

1 = (|p11 −τ/4|, p12, p13), or,

p
′

1 = (p11, |p12 −τ/4|, p13), or,

p
′

1 = (p11, p12, |p13 −τ/4|).

The initial data p
′

1 is chosen in a way so that the trajectories from p
′

1 and p2 tend to different stable steady states.
Then, let us assume that from p1 the system stabilizes to E1; depending on where the second condition ultimately

stabilizes three cases can occur (see Step 4 in the Detec Algorithm):

i. p2 stabilizes to E1. The routine discards these initial conditions.

ii. p2 stabilizes to E2. The bisection procedure is performed between p1 and p2. Specifically, after computing the first
midpoint m, the system is integrated with initial data m and then we check where this trajectory converges. If the
latter evolves towards the first equilibrium point then we set p1 =m; else we set p2 =m, and we repeat this as long
as ||p1 − p2||2 > τ. When the tolerance is satisfied the bisection stops and a point named x (3) is found.

iii. p3 stabilizes to E3. With the technique described above the routine determines a point named x (2).

Similarly, if the two initial conditions evolve towards the second and third attractor, a point x (1) is detected.
Summarizing, once we apply the detection algorithm with initial conditions (9), we detect three different sets of points,

which in pairs describe the three basins of attraction. Finally, we interpolate the points lying on each surface with the implicit
PU method.
Remark 3.2. For the integration of the system we use the MATLAB solver ode45. At each step, this intrinsic routine estimates
the local error ei of the i-th component of the approximate solution ỹi . This error must be less than or equal to an acceptable
threshold, which is a function of the specified scalar relative tolerance e(r) and of a vector of absolute tolerances e(a) [2]

|ei | ≤max(e(r)| ỹi |, e(a)i ).

The value e(r) is a measure of the relative error, the default value being 10−3. It controls the number of correct digits in all
solution components. Instead e(a) determines the accuracy when the solution approaches zero. The default value is 10−6 for
each component. Note that at each step the local truncation error is computed assuming that the exact solution satisfies
the numerical scheme and, as a consequence, a good compromise in defining tolerances used to check where the initial
condition stabilizes is the one adopted in the detection routine (see Step 1 in the Detec Algorithm).

4 Numerical results
A model chosen to test the detection-interpolation algorithm is the standard competition model. Letting x , y and z denote
three populations, we consider the following system [19]

d x
d t = p

�

1− x
u
�

x − ax y − bxz,

d y
d t = q

�

1− y
v
�

y − cx y − e yz,

dz
d t = r

�

1− z
w
�

z − f xz − g yz,

(10)

where p, q and r are the growth rates of x , y and z, respectively, a, b, c, e, f and g are the competition rates, u, v and w are
the carrying capacities of the three populations. The model (10) describes the interaction of three competing populations
within the same environment [19]. A model with possibly similar related behaviors is introduced in [7].

There are eight equilibrium points. The origin E0 = (0,0,0) and the points associated with the survival of only one
population E1 = (u, 0, 0), E2 = (0, v, 0) and E3 = (0,0, w). Then we have the equilibria with two coexisting populations:

E4 =
�

uq(av − p)
cuva− pq , pv(cu− q)

cuva− pq , 0
�

, E5 =
�

ur(bw − p)
f uwb− rp , 0, wp( f u− r)

f uwb− rp

�

, E6 =
�

0, vr(we− q)
gvwe− qr , wq(vg − r)

gvwe− qr

�

.
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INPUTS: p1, p2, t,τ,λ, E.
OUTPUTS: x (3) or x (2) or x (1) or a failure message.

Step 1: Define σi to estimate convergence:

σik = 10−1|Eik|, or,

σik = 10−2, if |Eik|< 10−2, i = 1, . . . , m, k = 1,2, 3.

Step 2: If p1→ Ei and p2→ Ek, i, k ∈ {1, . . . , m}, continue,
else display ‘integration time not sufficient’, return.

Step 3: If p1→ El or/and p2→ Ep, l and/or p /∈ {1,2, 3}, move p1 or/and p2.
If p1→ Ei and p2→ Ek, i, k ∈ {1, 2,3} and i 6= k, continue,
else display ‘bisection cannot be performed’, return.

Step 4: If p1→ E1 or p2→ E1,
eventually p1� p2 so that p1→ E1.

If p2→ E1 display ‘bisection cannot be performed’, return.
else if p2→ E2,
x (3) = Bisection(p1, p2, t,τ,λ, E), return x (3),
else x (2) = Bisection(p1, p2, t,τ,λ, E), return x (2).

else if p1→ E2 or p2→ E2,
eventually p1� p2 so that p1→ E2 .

If p2→ E2 display ‘bisection cannot be performed’, return.
else x (1) = Bisection(p1, p2, t,τ,λ, E), return x (1),

else display ‘bisection cannot be performed’, return.

Algorithm 2: The Detec Algorithm. The detection pseudo-code. It summarizes the steps needed to find a point lying on a surface
delimiting a basin of attraction.

Finally, we have the coexistence equilibrium E7 = (x7, y7, z7). It can be assessed only via numerical simulations.
Letting p = 1, q = 2, r = 2, a = 5, b = 4, c = 3, e = 7, f = 7, g = 10, u = 3, v = 2, w = 1, the points associated with the

survival of only one population, i.e. E1 = (3,0,0), E2 = (0,2,0) and E3 = (0,0,1), are stable, the origin E0 = (0,0,0) is
an unstable equilibrium and the coexistence equilibrium E7 ≈ (0.1899,0.0270,0.2005) is a saddle point. The remaining
equilibria E4 ≈ (0.6163,0.1591,0), E5 ≈ (0.2195,0,0.5317) and E6 ≈ (0,0.1714,0.2647) are other saddle points. The
manifolds joining these saddles partition the phase space into the different basins of attraction, but intersect only at the
coexistence saddle point, labeled E7. In this situation we can use the detection-interpolation routine to approximate the
basins of attraction.

Here, after establishing conditions to be imposed on the parameters so that the separatrix manifolds exist, at first we
compute the normal vectors and consistently orient them to the surfaces by choosing the nearest neighbors Ki , i = 1,2,3.
Typically we set Ki , i = 1, 2, 3, between 5 and 10. Finally, we interpolate the points lying on the separatrix surfaces with the
implicit PU method, using as local approximants in (1) the compactly supported Wendland’s C2 function

φ(r) = (1− εr)4+(4εr + 1), (11)

where ε ∈ R+ is the shape parameter and (·)+ denotes the truncated power function. The choice of the Wendland’s C2

function follows from the fact that it can compute a large number of scattered data in a stable way. In other words, such
function enables us to achieve a good compromise between stability and accuracy. For this reason compactly supported RBFs
are strongly advised. However, this approach turns out to be very flexible; indeed, different choices of local approximants
are allowed. Concerning the shape parameter of the basis function, we find good results by taking the shape parameter
vector so that 0.01≤ εi ≤ 0.1, i = 1,2, 3.

The choices of the inputs, described above, are suitable assuming to start with 8≤ n≤ 15 equispaced initial conditions
on each edge of the cube [0,γ]3 and 10−3 ≤ τ≤ 10−5.

Figure 2 shows the separatrix points and the basins of attraction of E1, E2 and E3 (left to right, top to bottom). They
are the result of our routines with the input parameters as follows: n = 15, γ = 6, τ = 10−3, t = 90, Q = 2 (E0, E7),
ε = (0.1,0.09, 0.08), dPU = (3, 4,4), K = (7, 8,6).

5 Conclusions and work in progress
In this paper we present a new strategy enabling us to efficiently implement the PU method. It works in any dimension and
turns out to be faster than other existing searching techniques. In fact, the procedure used to store the scattered nodes
among the different blocks only requires O(N) operations.
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Figure 2: Set of points lying on the surfaces determining the domains of attraction (top left) and the reconstruction of the basin of attraction
of E1 (top right), E2 and E3 (bottom, left to right). The four figures (left to right, top to bottom) show the progress of the algorithm: first it
generates the points on the separatrices, then in turn each individual basin of attraction. The black and blue circles represent the unstable
origin, the coexistence saddle point and the stable equilibria, respectively. Moreover the other saddles (E4, E5 and E6) which, in pairs, lie
on the separatrix manifolds of the attraction basins are identified by green circles.

Furthermore, by considering the problem of reconstructing the attraction basins in dynamical systems, we show the
versatility of our technique. Moreover, we point out that in many applications a robust and efficient representation of the
attraction domains turns out to be very useful. In fact, the knowledge of the attraction basins allows to eventually suggest
measures to move the initial condition far away from an unwanted final configuration of the system.

Work in progress consists in extending the proposed partitioning scheme so that it enables us to consider subdomains
having variable radii. Such approach turns out to be meaningful especially when strongly non-uniform data are considered.
These kinds of data are rather common in real life problems, such as in the reconstruction of 3D objects or in Earth’s
topography applications.
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