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CQMC: an improved code for low-dimensional Compressed
Quasi-MonteCarlo cubature*
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Abstract

An improved version of Compressed Quasi-MonteCarlo cubature (CQMC) on large low-discrepancy
samples is implemented, on 2D and 3D regions with complex shape. The algorithms rests on the concept
of Tchakaloff set and on NNLS solution of a sequence of “small” moment-matching systems. Examples of
area and volume integration are provided.

1 Introduction
The need for cubature formulas on low-dimensional regions with complex shape has been manifestly emerging in the last years,
especially in the framework of FEM and VEM with curved elements. A typical 2D instance is the intersection (or difference
with holes) of a polygonal element with a curved boundary domain, possibly shaped by splines or NURBS, where accurate
tracking of the resulting element boundary could be very difficult. Even more difficult instances arise with 3D curved polyhedral
elements, where boundary tracking becomes often challenging; we may quote among others, without any pretence of exhaustivity,
[1, 2, 3, 6, 27, 28] with the references therein.

On the other hand, complex integration shapes could arise in several different contexts, such as for example Lagrangian flux
calculation through a fixed curve/surface for scalar conservation laws [36], obscured and vignetted lens configurations in optical
design for astronomy [4, 5], union of several overlapping balls in molecular modelling [23], and many others.

A general purpose but partially overlooked solution to the problem of tracking complex shapes comes from QMC (Quasi-
MonteCarlo) cubature formulas, whenever an implementation of the indicator function for the integration domain is available
(indeed, QMC cubature was mainly thought for high-dimensional integration on standard domains such as cubes and spheres).
We recall that a QMC cubature formula on a compact domain Ω ⊂ Rd corresponds to a equal-masses discrete measure such that

Q( f ) =
vol(Ω)

N

N
∑

i=1

f (x i)≈ I( f ) =

∫

Ω

f (x) d x (1)

where the points X = {x1, . . . , xN} ⊂ Ω are taken from a low-discrepancy sequence, like e.g. Halton and Sobol points. As it
is well-known, roughly the error of QMC formulas with such sampling sequences is close to O(1/N), under mild regularity
assumptions on the integrand f (whereas MC formulas have a probabilistic error O(1/

p
N)). We do not even attempt to recall the

main thoretical and computational aspects of QMC integration, based on notions and results like discrepancy and star-discrepancy,
Hardy-Krause variation, the Koksma-Hlawka and Erdös-Turán-Koksma inequalities, for which refer to relevant and comprehensive
surveys such as [8, 9, 17, 22].

The possible drawback arising when high accuracy is required, i.e. the need of huge low-discrepancy samples, can be coped
using suitable cubature compression techniques. Indeed, a first step with QMC formulas on low-dimensional complex shapes was
made in [7], following the compression method for multivariate discrete measures introduced in [29] and later perfected in [25],
which is based on Caratheodory-Tchakaloff subsampling. The method essentially works as follows: given a discrete measure with
support X = {x i} ⊂ Rd and point masses {λi}, 1≤ i ≤ N , and defining

V (X ) = Vn(X ) = (p j(x i)) ∈ RN×r , N > r , (2)

1 ≤ i ≤ N = card(X ), 1 ≤ j ≤ r = dim(Pd
n(X )), the Vandermonde-like matrix with respect to a total-degree basis {p j} for the

d-variate polynomials of degree not exceeding n restricted to X , one seeks a sparse nonnegative solution to the underdetermined
moment-matching system

V t(X )u= mX , u≥ 0 , (3)

where mX = V t(X )λ= {Q(p j)}, as a NonNegative Least-Squares (NNLS) problem

min{∥V t(X )u−mX∥2 , u ∈ Rr , u≥ 0} . (4)

Existence of a nonnegative solution with a number of nonzeros not exceeding r is guaranteed by the famous Caratheodory
theorem on finite-dimensional conic combinations, applied to the columns of V t(X ). When (X ,λ) is itself an algebraic cubature
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formula on Ω, this is nothing but Tchakaloff theorem on the existence of positive algebraic cubatures [33]. Observe that denoting
by w= {wk = uik : uik > 0} and T = {tk = x ik : uik > 0}, the original discrete measure is compressed into a measure (T, w) with
possibly much smaller support T ⊆ X , such that

V t(T )w= mX , w ∈ Rν , ν≤ r , (5)

or equivalently
ν
∑

k=1

wk p(tk) =
N
∑

i=1

λi p(x i) , ∀p ∈ Pd
n(X ) , (6)

where typically ν≤ r ≪ N , i.e. a substantial compression of the measure has been obtained.
On the other hand, the NNLS problem can be conveniently solved via Lawson-Hanson active set iterative algorithm [20]. It is

worth recalling that the problem of computing a sparse nonnegative solution to the underdetermined moment system V tu= m,
has attracted some attention in the last decade in both the probabilistic and deterministic framework. Indeed, it can be solved also
by other strategies, for example by Linear Programming (LP) instead of Quadratic Programming: we may quote [19, 21, 26, 34]
with the references therein. Nevertheless, in our numerical experience the NNLS approach has shown to be less time consuming
than the LP approach (at least in the Matlab environment), so it has been adopted in all our relevant codes, for example in [25],
where we refer the interested reader for some comparisons.

In the sequel we shall assume that the discrete set X ⊂ Ω is determining for the polynomials of degree not exceeding n, i.e.

r = dim(Pd
n(X )) = dim(Pd

n) =
�

n+ d
d

�

(7)

(or equivalently polynomials in Pd
n vanishing on X vanish everywhere). This is not really restrictive since, as discussed in [14],

with N ≥ dim(Pd
n) uniformly distributed points in a volume the probability that the corresponding Vandermonde matrix has not

full rank is zero. From a deterministic point of view, we may also observe that if Ω satisfies a Markov polynomial inequality, for
example if Ω satisfies an interior cone condition, then a low-discrepancy sequence X is even a norming set for Pd

n on Ω (and thus
obviously Pd

n-determining) as soon as X has a sufficiently small fill distance, i.e., if N is sufficiently large; cf. e.g. [10] for a survey
of such notions and results on polynomial inequalities.

Let us now turn to the QMC cubature framework. In this case we have simply λi = vol(Ω)/N for every i, the compressed
formula will be denoted by

Qc( f ) =
ν
∑

k=1

wk f (tk)≈ I( f ) =

∫

Ω

f (x) d x , (8)

and property (6) reads

Qc(p) =
ν
∑

k=1

wk p(tk) =Q(p) =
vol(Ω)

N

N
∑

i=1

p(x i) , ∀p ∈ Pd
n . (9)

In order to give an error estimate for the compressed cubature, let p∗n denote the best approximation polynomial to a
continuous function f in the uniform norm on Ω, that is

∥ f − p∗n∥∞,Ω = En( f ;Ω) =min
p∈Pd

n

∥ f − p∥∞,Ω . (10)

Then we can write the chain of inequalities

|I( f )−Qc( f )| ≤ |I( f )−Q( f )|+ |Q( f )−Qc( f )| ,

|Q( f )−Qc( f )| ≤ |Q( f )−Q(p∗n)|+ |Q(p
∗
n)−Qc(p

∗
n)|+ |Qc(p

∗
n)−Qc( f )|

≤ |I( f )−Q( f )|+

�

vol(Ω)
N

N +
ν
∑

k=1

wk

�

En( f ;Ω) , (11)

that is we get the error bound
|I( f )−Qc( f )| ≤ |I( f )−Q( f )|+ 2 vol(Ω) En( f ;Ω) , (12)

where we have used the fact that Q(p∗n)−Qc(p∗n) = 0 in view of (9), and that both Q and Qc have positive weights whose sum
equals vol(Ω) (by exactness on constant polynomials).

We recall that the rate of En( f ;Ω) can be estimated depending on the regularity of f as soon as Ω is a so-called “Jackson
compact set”, i.e. a Jackson like inequality is available on Ω. This means that for every s > 0 there exists a positive integer
αs such that for f ∈ Cαs (Ω) there exists a constant Cs( f ) (depending on the partial derivatives of f up to order αs) for which
En( f ;Ω)≤ Cs( f )n−s holds for n> s. Examples are hypercubes with αs = s+ 1 and balls with αs = s. The class is wide, including
e.g. all subanalytic sets, that are finite union of real analytic images of hypercubes; cf. [24] for a survey on the multivariate
Jackson inequality.

The meaning of inequality (12) is that, up to a quantity proportional to En( f ;Ω), the compressed QMC formula retains the
approximation power of the original QMC formula, but using a much lower number of samples. On the other hand, by (9) it
retains exactly the same approximation power of the original QMC formula on polynomials in Pd

n , having the same polynomial
moments up to degreee n. As we shall see in the numerical tests, in 2D and 3D this entails that a compressed sample of tens or
hundreds of points could substitute a huge sample of a million points for sufficiently regular functions.
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2 Improving compressed QMC cubature
A further step in the improvement of low-dimensional QMC compression on complex shapes, can by obtained via the notion of
“Tchakaloff set”, formally introduced by Wilhelmsen in 1976 following previous work by Davis on the proof of Tchakaloff theorem,
cf. [13, 35]. Indeed, consider a finite-dimensional function space S = span{p1, . . . , pr}, r = dim(S), on a compact domain Ω ⊂ Rd ,
satisfying the “Krein condition”, i.e. there exists a function in S not vanishing on Ω (e.g., a polynomial space). Let L be a strictly
positive linear functional on S, i.e. L(p)> 0 for every p ∈ S, p ≥ 0 not identically vanishing on Ω. A Tchakaloff set for L on S is a
subset, say T ⊂ Ω, that contains the support of a Tchakaloff-like representation for L, i.e. L(p) =

∑ν

j=1 w j p(t j) ∀p ∈ S, where
ν≤ r, {t j} ⊂ T and w j > 0 for every j.

Then, under the notations and assumptions above, Davis-Wilhelmsen theorem essentially asserts that

Theorem 2.1. Let Ω, S and L : S→ R as above. Let {x i}∞i=1 be an everywhere dense subset of Ω. Then for sufficiently large k, the set
{x i}ki=1 is a Tchakaloff set for L on S.

A consequence is that a subset
Tk = {x1, . . . , xk} (13)

of a low-discrepancy sequence (like the Halton sequence) for k sufficiently large is a Tchakaloff set for the integral functional
I(p), p ∈ Pd

n (though a threshold for k is not given explicitly by the theorem and seems hard to determine analytically). This is in
turn equivalent to the fact that the matching system with the continuous moments

V t(Tk)u= mΩ , V t(TK) ∈ Rr×k , mΩ =
�

I(p j)
	

1≤ j≤r
, (14)

and thus the NNLS problem minu≥0 ∥V t(Tk)u−mΩ∥2, have a sparse solution if k ≥ r is large enough. Whenever the continuous
moments are available or computable, the results above give a sound base to solve a sequence of “small” NNLS problems until
the residual ∥V t(Tk)u−mΩ∥2 goes below a given tolerance. A similar strategy has been exploited in two recent papers, with
spline-shaped and NURBS-shaped integration domains, where the polynomial moments can be computed by Gaussian quadrature
along the boundary via the Gauss-Green theorem and the underdetermined systems to be solved by NNLS have small dimension,
cf. [30, 32].

On the other hand, by Davis-Wilhelmsen theorem also the QMC functional Q(p), p ∈ Pd
n , has a Tchakaloff representation on a

subset Tk = {x1, . . . , xk} of a low-discrepancy sequence for k sufficiently large, provided that it is a strictly positive functional. This
certainly holds whenever the low discrepancy set X is Pd

n-determining, i.e. polynomials in Pd
n vanishing there vanish everywhere,

a not really restrictive assumption for low-discrepancy sets with N sufficiently large as discussed above (cf. (7)).
Indeed we may expect that also the discrete moment-matching system

V t(Tk)u= mX = V t(X )λ= {Q(p j)} , λ=
vol(Ω)

N
(1, . . . , 1)t , (15)

has a sparse nonnegative solution with number of nonzeros not exceeding r, for k ≥ r sufficiently large. That is, instead of
solving directly the huge (3)-(4) problem, to compress the QMC cubature formula we may reduce to solve a sequence of “small”
NNLS problems

min
u≥0
∥V t(Tkℓ)u−mX∥2 , ℓ= 0,1, 2, ... , (16)

until the residual ∥V t(Tkℓ)u−mX∥2 goes below a given tolerance.
Some computational remarks are in order. First, notice that since X is a (low-discrepancy) sequence, we can take Tkℓ ⊂ TN = X

where kℓ is a subsequence with a given percentage of cardinality increase, like kℓ+1 = (1+ θ )kℓ with k0 ≥ r (as a “rule of thumb”,
in our implementation we have chosen k0 = 8r). Thus, once the Vandermonde-like matrix V (X ) has been constructed to compute
the QMC moments mX , the matrices V (Tkℓ) have not to be computed since they simply are kℓ × N submatrices of V (X ).

Another possible bottleneck, that is computing the low-discrepancy set X when the size of N is huge (like N of the order of
105, 106 and beyond), can be bypassed by precomputing and storing once and for all the points of a reference box, say [0,1]d ,
and then loading and mapping the points by affine transformation into the smallest Cartesian box containing Ω. Of course a key
aspect is then to have at hand a good “in-domain algorithm” for Ω, namely an efficient and robust implementation of the indicator
function. While this can be straightforward when the domain is given by elementary set operations on standard components like
discs and balls or other explicit sublevel sets, as well as polygons and polyhedra for which in-domain algorithms are available, the
problem becomes much more difficult even with domains whose boundary is tracked by standard parametric curves. To this
respect we may quote the recent paper [31], where an efficient implementation of the indicator function for 2D NURBS-shaped
domains is provided.

In order to summarize the algorithm just described, we display below a Matlab function, named CQMC, that represents the
core of the QMC compression procedure (for convenience we have numbered the instructions).

function [T,w,res]=CQMC(deg,X,vol,tol)

% computes a Compressed Quasi-Monte Carlo formula from a large
% low-discrepancy sequence on a low-dimensional compact set
% preserving the QMC polynomial moments up to a given degree,
% via Tchakaloff sets and NNLS moment-matching
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% INPUT:
% deg: polynomial degree
% X: d-column array of a low-discrepancy sequence
% vol: domain volume
% tol: moment-matching residual tolerance

% OUTPUT:
% T: compressed points (subset of X)
% w: corresponding positive weights
% res: moment-matching residual

% 1: preprocessing
% 1.1: cardinality of the low-discrepancy sequence
N=length(X(:,1));
% 1.2: Chebyshev-Vandermonde matrix of degree deg at X
V=dCHEBVAND(deg,X);
% 1.3: dimension of the polynomial space
r=length(V(1,:));
% 1.4: QMC moments
mom=V’*ones(N,1)*vol/N;

% 2: computing the compressed QMC formula
% 2.1: initializing the candidate Tchakaloff set cardinality
k=8*r;
% 2.2: initializing the residual
res=2*tol;
% 2.3: increase percentage of a candidate Tchakaloff set
theta=1;

% iterative search of a Tchakaloff set by NNLS moment-matching
while res>tol && k<=N
% 2.4: d-variate full-rank Chebyshev-Vandermonde matrix at X(1:k,:);
U=V(1:k,:);
% 2.5: polynomial basis discrete orthogonalization
[Q,R]=qr(U,0);
% 2.6: orthogonal moments
orthmom=(mom’/R)’;
% 2.7: nonnegative weights by NNLS
w=lsqnonneg(Q’,orthmom);
% 2.8: moment-matching residual
res=norm(U’*w-mom);
% 2.9: updating the candidate Tchakaloff set cardinality
k=floor((1+theta)*k);
end; % while

% compressed formula
% 2.10: indexes of the positive weights
ind=find(w>0);
% 2.11: compressed support points selection
T=X(ind,:);
% 2.12: corresponding positive weights
w=w(ind);
end % function

Some comments on the routine above are now in order. The first one is a preprocessing stage, where in 1.1-1.4 we begin by
computing the QMC moments up to degree n= deg, and the Vandermonde-like matrix in the total-degree product Chebyshev
basis with graded lexicographical ordering, scaled to the minimal Cartesian box containing the set X . To this purpose we resort to
the Matlab function dCHEBVAND from the package [16].

In the second stage the QMC compression is performed via NNLS and the Lawson-Hanson active set algorithm [20]. Instead
of compressing directly on the whole X , in 2.4-2.9 we implement (15)-(16), working with smaller matrices and seeking a small
as possible Tchakaloff set. Here the matrix U corresponds to V (Tkℓ). We have here adopted the basic Matlab implementation of
Lawson-Hanson algorithm given by the lsqnonneg function. Notice that a discrete orthogonalization of the polynomial basis is
appropriate, to cope possible ill-conditioning that would affect Lawson-Hanson convergence (clearly, the moments have to be
transformed correspondingly to the change of basis).
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Finally, in 2.10-2.12 we select the nonvanishing weights (that are positive by construction) and the corresponding nodes
which are a subset of X . In case the moment-matching tolerance is not reached, still in output we have a compressed formula
with a moment-matching residual res.

3 Numerical examples
In this section we shall test the algorithm on some examples of area and volume integrals, obtaining substantial speed-ups by the
present improved compression procedure given by Algorithm CQMC. In the general case when vol(Ω) is not known or easily
computable (as in the examples below), we have adopted the QMC approximation

vol(Ω)≈ vol(box)N/M , (17)

where N/M is the fraction of M low-discrepancy points of a bounding box that are in Ω.
All the numerical tests of this section have been performed with a M1-chip PC with 16 GB of RAM, running Matlab R2021b.

The Matlab codes and demos are freely available at https://www.math.unipd.it/~alvise/software.html.

3.1 Set operations with 2D NURBS-shaped domains

We begin with some 2D numerical examples, where we generate complex shapes by elementary set operations on curved domains
whose boundary is tracked by NURBS. This is made possible by resorting to a quite recent effective implementation of the indicator
function of 2D NURBS-shaped domains [31]. While on NURBS-shaped domains we have the capability of constructing positive
algebraic cubature formulas [32], the situation changes drastically with union, intersection or set difference, where boundary
tracking becomes a difficult problem. On the contrary, QMC cubature can be easily constructed and conveniently compressed.

For the purpose of illustration we consider complex shapes arising from union, intersection and symmetric difference of the
two NURBS-shaped domains in Figure 1. All the numerical tests of this section have been performed with a M1-chip PC with 16
GB of RAM, running Matlab R2021b. The Matlab codes and demos are freely available at [18].

In Tables 1-3 we show the QMC compression parameters corresponding to M = 106 Halton points of minimal bounding boxes
for the domains, at a sequence of polynomial exactness degrees. For notation clarity we have termed Qold

c the NNLS compressed
QMC formula on the whole X , whereas Qnew

c refers to the compressed QMC formula by Algorithm CQMC.
Observe that with the empirical inizialization k0 = 8r, that has shown to be a good one for the degree ranges of all our 2D

and 3D tests, Qnew
c performs at most 2 iterations and gives moment-matching residuals close to machine precision. Moreover, it

turns out to be several times faster than Qold
c (up to one order of magnitude), except at the highest degree, where however Qold

c
shows large residuals (labeled by a star), correspondingly to cases where the selected nodes are slightly less than the dimension
of the exactness polynomial space.

In order to see the effect on polynomial exactness, in Fig. 2 we display as an example the relative errors

E∗(gk) =
|Q(gk)−Q∗c(gk)|
|Q(gk)|

, ∗= new, old, (18)

corresponding to 100 trials of the polynomial
gk = (ak + bk x + ck y)n (19)

with uniform random coefficients (ak, bk, ck) ∈ [0, 1], together with their logarithmic average
∑100

k=1 log(E∗(gk))/100, in the case
of the union of two NURBS-shaped domains as in Fig. 1 top-left. Notice that for Qnew

c the latter slightly increases with the degree,
remaining however not far from machine precision, as expected from the moment-matching residuals in Table 1. At the same
time, for Qold

c the loss of exactness due to much larger moment-matching residuals is manifest. Quite similar phenomena occur in
the other cases, that we do not report for brevity.

In Table 4 we show the relative errors E∗( fi), i = 1, 2, by the two compressed QMC with respect to the uncompressed one, on
two test functions with different degree of regularity

f1(P) = exp(−|P − P0|2) , f2(P) = |P − P0|5 , (20)

where P = (x , y) and P0 = (1, 0), in the case of the intersection of two NURBS-shaped domains as in Fig. 1 top-right. Again, the
effect of lack of exactness of Qold

c at the higher degrees is clearly visible on the Gaussian function (which is analytic).

3.2 Set operations with 3D elements

As it is known, the need of effective and simple to construct cubature formulas on curved polyhedral elements is still a challenging
problem in the recent implementations of FEM and VEM, but is essential to keep the convergence order of the methods (that can
be lost using linear polyhedral elements); cf., e.g., [1, 2, 6, 28] with the references therein. The difficulty of boundary tracking
can be completely removed by QMC formulas, when the curved elements result from basic set operations of linear polyhedral
elements with curved boundaries, as soon as the indicator function of the curved domain is computable. At the same time, no
local element triangulation is needed.

As an example of potential application, we consider here a situation arising in computational mechanics, where curved
elements can arise from the difference or the intersection of a standard tetrahedral mesh with a ball, in the presence of spherical
holes within a homogeneous solid or spherical inclusions within a composite material, respectively (cf. [3] and the references
therein for a similar 2D model). The moment-matching compression degrees are those most used in the FEM and VEM framework,
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Figure 1: 231 compressed QMC nodes with exactness degree n= 20, on complex shapes arising from union (top-left), intersection (top-right)
and symmetric difference (bottom) of two NURBS-shaped domains (extraction from a million Halton points of domain bounding boxes).

deg 5 10 15 20

card(X ) = 602015
card. Qold

c 21 66 135 225
card. Qnew

c 21 66 136 231
compr. ratio 2.9e+04 9.1e+03 4.5e+03 2.7e+03

cpu Qold
c 4.9e-01 2.2e+00 6.9e+00 1.9e+01

cpu Qnew
c 7.8e-02 2.5e-01 9.3e-01 1.8e+01

speed-up 6.3 8.9 7.4 1.0

mom. resid. Qold
c 9.7e-16 1.7e-15 ⋆ 8.4e-05 ⋆ 1.9e-04

mom. resid. Qnew
c

iter. 1 2.6e-16 1.2e-15 6.1e-02 2.2-04
iter. 2 1.4e-15 3.0e-15

Table 1: Compression parameters of QMC cubature with N = 602015 Halton points on the union of two NURBS-shaped domains as in Fig. 1
top-left.

5 10 15 20
10

-16

10
-15

10
-14

10
-13

10
-12

5 10 15 20

10
-15

10
-10

10
-5

Figure 2: Relative QMC compression errors and their logarithmic average (circles) over 100 trials for Qnew
c (top) and Qold

c (bottom) of random
polynomials (19) on the union of Fig. 1-top left.

namely the even degrees 2, 4, 6 corresponding to the relevant scalar products involved by linear, quadratic or cubic piecewise
polynomial functions.

In Fig. 3 we show 84 nodes for compressed QMC cubature produced by Algorithm CQMC for degree 6 on the intersection
(red bullets) and difference (green bullets) of a tetrahedral element with a ball, starting from a million points of a bounding box.
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deg 5 10 15 20

card(X ) = 255923
card. Qold

c 21 66 133 226
card. Qnew

c 21 66 136 231
compr. ratio 1.2e+04 3.9e+03 1.9e+03 1.1e+03

cpu Qold
c 2.4e-01 1.1e+00 3.1e+00 7.9e+00

cpu Qnew
c 4.0e-02 1.2e-01 2.8e-01 5.8e+00

speed-up 6.0 9.0 11.0 1.4

mom. resid. Qold
c 8.1e-16 1.5e-15 ⋆ 2.8e-05 ⋆ 6.1e-05

mom. resid. Qnew
c

iter. 1 5.8e-16 1.4e-15 1.5e+00 2.6e+00
iter. 2 2.4e-15 1.4e-01
iter. 3 7.0e-15

Table 2: Compression parameters of QMC cubature with N = 255923 Halton points on the intersection of two NURBS-shaped domains as in Fig.
1 top-right.

deg 5 10 15 20

card(X ) = 369831
card. Qold

c 21 66 136 227
card. Qnew

c 21 66 136 231
compr. ratio 1.8e+04 5.6e+03 2.7+03 1.6e+03

cpu Qold
c 2.9e-01 1.4e+00 4.3e+00 1.1e+01

cpu Qnew
c 4.9e-02 1.5e-01 3.2e-01 1.4e+01

speed-up 5.9 9.2 13.4 0.8

mom. resid. Qold
c 1.2e-13 1.5e-15 2.2e-15 ⋆ 1.0e-04

mom. resid. Qnew
c

iter. 1 2.6e-16 1.2e-15 2.6e-01 4.9e+00
iter. 2 1.6e-15 1.4e-03
iter. 3 3.3e-15

Table 3: Compression parameters of QMC cubature with N = 369831 Halton points on the symmetric difference of two NURBS-shaped domains
as in Fig. 1 bottom.

The compression parameters for degrees 2, 4, 6 are collected in Tables 4 and 5. We see that Qnew
c at these degrees is up to 8-9

times faster than Qold
c , and that Qold

c is not always able to produce extremely small residuals as Qnew
c . Similar results, that we do

not report for brevity, are obtained also with more complicated polyhedral elements.

Figure 3: 84 compressed QMC nodes with exactness degree n= 6, on intersection (red bullets) and difference (green bullets) of a tetrahedral
element with a ball (extraction from a million Halton points of domain bounding boxes).
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