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Abstract

A new algorithm for bivariate interpolation of large sets of scattered and track data is
presented. Then, the extension to the sphere is analyzed. The method, whose different
versions depend partially on the kind of data, is based on the partition of the interpolation
domain in a suitable number of parallel strips, and, starting from these, on the construc-
tion for any data point of a local neighbourhood containing a convenient number of data
points. Then, the well-known modified Shepard’s formula for surface interpolation is ap-
plied with some effective improvements. The method is extended to the sphere using a
modified spherical Shepard’s interpolant with the employment of zonal basis functions as
local approximants. The proposed algorithms are very fast, owing to the optimal nearest
neighbour searching, and achieve a good accuracy. The efficiency and reliability of the
algorithms are shown by several numerical tests, performed also by Renka’s algorithms for
a comparison.

Keywords: surface modelling, Shepard’s type formulas, local methods, scattered and track
data interpolation, radial basis functions, zonal basis functions, interpolation algorithms.
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1 Introduction

We consider the problem of interpolating a continuous function f : R
2 → R, defined on a

bounded domain D ⊂ R
2 and known only on a finite set Sn = {xi, i = 1, 2, . . . , n} ⊂ D of data

points or nodes. It is required to find a real bivariate function F such that, given the xi and
the corresponding function values fi, the interpolation conditions F (xi) = fi, i = 1, 2, . . . , n,
are satisfied.

In particular, we are interested to consider the interpolation of large scattered data sets,
a problem which requires efficient and accurate algorithms. In 1988 Renka [50] proposed an
optimized implementation of a modified version of Shepard’s method, which is still now one of
the most powerful tools. Then, in 2002, Lazzaro and Montefusco [39] presented a modification
of Renka’s algorithm, in which local approximants (or nodal functions) based on the least
squares method are replaced by others based on radial basis functions (RBFs), thus improving
accuracy.

In the papers [4, 5] we presented two different approaches for approximating surface data
disposed on a family of (straight) lines or curves on a plane domain. The most interesting
case occurs when the lines or curves are parallel. It may be that some or all the nodes are
not collocated exactly on the lines or curves but close to them, or that the lines or curves
are not parallel in a proper sense but roughly parallel. Although there is a data structure, it
is not required that the node distribution on each line or curve has a special regularity, that
is, the nodes can be irregularly spaced and in different positions on each line or curve. A
frequent feature of this kind of data, often called track data, is that two adjacent nodes along
a given track are much closer together than nodes on different tracks. The considered schemes
approximate the data by means of interpolation or near-interpolation operators, both based on
cardinal radial basis functions, whose properties are widely discussed in [2, 3]. In particular,
the scheme in [4] has been widely tested in [15], where some interesting devices are presented.
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As a matter of fact, in several applied problems the function values are known along a
number of parallel lines or curves, as in the case of ocean-depth measurements from a survey
ship or meteorological measurements from an aircraft or an orbiting satellite. These data are
affected by measurement errors and, generally, are taken near to rather than exactly on straight
or curved tracks, owing to the effects of disturbing agents, such as wind and waves.

Several methods (see, e.g., [25, 14, 7, 20, 8] and references therein) have been proposed
to solve the considered problem by using different interpolation techniques and tools (tensor-
product splines, least squares, radial basis functions, Chebyshev polynomials of the first or
second kind, etc.). A number of papers on the subject is reviewed in [5].

Now, if we suppose to move the parallel lines or curves on the domain D ⊂ R
2 as close

together as the nodes on different lines or curves, then the track data structure vanishes and
the node distribution appears quite irregular on the whole domain D. Conversely, if the nodes
are scattered, we can think of partitioning the domain into a convenient number of parallel
strips, bounded by parallel lines or curves. Then, we can consider the midlines of the strips
as a set of parallel lines or curves, each one having a certain number of nodes on or close to
it. Following this idea, we start considering an interpolation scheme for track data and then
extend it, in a simple and straightforward way, to interpolation to general sets of scattered
data. The outcome is an efficient interpolation algorithm, called strip algorithm, for modelling
continuous surfaces [6]. The particular strip structure gives some advantages, because it allows
us to optimize the searching procedure of nodes and guarantees a high parallelism. In the strip
algorithm, first, we partition the domain D into a finite number of parallel strips, ordering all
the nodes on each strip with respect to a given direction, which is the same for all strips. Then,
we consider a strip searching procedure that finds the minimal number of strips to be examined,
in order to localize a convenient set of neighbour nodes for each strip point (i.e. a node lying
on a strip). Finally, we approximate the unknown function f using a local interpolant F which
is based on radial basis functions or least squares approximants as nodal functions. Numerical
results, compared with those of Renka’s algorithm, show that the strip algorithm allows us
to improve efficiency of the algorithm implementation of the modified Shepard’s method, in
particular with regard to the execution CPU times [17].

Since numerical results point out a good performance of the bivariate interpolation algo-
rithm, we extend it to the spherical setting. Given the unit sphere S

2 = {x ∈ R
3 : ‖x‖2 = 1}

in R
3, we consider the problem of interpolating a function f : S

2 → R, defined on a finite
set Sn = {xi, i = 1, 2, . . . , n} ⊂ Ω of distinct data points or nodes. We want to construct a
(smooth) multivariate function F : S

2 → R, which interpolates the data values or function
values fi at the nodes xi, namely F (xi) = fi, i = 1, 2, . . . , n.

This data fitting problem where the underlying domain is on a sphere arises in many areas,
including e.g. geophysics and meteorology. In these cases, in general, the sphere S

2 is taken as
a model of the Earth.

Several methods have been proposed to solve the spherical interpolation problem for scat-
tered data (for an overview, see [23]), but, as far as we know, with the exception of the macro-
element methods based on spherical splines discussed in [1], most methods are inefficient when
dealing with large scattered data sets.

To solve the interpolation problem on the sphere, instead of the Euclidean metric we con-
sider the geodetic metric g : S

2×S
2 → [0, π], which is defined by g(x, y) = arccos(xT y), for any
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x, y ∈ S
2, and we replace the radial basis function φ : [0,∞) → R with a zonal basis function

(ZBF) ψ : [0, π] → R. Thus we seek an interpolant F from the linear space spanned by the n
functions ψ(g(·, xj)), j = 1, 2, . . . , n. The uniqueness of such a solution clearly depends on the
choice of the zonal basis function ψ. Studies on (conditional) positive definiteness of ψ started
in the 1940s, when Schoenberg [56] characterized the class of positive definite functions on the
sphere (see also [58, 38]). In the early 1990s, Schoenberg’s work has been extended: the papers
by Xu and Cheney [67] and by Menegatto [43] are both addressed to the problem of charac-
terizing strictly (conditionally) positive definite functions on S

m−1, for m ≥ 2. Furthermore,
in 1995, Cheney [19] showed how these functions can be used to provide a unique solution to
spherical interpolation problem. The final result, which consists in specializing the radial basis
function method to the sphere, is commonly called the zonal basis function method. A large
number of papers has been devoted in the last years to investigate both theoretical and com-
putational aspects of the zonal basis function method and its modifications, see for example
[44, 63, 46, 36, 41, 48, 47, 12, 40, 42, 60, 61] and [59, 45, 34, 32] for applications.

The extension to the sphere of the strip algorithm on R
2 is based on the partition of the

unit sphere in a convenient number of spherical zones, the construction of localizing neigh-
bourhoods, that is spherical caps, and then, specifically, a spherical zone searching procedure.
The interpolation formula we propose is a further variant of the modified Shepard’s method for
the sphere, which uses zonal basis function interpolants as nodal functions, already proposed
in [21, 16, 18] (see also [9, 10]). Hence, this local interpolation approach enables to exploit
the accuracy of ZBFs, and, at the same time, to overcome common disadvantages, such as
the unstability due to the need of solving large linear systems (possibly, ill-conditioned) and
the inefficiency of the global ZBF method. Moreover, the proposed algorithm, called spherical

zone algorithm, is very fast, owing to the optimal nearest neighbour searching, achieves a good
accuracy, and guarantees a high parallelism.

The paper is organized as follows. Section 2 is devoted to briefly remind the modified
Shepard’s method, and to consider two ways of constructing nodal functions, that is, the least
squares method and the radial basis functions. In Section 3 we describe the strip algorithm,
dwelling on the details that allow the procedure to be accurate and computationally efficient.
Section 4 is devoted to presentation of the local interpolation scheme on the sphere, that is,
the modified spherical Shepard’s method with zonal basis functions as local approximants. In
Section 5 we describe the spherical zone algorithm, focusing only on the parts which differ from
the strip algorithm. Some computational aspects of the considered interpolation algorithms,
such as computational complexity and storage requirements, are presented in Section 6. In
Section 7 numerical results show the goodness of the presented interpolation methods and
the effectiveness of the related algorithms. In particular, numerical comparisons with Renka’s
algorithms are presented in both cases.

2 Modified Shepard’s method

The classical Shepard’s formula has two crucial drawbacks, namely the occurrence of flat spots
at the nodes (i.e., the first partial derivatives vanish there) and the dependence of the operator
on all the nodes (see, e.g., [2]). To avoid these shortcomings, a modified version of Shepard’s
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method has been developed by Franke and Nielson [27], and then improved by Renka [50]. An
interesting modification has been suggested by Lazzaro and Montefusco [39].

We consider the following definition of the modified Shepard’s method.

Definition 2.1. Given a set Sn = {xi, i = 1, 2, . . . , n} of distinct nodes, arbitrarily distributed
on a bounded domain D ⊂ R

m, with the corresponding set Fn = {fi, i = 1, 2, . . . , n} of asso-
ciated values of an unknown continuous function f : D → R, the modified Shepard’s method
F : D → R takes the form

F (x) =
n

∑

j=1

Lj(x)W̄j(x). (1)

The nodal functions Lj, j = 1, 2, . . . , n, are local approximants to f at xj, constructed on the
nL nodes closest to xj and satisfying the interpolation conditions Lj(xj) = fj. The weight
functions W̄j, j = 1, 2, . . . , n, are given by

W̄j(x) =
Wj(x)

∑n
k=1Wk(x)

, j = 1, 2, . . . , n, (2)

where

Wj(x) = τ(x, xj)/α(x, xj), (3)

τ(·, xj) being a non-negative localizing function, and α(·, xj) = ‖ · −xj‖
2
2.

As regard to the choice of nodal functions we consider two possible ways, that is, we can use a
least squares approximant or a RBF interpolant. The least squares approximant is obtained by
solving the least squares problem at the node xj using weights with reduced compact support,
that is,

min
aj

nL
∑

i=1,i6=j

[Lj(xi) − fi]
2Wj(xi),

where Lj is a quadratic m-variate polynomial with coefficients aj = [aj1, aj2, . . . , ajh]T , h =
(

m+2
2

)

is less than the number nL of nodes of the considered neighbourhood of xj , and Wj(xi) =
τ(xi, xj)/α(xi, xj).

The RBF interpolation method is the most used when we have to interpolate scattered data
(see [13, 64]). A RBF interpolant has the form

Lj(x) =

nL
∑

i=1

aiϕ(‖x− xi‖2) +

U
∑

k=1

bkπk(x), (4)

where the radial basis functions ϕ(‖· − xi‖2) depend on the nL nodes of the considered neigh-
bourhood of xj , and the (v−1)-degree polynomials πk(x) belong to the space Pm

v−1 of dimension
U = (m+ v− 1)!/(m!(v− 1)!) which must be lower than nL. It is required that Lj satisfies the
interpolation conditions

Lj(xi) = fi, i = 1, 2, . . . , nL,
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and the side conditions

nL
∑

i=1

aiπk(xi) = 0, for k = 1, 2, . . . , U.

Hence, to compute the coefficients a = [a1, a2, . . . , anL
]T and b = [b1, b2, . . . , bU ]T in (4), it is

required to solve uniquely the system of linear equations

Ka+ Pb = f,
P Ta = 0,

where K = {ϕ(||xj − xi||2)} is a nL × nL matrix, P = {πk(xj)} is a nL × U matrix, and f
denotes the column vector of the function values fj corresponding to the xj.

The most popular choices for ϕ are

ϕ(r) = r2v−m log r, 2v −m ∈ 2N, (generalized thin plate spline)

ϕ(r) = e−α2r2

, (Gaussian)

ϕ(r) = (c2 + r2)v/2, (generalized Hardy’s multiquadric)

where α and c are positive constants, v is an integer (Hardy takes v = ±1), and r = || · −xi||2.
The Gaussian and the inverse multiquadric (IMQ), which occurs for v < 0 in the generalized
multiquadric function, are positive definite functions, whereas the thin plate spline (TPS) and
the multiquadric (MQ), i.e. for v > 0 in the generalized multiquadric function, are conditionally
positive definite functions of order v. The addition of the polynomial term in (4) in order to
guarantee a unique solution of the considered system is necessary only for the conditionally
positive definite functions.

Since the classical Shepard’s interpolant depends on all the data, when the number of
data is very large, the evaluation becomes proportionately longer and, eventually, the method
will become inefficient or impractical. So for the weights in (1) we can use various localizing
functions τ(·, xj).

A first, simple but efficient, localizing function with compact support is

τ1(x, xj) =

{

1, if x ∈ C(xj ; ρ),
0, otherwise,

where C(xj ; ρ) is a hypercube of centre at xj and side ρ.
Another interesting localizing function is given by

τ2(t) =

{

−2(3ǫ)t3 + 3 · 2(2ǫ)t2 − 3 · 2ǫt+ 1, if 0 ≤ t ≤ 1/2ǫ,
0, if t > 1/2ǫ,

where ǫ ∈ R
+ and t = ‖ · −xj‖

2
2. In fact, we have τ2(0) = 1 and τ2(1/2

ǫ) = 0; the function
is convex and its tangent plane at t = 1/2ǫ is horizontal; the localizing effect increases with
ǫ. Localizing functions like τ2, possibly with different orders of continuity, may represent an
alternative choice to the families of localizing functions based on truncated power functions
(see [55]).
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3 Strip algorithm

In this section, we consider the problem of approximating a continuous function f : D → R,
D = [0, 1] × [0, 1] ⊂ R

2, only known on a set Sn = {(xi, yi), i = 1, 2, . . . , n} of distinct nodes,
which may be quite scattered or situated on tracks. The function values corresponding to the
nodes are collected in the set Fn = {fi, i = 1, 2, . . . , n}. The method and the relative algorithm
could be extended in a straightforward way to more general domains D. Our aim is to describe
an interpolation algorithm, called strip algorithm, which is accurate and, at the same time,
computationally efficient if compared with those known in the literature. Therefore, we propose
a comparison between the strip algorithm and Renka’s algorithm [50, 51], which is currently
considered as a standard procedure.

Briefly, the process we propose can be described as follows:

1. Partition the domain into a finite number of parallel strips.

2. Consider a strip searching procedure that finds the minimal number of strips to be ex-
amined, in order to localize a convenient set of neighbour nodes for each strip point, i.e.
each node lying on a strip.

3. Approximate the unknown function f by an interpolant F which uses radial basis func-
tions or least squares approximants as nodal functions.

These three steps correspond to data partition, localization and evaluation phases, respectively.

3.1 Strip algorithm for scattered data

We begin describing the strip algorithm for scattered data interpolation; then, in Subsection
3.2, we will consider the strip algorithm for data located on tracks.

The strip algorithm for scattered data can be described as follows:

INPUT: n, number of data; Sn = {(xi, yi), i = 1, 2, . . . , n}, set of data points; Fn = {fi, i =
1, 2, . . . , n}, set of data values; s, number of evaluation (grid) points; Gs = {(xGi, yGi), i =
1, 2, . . . , s}, set of evaluation (grid) points; nL and nW , localization parameters.

OUTPUT: As = {Fi ≡ F (xGi, yGi), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The nodes in the domain D are ordered with respect to a common direction (e.g.
the y-axis), by applying a quicksorty procedure.

Stage 2. For each node (xi, yi), i = 1, 2, . . . , n, a local (square) neighbourhood shall be
constructed (see Stage 5 below), whose half-size depends on the sample dimension n, the
considered value nL, and the positive integer k1, i.e.

δL
x = δL

y =

√

k1
nL

n
, k1 = 1, 2, . . . (5)

As an example, in Figure 1 three local square neighbourhoods are shown.

Stage 3. The number q of strips to be considered is found taking

q =

⌈

1

δL
y

⌉

,
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Figure 1: Example of square neighbourhoods with k1 = 1, nL = 4, n = 225 and partition of
the domain in strips.
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where ⌈·⌉ is the greatest integer less or equal to the argument, and then the strips are numbered
from 1 to q.

Stage 4. On the domain D a family of q strips of equal width δs (with the possible excep-
tion of one of them) and parallel to the x-axis is constructed, so that the set Sn of nodes
is partitioned by the strip structure into q subsets Snk

, k = 1, 2, . . . , q, whose elements are
(xk1, yk1), (xk2, yk2), . . . , (xknk

, yknk
), k = 1, 2, . . . , q (see Figure 1). Considering scattered data

the experience suggests to take δs ≡ δL
y . Then, the nodes of Snk

belonging to the k-th strip
are ordered with respect to a common direction (e.g. the x-axis) on all strips by a quicksortx
procedure, and at the same time counted. The number of nodes in the k-th strip is stored in
nk (see Algorithm 1).

Algorithm 1: sorting procedure.

Step 1 Set count = 0.
Step 2 For k = 1, 2, . . . , q do

Step 3 Set nk = 0;
i = count+ 1.

Step 4 While (yi ≤ k · δs ∧ i ≤ n)
set nk = nk + 1;

count = count+ 1;
i = i+ 1.

Step 5 Set begin stripk = count− nk + 1;
end stripk = count.

Step 6 Compute quicksortx(nk, x, y, f).
Step 7 OUTPUT(nk, x, y, f).

Stage 5. To identify the strips to be considered in order to construct a suitable neighbourhood
for each node, we adopt the following rule which is composed of two steps:

1. We introduce the parameter

i∗ =

⌈

δL
y

δs

⌉

,

which in the case of scattered data equals one.

2. For each strip k, k = 1, 2, . . . , q, a strip searching procedure is considered, examining the
nodes from the (k − i∗)-th strip to the (k + i∗)-th strip. For scattered data the search of
the nearby nodes is limited to (only) three strips: the strip on which the considered node
lies, the previous and the next strips.

Note that for the nodes of the first and last strips, we need to reduce in general the total
number of strips to be examined, because if k − i∗ < 1 or k + i∗ > q we will assign k − i∗ = 1
and strip k + i∗ = q, respectively.
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After defining which and how many strips are to be examined, a strip searching procedure
is applied for each node of (xi, yi) to determine all nodes belonging to a (local) neighbourhood
of it. The number of nodes of the neighbourhood centred at (xi, yi) is counted and stored in
mi, i = 1, 2, . . . , n, (see Algorithm 2). Here we check whether the number of nodes in each
neighbourhood is greater or equal to nL; if the condition is not satisfied we go back to Stage

2.

Algorithm 2: strip searching procedure.

Step 1 For k = 1, 2, . . . , q do
Step 2 Set begin = k − i∗;

end = k + i∗.
Step 3 If begin < 1

then set begin = 1;
If end > q

then set end = q.
Step 4 For h = begin stripk, . . . , end stripk do

Step 5 Set mh = 0.
Step 6 For i = begin, . . . , end do

Step 7 For j = begin stripi, . . . , end stripi do
Step 8 If (xj , yj) ∈ Ih(δL

x , δ
L
y )

then set mh = mh + 1;
STOREh,mh

(xj , yj, fj).
Step 9 OUTPUT((x, y, f) ∈ Ih(δL

x , δ
L
y )).

Stage 6. All the nodes belonging to the square neighbourhood centred at (xi, yi), i =
1, 2, . . . , n, are ordered by applying a distance-based sorting process, that is a quicksortd pro-

cedure.

Stage 7. Taking only the nL nodes closest to the centre (xi, yi), i = 1, 2, . . . , n, of the neigh-
bourhood, a local interpolant Li, i = 1, 2, . . . , n, is constructed.

Stage 8. For each grid point (xGj , yGj) ∈ Gs, j = 1, 2, . . . , s, a square neighbourhood is
constructed, whose half-size depends on the sample dimension n, the parameter value nW , and
the (positive integer) number k2, that is,

δW
x = δW

y =

√

k2
nW

n
, k2 = 1, 2, . . . (6)

Stage 9. A searching procedure is applied to determine all nodes belonging to a (local)
neighbourhood of centre (xGj , yGj) and half-side δW

x .

Stage 10. The nodes of each neighbourhood are first ordered by applying a distance-based
sorting procedure (quicksortd).

Stage 11. Considering only the nW nodes closest to the grid point (xGj , yGj), j = 1, 2, . . . , s,
it is found a local weight function W̄i, i = 1, 2, . . . , n.
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Stage 12. Applying the modified Shepard’s formula (1), the surface can be approximated at
any grid point (xGj , yGj) ∈ Gs.

Remark. Supposing a uniform distribution of nodes on the domain D, the size of local
square neighbourhoods is found so that each neighbourhood contains a prefixed number of
nodes. The condition is satisfied, by taking into account the sample dimension n, the parameter
nL (or nW ), and the positive integer k1 (or k2). In particular, the rule (5) (or (6) in Stage 8)
estimates for k1 = 1 (or k2 = 1), 4nL (or 4nW ) at least nodes for each inner neighbourhood of
D. If a node lies on or close to the boundary, the number of nodes in its neighbourhood may be
considerably reduced, because only a little part of the neighbourhood intersects the domain D
(see Figure 1). However, the approach we propose is completely automatic, since the procedure
identifies the minimal positive integer k1 (or k2) meeting the requirement of having a sufficient
number of nodes on each neighbourhood. This implies that the method works successfully even
if the distribution of nodes is not uniform.

3.2 Strip algorithm for track data

Now we consider a set of nodes which may be irregularly spaced and collocated on each line
or curve in different positions. Moreover, a feature of this kind of data, called track data, is
that two adjacent nodes along a given line or curve are much closer together than nodes on
different lines or curves. A few works were devoted to the study of approximating schemes for
track data (see, e.g., [14, 7, 20, 37, 8]).

The strip algorithm for track data interpolation differs from that for scattered data only
in some details. These allow to optimize the searching procedure of the nearby nodes, and
accordingly to minimize the computational cost. Hence, as regard to the algorithm described
in Subsection 3.1, the following changes are required:

Stage 3. After determining the strip size δs by the relation

δs =
1

q
,

where q is the number of tracks (and hence of strips too), the strips are numbered from 1 to q.

Stage 5. This process uses a different strategy to construct the strip structure. In the al-
gorithm for scattered data the strip size derives from the neighbourhood half-size to optimize
the searching procedure of the nearby nodes. Conversely, the strip algorithm for track data
depends on the number of tracks. Therefore, in general, the ratio δL

y /δs is not equal to one,
and accordingly the search of the nearest nodes involves more than two strips.

To find the strips to be examined in the searching procedure of nodes, we consider the
following computational rule that consists of two steps:

1. Computation of the ratio between the semi-size δL
y of square neighbourhood and the strip

size δs, namely

k∗ =
δL
y

δs
= qδL

y .

Then, taking the smallest integer greater than k∗, i.e. i∗ =⌈k∗⌉, k∗ ∈ R
+, we find the

number of strips to be examined for each node.
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2. Referring to the strip k, k = 1, 2, . . . , q, a strip searching procedure is applied, to examine
the nodes from the (k − i∗)-th strip to the (k + i∗)-th strip.

Also in this case we need to reduce the total number of strips to be examined for the nodes of
the first and last strips.

4 Modified spherical Shepard’s method

In this section we describe a local method for the multivariate interpolation of large scattered
data sets lying on the sphere S

m−1. The scheme is based on the local use of zonal basis functions
(i.e. ZBF interpolants as nodal functions) and represents a further variant of the well-known
modified Shepard’s method. Hence, this local interpolation approach exploits the characteristic
of accuracy of ZBFs, overcoming common disadvantages as the instability due to the need of
solving large linear systems (possibly, badly conditioned) and the inefficiency of the ZBF global
interpolation method. A similar approach was already introduced at first by Pottmann and
Eck [49] for MQs, and then by De Rossi [21] for ZBFs.

We consider the following definition of the modified spherical Shepard’s method.

Definition 4.1. Given a set Sn = {xi, i = 1, 2, . . . , n} of distinct data points arbitrarily dis-
tributed on the sphere S

m−1, with associated the corresponding set Fn = {fi, i = 1, 2, . . . , n} of
data values of an unknown function f : S

m−1 → R, the modified spherical Shepard’s interpolant
F : S

m−1 → R takes the form

F (x) =
n

∑

j=1

Zj(x)W̄j(x). (7)

The nodal functions Zj, j = 1, 2, . . . , n, are local approximants to f at xj , constructed on the
nZ nodes closest to xj and satisfying the interpolation conditions Zj(xj) = fj. The weight
functions W̄j, j = 1, 2, . . . , n, are given in (2) and (3), being α(·, xj) = arccos(·Txj) and

τ(x, xj) =

{

1, if x ∈ C(xj ; ρ),
0, otherwise,

where C(xj ; ρ) is a spherical cap of centre at xj and spherical radius ρ.

As regard to the choice of nodal functions we use a ZBF interpolant, which has the form

Zj(x) =

nZ
∑

i=1

aiψ(g(x, xi)), j = 1, 2, . . . , n, (8)

where the zonal basis functions ψ(g(·, xi)) depend on the nZ nodes of the considered neigh-
bourhood of xj , and g(x, xi) = arccos(xTxi) is the geodesic distance. It is required that Zj

satisfies the interpolation conditions

Zj(xi) = fi, i = 1, 2, . . . , nZ .
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Hence, to compute the coefficients a = [a1, a2, . . . , anZ
]T in (8), it is required to solve uniquely

the system of linear equations Ka = f , where K = {ψ(g(xj , xi))} is a nZ × nZ matrix, f
denotes the column vector of the function values fj corresponding to the xj.

In general, one can generate ZBFs by exploiting the results listed in [11], and by requiring,
if possible, that the function ψ is (strictly) positive definite on the unit sphere. However, we
observe that a certain number of ZBFs can be viewed as the specialization of the more general
RBFs. In fact, given any Euclidean RBF, namely φ : [0,∞) → R, there is a natural way to
associate it with a zonal basis function (or, in this case, more appropriately a spherical radial

basis function). For instance in R
m, since

||x− y||2 =
√

2 − 2xT y = 2 sin
g(x, y)

2
,

for any x, y ∈ S
m−1, we have

φ (||x− y||2) = ψ (g(x, y)) ,

with ψ(t) = φ (2 sin(t/2)), t ∈ [0, π].
The most popular choices for ψ are

ψ1(t) = e−α(2−2 cos t), (spherical Gaussian)

ψ2(t) =
(

1 + γ2 − 2γ cos t
)1/2

, (spherical MQ)

ψ3(t) =
(

1 − γ2
) (

1 + γ2 − 2γ cos t
)3/2

, (spherical MQ II)

ψ4(t) =
(

1 + γ2 − 2γ cos t
)−1/2

, (spherical IMQ)

ψ5(t) =
(

1 − β2
) (

1 + β2 − 2β cos t
)−3/2

, (Poisson spline)

ψ6(t) = β−1 log

{

1 + 2β
[

1 − β +
(

1 + β2 − 2β cos t
)1/2

]−1
}

, (logarithmic spline)

where α > 0, γ, β ∈ (0, 1) and t measures the geodesic distance on the sphere. The spherical
Gaussian [21] and the spherical inverse multiquadric (IMQ) [11, 23] are (strictly) positive
definite functions on S

m−1, m ≥ 1, while the Poisson spline [30, 11] and the logarithmic spline
[30, 35] are (strictly) positive definite functions on S

2. This guarantees the existence of a unique
solution of the considered system. Otherwise, as shown in [22], the spherical multiquadric (MQ)
[23, 11] is (strictly) conditionally positive definite functions of order one (see [31] for further
details). The spherical splines given in [35] are also of particular interest.

Therefore, there are many examples of strictly positive definite ZBFs, which can be used
to solve the interpolation problem on the sphere. Sometimes, it can be highly advantageous
to work with locally supported functions since they lead to sparse linear systems. Wendland
[62] found a class of radial basis functions which are smooth and locally supported. Moreover,
for any given m there is a Wendland’s function that is strictly positive definite on R

m for that
specific value of m. They consist of a product of a truncated power function and a low degree
polynomial. Wendland’s functions can be transformed to work directly with geodesic distance
on the sphere assuming the form

ψ7(t) = (1 − 2h sin(t/2))4
+ (8h sin(t/2) + 1) , (spherical C2-Wendland)

ψ8(t) = (1 − 2h sin(t/2))6
+

[

35h2 (2 sin(t/2))2 + 18h (2 sin(t/2)) + 3
]

, (spherical C4-Wendland)
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where h is a real positive number. The support of these functions is given by [0, arcsin(1/2h)].
Some locally supported spherical RBF were constructed directly for the sphere (see [57, 23]).
Other locally supported functions are discussed in [66].

5 Spherical zone algorithm

In this section we propose an extension of the strip algorithm to the spherical interpolation of
large sets of scattered data or, with some modifications, to the spherical interpolation of track
data lying on S

2 ⊂ R
3. The new algorithm is based on the partition of the sphere in a suitable

number of parallel spherical zones, and, starting from these, on the construction for any data
point of a circular neighbourhood (i.e., a spherical cap) containing a convenient number of data
points. Then, the well-known modified Shepard’s formula for spherical interpolation is applied
with some effective improvements.

Since the strip algorithm has been already explained and the algorithm for the sphere, called
the spherical zone algorithm, roughly follows the same pattern, in the following we are going to
focus only on the parts in which they differ. The spherical setting leads to consider a spherical
zone structure instead of a strip structure to organize data, and the square neighbourhoods are
substituted by circular neighbourhoods (spherical caps) in a straightforward way. In particular,
we remark that in the spherical zone algorithm two spherical zone structures are used to
optimize the searching procedure, one to construct the circular neighbourhoods of the node,
and the other in the evaluation phase, where we construct the circular neighbourhoods of the
evaluation points. This trick improves the efficiency of the spherical zone algorithm compared
with the strip one.

More in detail, in the spherical algorithm we construct for each node a local circular neigh-
bourhood whose spherical radius is given by

δZ = arccos
(

1 − 2
√

k1
nZ

n

)

, k1 = 1, 2, . . . ,

where k1 has the same meaning as in the strip algorithm. Thus, the number of spherical zones
is found by taking

q =

⌈

π

δZ

⌉

.

Then we construct on the sphere a suitable family of q spherical zones of equal width and
parallel to the xy-plane. The set Sn of nodes is partitioned by the spherical zone structure,
and, as in the strip algorithm, we define the number of spherical zones to be examined for each
node.

A local interpolant Zj, j = 1, 2, . . . , n, is found for each node, taking only the nZ nodes
closest to the node. To determine local weights for each node a spherical caps of radius

δW = arccos
(

1 − 2
√

k2
nW

n

)

, k2 = 1, 2, . . .

is used. Then, we define the number

r =

⌈

π

δW

⌉

,
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in order to organize the data in a second family of spherical zones. A local weight function W̄j ,
j = 1, 2, . . . , n, is found considering only the nW nodes closest to an evaluation point. Finally,
we apply the modified spherical Shepard’s formula (7).

All the considerations contained in Subsection 3.2 on track data can be also extended to
the spherical case.

6 Complexity of the interpolation algorithms

The computational complexity of the strip interpolation algorithm is characterized by the
use of the standard sorting routine quicksort, which requires on average a time complex-
ity O(M logM), where M is the number of nodes to be sorted. More precisely, we have a
preprocessing phase for building the data structure, in which the computational cost has order:

• O(n log n) for the first sorting of all n nodes;

• O(mi logmi), i = 1, 2, . . . , n, to sort the nodes in the i–th local neighbourhood and, since
mi ≥ nL, for all neighbourhoods we have

∑n
i=1 O(mi logmi) ≥ n · O(nL log nL).

Moreover, n linear systems of dimension nL are to be solved in order to compute the coefficients
of the local interpolants, thus requiring

• O(n · n3
L/6) and O(n · 53/6) arithmetic operations for computing RBF interpolants and

least squares approximants, respectively.

In the evaluation phase we support a computational cost of order:

• s · O(nW log nW ) to sort the nodes of the local neighbourhoods which are centred at the
evaluation points;

• s · O(nW · nL) for the evaluation of Shepard’s interpolant at all evaluation points.

We remark that when the data structure is built, no further search time is required, since all
points are stored in an ordered sequence. In particular, we point out that in our algorithms
the number of nodes needed in each neighbourhood is prescribed, namely nL and nW in the
two phases; it follows that the data structure is built in such a way that exactly nL and nW

nodes belong to each neighbourhood. Finally, in the algorithm we employed (m + 1) · n · nL

and (m+ 1) · s · nW storage locations in the building of the data structure for the localization
of nodal functions and Shepard’s interpolant, respectively.

This complexity analysis can be directly extended to the spherical zone interpolation algo-
rithm, substituting nL by nZ and using ZBFs instead of RBFs.

7 Numerical results

7.1 Experiments on bivariate interpolation

In this subsection we summarize the extensive and detailed investigation we performed to test
and verify the proposed algorithm, especially for the sake of comparison with Renka’s one. In
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order to obtain numerical validation of the strip algorithm we implemented our procedure in
C/C++ language and used Matlab environment to draw some pictures. All the numerical
results were obtained on a Pentium IV computer (2.8 GHz).

In the various tests we considered some sets of n randomly scattered and track nodes (xi, yi),
for i = 1, 2, . . . , n, in the square [0, 1] × [0, 1] ⊂ R

2, and the corresponding function values fi.
The pseudorandom nodes were obtained by using the Matlab command rand, which generates
uniformly distributed random numbers on the interval (0,1). In particular, we generated track
data sets choosing a certain number of lines, selecting some points on them and perturbing the
coordinates of a random term belonging to (0, µ). The parameter µ is chosen such that two
adjacent nodes along a given track are much closer together than nodes on different tracks.
Since the strip and Renka’s algorithms are designed to interpolate to large scattered data sets,
in an accurate and efficient way, we considered sets of dimension n = 2i−1 · 103, i = 1, 2, . . . , 5.
However, it is remarkable that, in general, also reducing considerably the number n of the
scattered or track data (e.g., to a few thousand nodes), the proposed method holds its efficiency.
In this case a loss of approximation accuracy is unavoidable, but it depends essentially on the
reduced information, that is, the number of nodes. To give an idea in Figure 2, we plot two
sets of n = 1000 scattered and track nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Plot of scattered (left) and track (right) data point sets (n = 1000).

We choose from the literature some well-tried test functions, in order to verify the perfor-
mance of our algorithm: Franke’s test functions f1 (see [26, 28, 53, 39]), f2 and f3 (see [53, 39]
and [53], respectively), and Nielson’s test function f4 (see [29]). The analytic expressions of
such functions are:

f1(x, y) =
3

4
exp

[

−
(9x− 2)2 + (9y − 2)2

4

]

+
3

4
exp

[

−
(9x+ 1)2

49
−

9y + 1

10

]
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+
1

2
exp

[

−
(9x− 7)2 + (9y − 3)2

4

]

−
1

5
exp

[

−(9x− 4)2 − (9y − 7)2
]

,

f2(x, y) = 2 cos(10x) sin(10y) + sin(10xy),

f3(x, y) = exp

[

−
(5 − 10x)2

2

]

+ 0.75 exp

[

−
(5 − 10y)2

2

]

+ 0.75 exp

[

−
(5 − 10x)2

2

]

exp

[

−
(5 − 10y)2

2

]

,

f4(x, y) =
1

2
y cos4

[

4
(

x2 + y − 1
)]

.

The graphs of the test functions are presented in Figure 3 and Figure 4.

Figure 3: Test functions f1 and f2.

Figure 4: Test functions f3 and f4.

Renka’s algorithm we used has been cleaned by all instructions which are unnecessary to
the interpolant evaluation (as for example the evaluation of the interpolant derivatives), thus
obtaining an algorithm to be compared with the strip one. The comparison was performed using
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in the strip algorithm the localizing function τ2. In particular, when we used τ2(t), ǫ was chosen
such that t = 1/2ǫ. Therefore, after algebraic manipulations we obtained ǫ = − log2 2(δL

y )2,

δL
y being the half-size of the square neighbourhood. We extensively tested the choice of the

localizing parameters nL and nW , finding good results for nL = 13 and nW = 8. Other choices
are possible, since they depend on the behaviour of the test function, the node distribution and
the number of the scattered data points.

The Maximum Absolute Errors (MAEs) and the Root Mean Square Errors (RMSEs) were
computed by evaluating the interpolants on s = 51 × 51 grid points. In Tables 1 – 4 we
summarized the results of the numerical experiments performed by the four test functions on
scattered data.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 1.6781E− 2 3.3557E− 3 7.5528E− 4 5.4467E− 4 1.8245E− 4
7.3734E− 4 1.9363E− 4 5.8998E− 5 2.7634E− 5 8.8848E− 6

Strip Algorithm 1.3089E− 2 4.3607E− 3 6.1721E− 4 4.9754E− 4 1.7589E− 4
7.3027E− 4 2.5886E− 4 6.5430E− 5 2.7545E− 5 9.3833E− 6

Table 1: MAEs and RMSEs for the function f1.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 4.9833E− 2 3.4978E− 2 3.3807E− 2 6.4474E− 3 5.6340E− 3
7.3097E− 3 3.3367E− 3 1.6086E− 3 4.7726E− 4 2.1094E− 4

Strip Algorithm 1.7549E− 1 4.5686E− 2 3.1865E− 2 1.0625E− 2 6.7940E− 3
1.0284E− 2 3.2741E− 3 1.5193E− 3 5.0732E− 4 2.2921E− 4

Table 2: MAEs and RMSEs for the function f2.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 4.1001E− 2 1.0284E− 2 1.3655E− 2 1.4885E− 2 4.9019E− 4
2.5745E− 3 9.0061E− 4 4.5809E− 4 3.2302E− 4 4.0059E− 5

Strip Algorithm 3.6862E− 2 1.5808E− 2 4.7287E− 3 2.5127E− 3 5.0930E− 4
2.4492E− 3 9.7451E− 4 2.8984E− 4 1.2813E− 4 3.5490E− 5

Table 3: MAEs and RMSEs for the function f3.

It appears that the two methods are comparable in accuracy. This is not astonishing,
because the methods are very similar, both being modifications of Shepard’s method in which
nodal functions are given by least squares approximants. The slight differences we found in
errors are probably given by the different choices of the nearest neighbours: Renka’s algorithm
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n 1000 2000 4000 8000 16000

Renka’s Algorithm 4.1188E− 2 1.2285E− 2 5.8845E− 3 2.7125E− 3 9.9668E− 4
2.1357E− 3 8.1067E− 4 3.0900E− 4 1.1585E− 4 4.3877E− 5

Strip Algorithm 1.5478E− 1 1.6464E− 2 6.1582E− 3 1.8115E− 3 2.1948E− 3
4.1101E− 3 8.3175E− 4 3.0855E− 4 1.1788E− 4 6.3401E− 5

Table 4: MAEs and RMSEs for the function f4.

works with circular neighbourhoods, while the strip one with square neighbourhoods. Moreover,
the strip algorithm uses τ2 for the weights, while Renka’s algorithm employs different localizing
functions.

In order to improve accuracy we also considered in the modified Shepard’s formula nodal
functions constructed by radial basis functions. Errors obtained with such interpolation scheme
are listed in Tables 5 – 8. The improvement is considerable, since the errors go down of one
or two order of magnitude. This result is given by the faster convergence achieved by radial
basis approximants in comparison with least squares approximants. The values of the shape
parameters in RBFs were chosen to be v = 2, α2 = 10, and c2 = 0.1, and we defined interpolants
so that positive definiteness was guaranteed.

RBF / n 1000 2000 4000 8000 16000

TPS 2.4967E − 2 6.8620E − 3 9.4118E − 3 3.6454E − 3 1.3058E − 3
1.6251E − 3 7.2136E − 4 4.1299E − 4 2.0214E − 4 1.0336E − 4

Gaussian 3.7529E − 3 4.1933E − 4 1.2335E − 4 3.4183E − 5 9.1839E − 6
1.6005E − 4 2.3769E − 5 7.5109E − 6 1.8931E − 6 4.9257E − 7

MQ 2.1801E − 3 4.5492E − 4 9.8712E − 5 3.4742E − 5 8.7795E − 6
1.0290E − 4 2.2912E − 5 5.6799E − 6 1.6311E − 6 4.6664E − 7

IMQ 1.1556E − 3 4.2676E − 4 2.4795E − 4 4.5244E − 5 1.3166E − 5
9.0126E − 5 2.6664E − 5 8.5316E − 6 1.9708E − 6 5.6279E − 7

Table 5: MAEs and RMSEs obtained by the strip algorithm with RBFs as nodal functions for
the function f1.

As we already pointed out, the strip algorithm organizes the nodes and performs the nearest
neighbour procedure in a way particularly suited for the track data interpolation. However,
we found that optimal results are obtained by the strip algorithm also when it is applied to
scattered data. In particular the execution times of the strip algorithm turned out to be lower
than those of Renka’s algorithm, and this can be explained by the smaller computational effort
required by the former. RMSEs and execution times are shown in Table 9 for Renka’s, strip
and IMQ strip algorithms. The plot in Figure 5 compares results obtained by setting nL = 13
and nW = 10, chosen via trial and error. For the strip algorithm we used τ1 as localizing
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RBF / n 1000 2000 4000 8000 16000

TPS 3.0006E − 1 1.6491E − 1 8.3108E − 2 3.0512E − 2 2.5735E − 2
2.0644E − 2 1.1248E − 2 5.9736E − 3 2.7319E − 3 1.4534E − 3

Gaussian 2.5813E − 2 5.0265E − 3 1.3189E − 3 3.8814E − 4 7.8783E − 5
1.1426E − 3 2.8395E − 4 7.0030E − 5 1.5861E − 5 4.7930E − 6

MQ 3.2994E − 2 4.5790E − 3 1.6226E − 3 1.9987E − 4 2.6484E − 4
1.4829E − 3 2.9807E − 4 7.5994E − 5 1.4639E − 5 8.3343E − 6

IMQ 2.7541E − 2 5.5880E − 3 1.9071E − 3 2.2348E − 4 2.3591E − 4
1.5250E − 3 3.2177E − 4 8.1428E − 5 1.6359E − 5 7.4154E − 6

Table 6: MAEs and RMSEs obtained by the strip algorithm with RBFs as nodal functions for
the function f2.

RBF / n 1000 2000 4000 8000 16000

TPS 6.8544E − 2 3.1592E − 2 1.3144E − 2 1.1422E − 2 3.8364E − 3
5.2636E − 3 2.2818E − 3 1.0894E − 3 6.5611E − 4 2.6804E − 4

Gaussian 6.3983E − 3 1.4928E − 3 2.6237E − 4 8.1370E − 5 3.5539E − 5
4.3050E − 4 1.0003E − 4 2.5752E − 5 6.7225E − 6 1.7877E − 6

MQ 3.4521E − 3 1.2618E − 3 3.5140E − 4 1.5780E − 4 1.0098E − 4
3.2219E − 4 9.0324E − 5 2.2263E − 5 6.9405E − 6 2.6136E − 6

IMQ 3.5300E − 3 1.0568E − 3 4.9285E − 4 2.2975E − 4 8.6457E − 5
3.2810E − 4 9.1078E − 5 2.3711E − 5 7.9225E − 6 2.2765E − 6

Table 7: MAEs and RMSEs obtained by the strip algorithm with RBFs as nodal functions for
the function f3.
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RBF / n 1000 2000 4000 8000 16000

TPS 7.8715E − 2 3.6660E − 2 1.9060E − 2 7.0091E − 3 5.9320E − 3
3.6520E − 3 1.6672E − 3 8.9783E − 4 4.4469E − 4 2.5006E − 4

Gaussian 4.7980E − 2 6.6150E − 3 1.0495E − 3 3.4930E − 4 2.3427E − 4
1.3327E − 3 2.1284E − 4 4.4078E − 5 1.5738E − 5 7.8294E − 6

MQ 5.3337E − 2 4.7333E − 3 8.4462E − 4 2.4779E − 4 1.5073E − 4
1.4504E − 3 1.7017E − 4 3.6401E − 5 1.1848E − 5 5.0412E − 6

IMQ 4.6630E − 2 3.8991E − 3 6.9967E − 4 2.0219E − 4 1.3245E − 4
1.2840E − 3 1.5253E − 4 3.4068E − 5 1.0756E − 5 4.2042E − 6

Table 8: MAEs and RMSEs obtained by the strip algorithm with RBFs as nodal functions for
the function f4.

function in the weights. Finally, we note that the execution time is only partially influenced
by the number of evaluations at the grid points (see Table 10).

Renka’s Algorithm Strip Algorithm Strip Algorithm IMQ

n RMSE tsec RMSE tsec RMSE tsec

1000 7.2619E − 4 1.157 8.1573E − 4 0.313 8.8547E − 5 1.000
2000 1.8668E − 4 1.548 2.8286E − 4 0.390 2.7122E − 5 1.172
4000 5.6301E − 5 2.346 7.0714E − 5 0.594 8.7839E − 6 1.438
8000 2.5499E − 5 3.957 3.0269E − 5 1.281 1.9411E − 6 1.985
16000 8.3375E − 6 7.226 1.0297E − 5 2.500 6.6912E − 7 3.781

Table 9: RMSEs and execution times (in seconds) obtained by Renka’s algorithm and the strip
algorithm using the localizing function τ1 with nL = 13 and nW = 10 for f1 (scattered data).

Moreover, Tables 11 – 14 show the errors obtained for track data by running Renka’s
algorithm and the strip algorithm using τ2 as localizing function, and nL = 13, and nW =
8 as localizing parameters for both methods. Errors are comparable when a least squares
approximant as nodal function is used, while the strip algorithm achieves better accuracy if
inverse multiquadric is employed.

RMSEs and execution times for the three algorithms are listed in Table 15 and plotted in
Figure 6. For the strip algorithm we used τ1 as localizing function in the weights. We choose
the localizing parameters as nL = 13 and nW = 10. Note that the execution times of the
strip algorithm are much lower than those obtained using the Renka’s algorithm. The reason is
that the data structure employed in the strip algorithm is suitable for a very fast and efficient
nearest neighbour search.
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Figure 5: Execution times (left) and RMSEs (right) obtained by Renka’s algorithm and the
strip algorithm using the localizing function τ1 with nL = 13 and nW = 10 for f1 (scattered
data).

Grid points tsec – Renka’s Algorithm tsec – Strip Algorithm

11 × 11 = 121 6.484 1.516
21 × 21 = 441 6.640 1.656
31 × 31 = 961 6.671 1.875
41 × 41 = 1681 7.091 2.141
51 × 51 = 2601 7.226 2.500

Table 10: Execution times (in seconds) obtained by Renka’s algorithm and the strip algorithm
for interpolating n = 16000 scattered data by varying the number of grid points.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 5.3868E− 3 1.2528E− 3 7.6312E− 4 2.0570E− 4 9.9957E− 5
3.6136E− 4 1.0363E− 4 4.7247E− 5 1.5379E− 5 5.4384E− 6

Strip Algorithm 5.8467E− 3 1.3175E− 3 5.2584E− 4 1.8865E− 4 7.1485E− 5
4.5837E− 4 1.3966E− 4 4.8517E− 5 1.5662E− 5 5.9763E− 6

Strip Algorithm 8.5119E− 4 5.4292E− 4 1.3898E− 4 1.8309E− 5 4.7704E− 6
IMQ 6.0195E− 5 1.9160E− 5 5.3223E− 6 1.3245E− 6 2.6896E− 7

Table 11: MAEs and RMSEs obtained by Renka’s algorithm and the strip algorithm either
with least squares or inverse multiquadric function as nodal function for the function f1.
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n 1000 2000 4000 8000 16000

Renka’s Algorithm 4.9131E− 2 2.2466E− 2 1.4329E− 2 3.9565E− 3 1.5992E− 3
4.8687E− 3 1.6902E− 3 9.3309E− 4 2.4749E− 4 8.5918E− 5

Strip Algorithm 1.1157E− 1 6.5274E− 2 1.6349E− 2 5.9115E− 3 1.7236E− 3
6.6890E− 3 2.4470E− 3 1.0451E− 3 2.8643E− 4 9.9225E− 5

Strip Algorithm 7.2506E− 3 2.9117E− 3 1.1772E− 3 4.8850E− 4 2.8893E− 5
IMQ 6.9901E− 4 1.8903E− 4 4.9248E− 5 1.5553E− 5 2.3111E− 6

Table 12: MAEs and RMSEs obtained by Renka’s algorithm and the strip algorithm either
with least squares or inverse multiquadric function as nodal function for the function f2.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 2.4941E− 2 8.9470E− 3 1.1832E− 2 1.2963E− 3 5.8299E− 4
2.4595E− 3 6.3990E− 4 5.2097E− 4 9.3484E− 5 3.8863E− 5

Strip Algorithm 3.1233E− 2 7.1965E− 3 8.9015E− 3 7.3296E− 4 7.4650E− 4
2.4415E− 3 6.0235E− 4 4.3469E− 4 6.6895E− 5 3.8891E− 5

Strip Algorithm 2.2564E− 3 4.7039E− 4 8.4037E− 5 3.7584E− 5 8.4982E− 6
IMQ 2.0806E− 4 4.5709E− 5 1.2407E− 5 3.8863E− 6 7.3300E− 7

Table 13: MAEs and RMSEs obtained by Renka’s algorithm and the strip algorithm either
with least squares or inverse multiquadric function as nodal function for the function f3.

n 1000 2000 4000 8000 16000

Renka’s Algorithm 4.4156E− 2 2.5727E− 2 6.7194E− 3 2.2599E− 3 7.6237E− 4
1.8620E− 3 8.5732E− 4 2.8142E− 4 9.1837E− 5 2.8901E− 5

Strip Algorithm 9.3219E− 2 2.0524E− 2 5.6436E− 3 3.4568E− 3 8.5366E− 4
3.4486E− 3 6.5429E− 4 2.7522E− 4 1.0017E− 4 3.5563E− 5

Strip Algorithm 5.2565E− 3 1.4817E− 3 2.7202E− 3 5.7315E− 4 7.1047E− 5
IMQ 3.0229E− 4 6.8442E− 5 1.6652E− 5 1.3570E− 5 1.6744E− 6

Table 14: MAEs and RMSEs obtained by Renka’s algorithm and the strip algorithm either
with least squares or inverse multiquadric function as nodal function for the function f4.
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Renka’s Algorithm Strip Algorithm Strip Algorithm IMQ

n RMSE tsec RMSE tsec RMSE tsec

1000 3.4343E − 4 1.235 4.4996E − 4 0.219 6.0801E − 5 0.484
2000 1.0231E − 4 1.751 1.4960E − 4 0.281 1.9333E − 5 0.594
4000 4.5699E − 5 2.706 4.6879E − 5 0.422 5.5826E − 6 0.797
8000 1.4988E − 5 4.864 1.6810E − 5 0.719 1.3595E − 6 1.266
16000 5.2563E − 6 8.759 5.7719E − 6 1.313 2.7681E − 7 2.157

Table 15: RMSEs and execution times (in seconds) obtained by Renka’s algorithm and the
strip algorithm using the localizing function τ1 with nL = 13 and nW = 10 for f1 (track data).
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Figure 6: Execution times (left) and RMSEs (right) obtained by Renka’s algorithm and the
strip algorithm using the localizing function τ1 with nL = 13 and nW = 10 for f1 (track data).
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7.2 Experiments on spherical interpolation

In this subsection we present a few of many numerical experiments we performed to test and
verify the effectiveness of the proposed algorithm for scattered and track data on the sphere.
In fact, this extensive and detailed investigation gives a numerical validation of the spherical
algorithm, which we implemented in C/C++ language, turning to Matlab environment for
drawing some pictures. Also in this case, all the numerical results are obtained on a Pentium
IV computer (2.8 GHz).

In the various tests we consider some data sets of dimension n = 2i−1 · 103, i = 1, 2, . . . , 5.
In particular, as scattered data points we take Halton points, that is pseudorandom data points
generated on the sphere by using the program proposed in [65] (see also [33]). As track data
points (xi, yi, zi) ∈ S

2 ⊂ R
3, for i = 1, 2, . . . , n, we consider random nodes collocated on or close

to parallel circles which satisfy the basic property characterizing this kind of nodes. Examples
of n = 1000 Halton and track data points are shown in Figure 7 (a) and (b), respectively.

Now, in order to have an idea of the node distribution and to understand how uniform are
the data sets, we consider two common indicators of data regularity: the separation distance

and the fill distance. The former, also referred to as packing radius, is given by

qSn =
1

2
min
i6=j

g(xi, xj),

while the latter, which is a measure of the data distribution, is usually defined as

hSn,Es = sup
x∈Es

min
xj∈Sn

g(x, xj),

where g(·, xj) is the geodesic distance. In Table 16 and Table 17 we report the value of qSn and
hSn,Es for Halton and track data points, respectively.

n 1000 2000 4000 8000 16000

qSn 5.5567E − 3 2.6953E − 3 4.8397E − 4 4.8397E − 4 4.8397E − 4

hSn,Es 1.0778E − 1 8.9836E − 2 6.5901E − 2 4.3906E − 2 3.0152E − 2

Table 16: Separation distance qSn and fill distance hSn,Es for Halton data points on the sphere
by varying n.

The performance of our algorithm is verified taking the data values by the restriction on
S

2 of the following trivariate test functions [49, 35], the last one being the well-known Franke’s
test function (see [50]):

f1(x, y, z) =
1 + 2x+ 3y + 4z

6 ,

f2(x, y, z) =
9x3 − 2x2y + 3xy2 − 4y3 + 2z3 − xyz

10 ,

f3(x, y, z) =
ex + 2ey+z

10
,
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Figure 7: Plots of Halton data points (a) and track data points (b) on the unit sphere (n =
1000).
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n 1000 2000 4000 8000 16000

qSn 4.4123E − 3 2.7094E − 3 1.3627E − 3 7.5835E − 4 2.6344E − 4

hSn,Es 1.1363E − 1 7.9741E − 2 5.5800E − 2 3.9020E − 2 2.9325E − 2

Table 17: Separation distance qSn and fill distance hSn,Es for track data points on the sphere
by varying n.

f4(x, y, z) = sinx sin y sin z,

f5(x, y, z) =
3

4
exp

[

−
(9x− 2)2 + (9y − 2)2 + (9z − 2)2

4

]

+
3

4
exp

[

−
(9x+ 1)2

49
−

9y + 1

10
−

9z + 1

10

]

+
1

2
exp

[

−
(9x− 7)2 + (9y − 3)2 + (9z − 5)2

4

]

−
1

5
exp

[

−(9x− 4)2 − (9y − 7)2 − (9z − 5)2
]

.

Some information about the execution of the interpolation algorithm described in Section
5 is reported in Table 18 and Table 19; specifically, in the track data cases we note that the
spherical zones to be examined are 5 (i.e. k∗ = 5) as a rule, and at least 3 (k∗ = 3) as a
minimum.

Localization phase Evaluation phase

n # zones δZ # iter k1 # zones δW # iter k2

1000 11 0.3020 2 14 0.2261 2

2000 15 0.2131 2 18 0.1768 3

4000 21 0.1506 2 26 0.1249 3

8000 30 0.1064 2 36 0.0883 3

16000 38 0.0833 3 51 0.0624 3

Table 18: Information on spherical algorithm for Halton data points.

We are also interested to stress the effectiveness of the spherical zone searching procedure
which allows to reduce the CPU times. For this reason, we make a comparison among three
algorithms: the spherical interpolation algorithm implemented by using the zone structure on
the sphere, the algorithm where quicksort routines are used but the sphere S

2 is not partitioned
in spherical zones, and the algorithm proposed in [21] using the 3D cell-search method (see Table
20). These results are obtained by using Halton data points and the ZBF ψ6 with localization
parameters nZ = 15 and nW = 10 for the test function f1. We emphasize that the use of the
zone structure produces a considerable saving of time. This result was expected taking into
account the computational costs reported in Section 6.

Then, we focus our attention also on the computation of errors. MAEs and RMSEs are
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Localization phase Evaluation phase

n # zones δZ # iter k1 # zones δW # iter k2

1000 16 0.3020 2 16 0.2261 2

2000 22 0.2131 2 22 0.1597 2

4000 32 0.1506 2 32 0.1129 2

8000 46 0.0798 2 46 0.1064 2

16000 64 0.0752 2 64 0.0564 2

Table 19: Information on spherical algorithm for track data points.

ZONE NO-ZONE 3D CELL
n STRUCTURE STRUCTURE SEARCH

1000 0.481 0.751 166.399
2000 0.841 1.823 375.449
4000 1.702 5.548 916.067
8000 4.026 18.697 2164.322
16000 9.264 68.379 5604.887

Table 20: CPU times (in seconds) obtained by running the spherical zone algorithm, the
algorithm without partitioning in zones, and the 3D cell-search algorithm.

computed by evaluating the interpolants on a set of s = 600 evaluation points, which are
generated by the spiral method of Saff and Kuijlaars [54] and provide a uniform distribution
on the unit sphere. In Tables 21 and 22 we show the MAEs and RMSEs achieved on Halton
points by using ψ4 and ψ6 with γ = β = 0.7, nZ = 15 and nW = 10, for the first four test
functions.

We note that the local scheme is very accurate, especially when the number of data points
grows, even if no search of optimal values for the parameters is performed.

Since the choice of appropriate localizing parameters nZ and nW is a non-trivial problem,
we performed several tests finding via trials and errors good results for nZ = 16 and nW = 9.
These values are not the only allowable; in fact, there are many elements which influence the
final results, such as the data point distribution (in particular the separation distance), the kind
of ZBF basis, the relative value of ZBF’s shape parameter (i.e., if a basis function is “flat” or
“peaked”), the behaviour of the data values (test functions), etc..

In Figures 8 – 11, we plot the behaviour of the RMSEs by varying the shape parameter for
the different zonal basis functions (from ψ1 to ψ8) when the data are scattered, whereas Figure
12 gives an example for the track data case (only with ψ1 and ψ2). All results are obtained on
test function f5. Note that each evaluation is achieved by subdividing the interval of the shape
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n f1 f2 f3 f4

1000 2.5101E − 3 3.7769E − 3 2.0022E − 3 2.0022E − 3
5.0926E − 4 5.1455E − 4 3.3969E − 4 3.3969E − 4

2000 1.2924E − 3 1.0688E − 3 8.5904E − 4 5.8907E − 4
2.0323E − 4 1.7905E − 4 1.4012E − 4 7.3540E − 5

4000 2.4042E − 4 3.1177E − 4 1.9583E − 4 1.3363E − 4
4.7891E − 5 4.9201E − 5 3.3424E − 5 1.6935E − 5

8000 7.4362E − 5 6.4579E − 5 4.0073E − 5 2.4360E − 5
1.2049E − 5 1.0369E − 5 7.8723E − 6 4.0642E − 6

16000 4.5552E − 5 2.2178E − 5 1.8007E − 5 4.9581E − 6
3.3560E − 6 2.8248E − 6 1.9938E − 6 9.0486E − 7

Table 21: MAEs and RMSEs computed on spiral points by using ψ4.

n f1 f2 f3 f4

1000 1.2445E − 3 1.9831E − 3 4.9512E − 4 4.8661E − 4
2.0671E − 4 2.4179E − 4 1.0690E − 4 1.0567E − 4

2000 3.0853E − 4 5.0038E − 4 2.5460E − 4 2.6100E − 4
7.1861E − 5 7.8670E − 5 4.2001E − 5 3.7240E − 5

4000 9.7610E − 5 1.3159E − 4 5.8100E − 5 5.3480E − 5
1.7739E − 5 2.1183E − 5 9.8421E − 6 8.1228E − 6

8000 2.7372E − 5 2.7909E − 5 1.4293E − 5 1.1469E − 5
4.4705E − 6 4.3736E − 6 2.3327E − 6 2.0051E − 6

16000 1.8184E − 5 8.0451E − 6 6.9378E − 6 2.9160E − 6
1.2999E − 6 1.1528E − 6 6.3696E − 7 4.4485E − 7

Table 22: MAEs and RMSEs computed on spiral points by using ψ6.
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parameter into 100 equispaced values.
By analyzing numerical tests and the related pictures, we observe that the spherical Wend-

land’s functions ψ7 and ψ8, which have compact support, reveal a great stability, but they
do not have a so good accuracy as classical zonal basis functions (not compactly supported).
However, these graphs give an idea on the stability and enable us to choose good values for the
shape parameters.

Finally, we use a (fixed) good value of the shape parameter to obtain the numerical results
pointed out in Tables 23 – 28 using ZBFs ψ1 − ψ6 and in Tables 29 – 30 using Wendland’s
functions for scattered data. All tables also contain the exponent of the observed RMSE-
convergence rate O(hrate), which is found by using the formula

ratek =
ln (ek−1/ek)

ln (hk−1/hk)
, k = 2, 3, . . . ,

where the symbol ek is the k-th RMSE, and hk denotes the fill distance of the k-th computa-
tional set.

Observing these errors allows the choice of optimal values for the parameters in the zonal
basis functions, thus obtaining good accuracy and therefore high order of convergence. However,
we remark that convergence orders have not a uniform behaviour. The explanation of this
phenomenon may be found in the really scattered nature of the data sets considered in numerical
tests.
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Figure 8: RMSEs obtained on Halton data points by varying the shape parameter α of ψ1 (left)
and γ of ψ2 (right).

In Tables 31 – 32 we list the results obtained for track data, taking into account errors
reported in the following Figure 12, which refers to the ZBFs ψ1 and ψ2. Also for the special
case of track data we observe the high accuracy of the method.
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Figure 9: RMSEs obtained on Halton data points by varying the shape parameter γ of ψ3 (left)
and ψ4 (right).
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Figure 10: RMSEs obtained on Halton data points by varying the shape parameter β of ψ5

(left) and ψ6 (right).
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Figure 11: RMSEs obtained on Halton data points by varying the shape parameter h of ψ7

(left) and ψ8 (right).

n MAE RMSE rate

1000 1.0593E − 2 1.2491E − 3 −

2000 3.8277E − 3 3.4669E − 4 7.0385

4000 8.7404E − 4 7.0771E − 5 5.1285

8000 1.3837E − 4 1.2958E − 5 4.1806

16000 1.8961E − 5 2.1869E − 6 4.7345

Table 23: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ1 for α = 10
(Halton data).

n MAE RMSE rate

1000 6.2711E − 3 6.2056E − 4 −

2000 3.0984E − 3 1.8504E − 4 6.6447

4000 1.1786E − 3 6.0627E − 5 3.6014

8000 1.2006E − 4 7.6050E − 6 5.1118

16000 1.3208E − 5 7.5592E − 7 6.1432

Table 24: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ2 for γ = 0.6
(Halton data).
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n MAE RMSE rate

1000 6.8931E − 3 6.7388E − 4 −

2000 2.9525E − 3 1.9703E − 4 6.7526

4000 1.2910E − 3 6.2842E − 5 3.6882

8000 1.5016E − 4 8.8239E − 6 4.8341

16000 1.4570E − 5 8.4902E − 7 6.2297

Table 25: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ3 for γ = 0.6
(Halton data).

n MAE RMSE rate

1000 6.0126E − 3 6.2923E − 4 −

2000 2.9243E − 3 1.9192E − 4 6.5205

4000 1.0855E − 3 6.2297E − 5 3.6315

8000 9.5441E − 5 7.6118E − 6 5.1766

16000 1.1349E − 5 1.0378E − 6 5.3023

Table 26: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ4 for γ = 0.6
(Halton data).

n MAE RMSE rate

1000 6.0533E − 3 9.0421E − 4 −

2000 2.6274E − 3 2.7539E − 4 6.5285

4000 1.0009E − 3 7.4065E − 5 4.2386

8000 7.6038E − 5 1.1420E − 5 4.6037

16000 1.8155E − 5 2.2952E − 6 4.2697

Table 27: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ5 for β = 0.6
(Halton data).
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n MAE RMSE rate

1000 6.1548E − 3 6.1353E − 4 −

2000 3.1113E − 3 1.8543E − 4 6.5706

4000 1.1379E − 3 6.0164E − 5 3.6329

8000 1.1595E − 4 7.5365E − 6 5.1152

16000 1.2749E − 5 7.8507E − 7 6.0185

Table 28: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ6 for β = 0.6
(Halton data).

n MAE RMSE rate

1000 1.9172E − 2 1.4975E − 3 −

2000 8.2313E − 3 6.4699E − 4 4.6084

4000 4.0149E − 3 2.7230E − 4 2.7932

8000 7.5092E − 4 1.1269E − 4 2.1725

16000 5.3943E − 4 5.9685E − 5 1.6912

Table 29: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ7 for h = 0.5
(Halton data).

n MAE RMSE rate

1000 6.6524E − 3 6.7099E − 4 −

2000 3.2808E − 3 2.8618E − 4 4.6793

4000 2.1175E − 3 1.2394E − 4 2.7009

8000 1.5393E − 4 1.8853E − 5 4.6371

16000 5.6685E − 5 6.0762E − 6 3.0130

Table 30: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ8 for h = 0.5
(Halton data).
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Figure 12: RMSEs obtained on track data points by varying the shape parameter α of ψ1 (left)
and γ of ψ2 (right).

n MAE RMSE rate

1000 1.6364E − 2 2.0271E − 3 −

2000 3.0162E − 3 3.6511E − 4 4.8400

4000 2.4065E − 3 1.2398E − 4 3.0253

8000 7.2649E − 5 1.2154E − 5 6.4928

16000 4.0557E − 5 3.5696E − 6 4.2894

Table 31: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ1 for α = 10 (track
data).

n MAE RMSE rate

1000 1.4950E − 2 9.6467E − 4 −

2000 3.1752E − 3 1.7236E − 4 4.8627

4000 2.2226E − 3 9.5659E − 5 1.6492

8000 6.7671E − 5 5.1579E − 6 8.1640

16000 3.4004E − 5 2.1975E − 6 2.9871

Table 32: MAEs, RMSEs, and RMSE-convergence rates obtained by using ψ2 for γ = 0.6
(track data).

page 72



G. Allasia et al. DRNA Vol. 3 (2010), 39 – 78

Finally, we compared our algorithm with the ACM Algorithm 773 by R. J. Renka [52]. In
that paper methods and software were proposed to construct C0 and C1 interpolants. Briefly,
they consist of generating a triangulation of the nodes, estimating locally (LG) or globally (GG)
gradients at the nodes (for the C1 interpolants), and constructing a triangle-based interpolant
of the data and gradient estimates. Numerical results concerning the comparison with our code
in terms of accuracy and efficiency are listed in Table 33. We considered the test function f1

and in the modified spherical Shepard’s method the zonal basis functions ψ2 with γ = 0.0002.
The input and output files for the two algorithms are the same, that is the data files already
used in the other tests and the output file of the 600 spiral points used as evaluation data set.
Table 33 shows that CPU times required by the two algorithms are quite equivalent, while
the algorithm using zonal basis functions and the zonal searching procedure is slightly more
accurate. These results were obtained considering a small number of nodes for the localization,
i.e. nZ = nW = 5. We remark that the choice of the localization parameters can lead to a good
compromise between accuracy and efficiency, in such a way that our algorithm is comparable
with the Renka one, and it could be even more accurate.

n 8000 16000

C0 1.3677E − 4 6.9565E − 5
method 0.953 3.047

C1 LG 4.0845E − 6 6.4932E − 6
method 1.297 3.516

C1 GG 4.0901E − 6 6.4917E − 6
method 1.750 4.094

ZBF 3.1288E − 7 1.6786E − 7
method 1.531 4.265

Table 33: Comparison with the ACM Algorithm 773: RMSEs and CPU times (in seconds) on
Halton points for f1.
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