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Cubature rules with positive weights on union of disks

Alvise Sommariva a · Marco Vianello a

Abstract

In this work we present a new algorithm that computes cubature formulas with positive weights, interior
nodes and fixed algebraic degree of precision, over domains Ω that are arbitrary union of disks. This
novel approach first determines the boundary ∂Ω and then defines a decomposition of Ω by means of
nonoverlapping circular segments and polygons, where algebraic positive interior rules can be locally
constructed. The resulting global Positive Interior (PI) formula is finally compressed by Caratheodory-
Tchakaloff subsampling implemented via NonNegative Least-Squares.

1 Introduction
Numerical modelling by finite collections of arbitrary disks/balls is relevant in several different applications. Problems involving
disk/ball intersection, union and difference arise for example in computational optics, wireless network analysis, computational
chemistry (Van der Waals molecular modelling); see, e.g., [1, 3, 12, 14, 15, 26] with the references therein. A basic problem is
the computation of areas and volumes of such sets, followed by the more difficult task of computing integrals on them by suitable
cubature formulas, in particular algebraic formulas (i.e., with a given degree of polynomial exactness) having positive weights
and interior nodes (PI-formulas).

In the recent paper [20] we have constructed low-cardinality algebraic PI-formulas on arbitrary disk intersections, the main
tools being subdivision of the intersection into nonoverlapping asymmetric circular sectors, PI algebraic cubature on such sectors
via subperiodic trigonometric Gaussian quadrature [5], and cubature compression via Caratheodory-Tchakaloff subsampling
implemented by NonNegative Least Squares [16]. This work was apparently the first systematic approach to the algebraic
cubature problem on disk intersections, and contained also an approach for disk union, via a basic implementation of the
inclusion-exclusion principle, which however suffers of exponential complexity and is prone to produce a huge number of nodes
and negative weights.

The disk intersection cubature problem, though nontrivial, is somehow simplified by the fact that the intersection is a convex
curvilinear polygon, whose sides are circular arcs. In this paper, we cope the more difficult disk union cubature problem, whose
core is boundary tracking of the resulting intrinsically nonconvex (and possibly multiply connected) curvilinear polygon.

The main lines of the construction are the following. Let Ω = ∪sB(Ps, rs) an arbitrary finite union of closed planar disks
centered at Ps with radius rs. First, we split Ω into its connected components (that are disk sub-unions), namely Ω = ∪kΩk. Notice
that some of the Ωk can be multiply connected if such is Ω. Then, by a boundary tracking algorithm that solves the delicate
problem of detecting the arc components, we are able to split each Ωk into the nonoverlapping union of circular segments Sk, j
(disk portions corresponding to a cut by a straight line) and of a single simple polygon Pk (possibly multiply connected if such is
Ωk), obtaining eventually

Ω= ∪sB(Ps, rs) = ∪k((∪ jSk, j)∪Pk) , (1)

see Figure 1 and also Figure 2 to have an idea of the variety of possible configurations. From this splitting we obtain the algebraic
cubature formulas exact for every polynomial p ∈ P2

n

∫∫

Ω

p(x) dx=
∑

k, j,h

λk, j,h p(xk, j,h) +
∑

k,l

λk,l p(xk,l) =
M
∑

i=1

λi p(xi) =
m
∑

ℓ=1

wℓ p(ξℓ) , {ξℓ} ⊂ {xi}= {xk, j,h} ∪ {xk,l} ⊂ Ω , λi , wℓ > 0 ,

(2)
where the first equality comes from the collection of PI-formulas on circular segments [7] and linear polygons (cf. e.g. [2]), the
second one is simply a renumbering of the overall set of M corresponding nodes, and the third one corresponds to cubature
compression via Caratheodory-Tchakaloff subsampling implemented by NonNegative Least Squares, where a subset of nodes is
extracted and re-weighted preserving the polynomial degree of exactness [16]. We stress that m≤ dim(P2

n) = (n+1)(n+2)/2< M
and m≪ M for the union of a large number of disks (the ratio M/m being roughly proportional to such a number).

In Section 2 we focus on the boundary tracking problem for arbitrary disk unions, that leads in Section 3 to the construction
of high-cardinality PI-formulas by splitting into nonoverlapping circular segments and linear polygons. Such formulas can be
conveniently compressed via NonNegative Least Squares applied to the underdetermined moment system, as shown in Section 4.
Finally, in Section 5 we present some numerical experiments on disk unions with quite complex shape.
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Figure 1: Simply (left) and multiply connected (right) disk union with their nonoverlapping splittings into circular segments and polygon.

Figure 2: Examples of domains Ω that are unions of disks. From left to right a simply connected domain, a disconnected domain, a multiply
connected domain and finally one with disks that are tangent.

2 Boundary tracking
In this section we intend to determine the boundary ∂Ω, where Ω= ∪K

k=1B(Pk, rk). This result will be one of the key points for
providing an algebraic cubature rule on Ω with positive weights and internal nodes. To understand the difficulty of this analysis,
in Figure 2 we illustrate four very different domains Ω, i.e., from the left to the right, a simply connected, a disconnected, a
multiply connected domain and finally one with seven disks that are tangent.

To this purpose, the simplest case is given two disks B1 = B(P1, r1), B2 = B(P2, r2) respectively with centers P1, P2 and radii r1,
r2. First define the interval of angular coordinates IB1 ,B2

⊆ [0, 2π) such that

∂ B1 ∩ ∂ (B1 ∪ B2) = {(x , y) : x = P1(1) + r1 cos(θ ), y = P1(2) + r1 sin(θ ), θ ∈ IB1 ,B2
}.

In other words, IB1 ,B2
is the set of angular coordinates in the range [0,2π) w.r.t P1, center of the disk B1, of the portion of the

boundary of ∂ (B1 ∪ B2) that is also in ∂ B1.
Observe that

• in general, IB1 ,B2
is a pluri-interval (union of disconnected intervals): for example, in Figure 3 IB1 ,B2

= [0,π/4]∪[5π/4, 2π);

• if B1 ∩ B2 = ; then IB1 ,B2
= [0,2π);

• if ∂ B1 and ∂ B2 are tangent in a point T then if B1 ⊂ B2

∂ B1 ∩ ∂ (B1 ∪ B2) = ∂ B1 ∩ ∂ B2 = T

and thus IB1 ,B2
consists of the angular value of the polar coordinates of T with respect to P1, otherwise

∂ B1 ∩ ∂ (B1 ∪ B2) = ∂ B1

Figure 3: In this example, the set IB1 ,B2
corresponds to the angles determining the arc in cyan, i.e. IB1 ,B2

= [0,π/4]∪ [5π/4, 2π). The set IB2 ,B1
corresponds to the angles determining the arc in green, i.e. IB2 ,B1

= [π/4, 7π/4].

Dolomites Research Notes on Approximation ISSN 2035-6803



Sommariva · Vianello 75

and IB1 ,B2
= [0,2π).

• in general, in view of its definition, IB1 ,B2
may not be equal to IB2 ,B1

, indeed in Figure 3 IB2 ,B1
= [π/4,7π/4].

In the more general case of Ω= ∪K
k=1Bk where Bk := B(Pk, rk), it is not difficult to see that the portion of ∂ Bk that is in ∂Ω

corresponds to
∂ Bk ∩ ∂Ω= {(x , y) : x = Pk(1) + rk cos(θ ), y = Pk(2) + rk sin(θ ), θ ∈ Ik := ∩l ̸=k IBk ,Bl

}

Q

Q

Figure 4: Left: Example of a disk, the lower one, with an isolated point Q belonging to the boundary of the union of disks. Right: Example of a
disk, the inner one, with an isolated point Q belonging to the boundary of the union of disks.

Also notice that Ik is in general a pluri-interval, i.e. the union of some disconnected subintervals of [0,2π), some of which
may actually be isolated points and in this case they can be dropped since they actually do not contribute to the determination of
∂Ω. In view of this last observation, we will define I∗k as Ik without isolated points. It is easy to see that the set I∗k may be:

• equal to the empty set and in this case the disk Bk is completely in the interior of Ω or has some point belonging to the
boundary that does not add any contribution to the definition of ∂Ω;

• equal to [0,2π), i.e the interior of the disk Bk does not intersect the interior of any other disk;

• union of disconnected intervals I∗k,1, . . . , I∗k,µk
where we can suppose after a suitable reordering that max I∗k, j <min I∗k, j+1 for

j = 1, . . . ,µk − 1, and in particular none of them are isolated points.

Applying the same procedure to all the disks Bk, k = 1, . . . , K, we get all the sets ∂ Bk ∩ ∂Ω, k = 1, . . . , K in terms of
Ik = ∩

µk
j=1 IBk ,B j

and next I∗k after purging Ik of possible isolated points. As previously stated, we can suppose that the pluri-interval
I∗k can be described as I∗k = ∪

µk
j=1 I∗k, j where max I∗k, j <min I∗k, j+1 for j = 1, . . . ,µk − 1.

At this point we can also require that all the disks Bk provide some not empty sets I∗k , otherwise they do not give any
contribution to the determination of ∂Ω= ∂ (∪K

k=1Bk) and can be dropped without any consequence.
Now we intend to determine the boundary of each connected component of Ω as a sequence of arcs, each one having

intersection with the next one only on its final extrema. To help the reading, see Figure 4.
Let

γk, j := {(x , y) : x = Pk(1) + rk cos(θ ), y = Pk(2) + rk sin(θ ), θ ∈ I∗k, j},

for k = 1, . . . , K , j = 1, . . . ,µk be the arcs defining the boundary. Furthermore let I∗k, j = [ak, j , bk, j] and set

γ
(1)
k, j = (Pk(1) + rk cos(ak, j), Pk(2) + rk sin(ak, j))

γ
(2)
k, j = (Pk(1) + rk cos(bk, j), Pk(2) + rk sin(bk, j)),

i.e. the two extremal points of the arc γk, j , for k = 1, . . . , K , j = 1, . . . ,µk.
Letting Γ1,1 = γ1,1, we have two possibilities:

• γ(1)1,1 = γ
(2)
1,1 in which case we have determined a closed arc Γ1 := γ(1)1,1 of ∂Ω, i.e. an arc where the first and final extrema

coincide, that is the whole boundary of an isolated disk;

• γ(1)1,1 ̸= γ
(2)
1,1 in which case, by construction, there is exactly one arc, say Γ1,2 := γk, j such that γ(1)k, j = γ

(2)
1,1.

This procedure can be iterated until for a certain L1 the last extrema of the arc Γ1,L1
is equal to the first extrema of Γ1,1.

At this point, if no arc is available, i.e. all the arcs γk, j , k = 1, . . . , K , j = 1, . . . ,µk took part in the process, then we have
determined the boundary of ∂Ω and it corresponds to Γ1 = ∪

L1
i=1Γ1,i , otherwise we pick randomly one of the missing γk, j and

repeat the procedure to compute Γ2 and if necessary, Γ3, . . . , Γν, until all the arcs γk, j , k = 1, . . . , K , j = 1, . . . ,µk took part of the
process.

Notice that, since the single circle arcs are counterclockwise tracked, as a result whatever is the order of the disks in the
union, the outer boundaries are counterclockwise tracked, as well as in the multiply connected case the inner boundaries are
clockwise tracked; see Figure 1 to have an idea.

When the procedure ends, we have determined the boundary of the domain, as ∂Ω= ∪νi=1Γi , i.e. of ν possibly disconnected
and closed curves, each being piecewise arcs.

Some of the main worries of this algorithm concern how it treats some pathological cases:
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1,4

1,2

1,3

1,1

Figure 5: Union of disks and arcs determining its boundary. The first arc Γ1,1 has the red dot as first extremal point γ(1)1,1.

• two connected closed arcs Γi , Γ j , with i ≠ j, are somewhere tangent: in this case, the boundary is still defined correctly, as
consequence of the fact that if two disks are tangent then I∗B1 ,B2

= I∗B2 ,B1
= ; ;

• Ω is not a connected region: the algorithm detects correctly its boundaries since in two disconnected regions all the arcs in
the first one are not connected to arcs in the second one, so providing two different Γk.

3 Construction of algebraic PI-formulas on union of disks
Once that the boundary ∂Ω is described via its closed curves Γ1, . . . , Γν, that are its outer and inner boundaries, we are ready to
determine the cubature formula. For the sake of simplicity, we initially suppose that each of its possibly disconnected components
Ωk are simply connected, so that Γk = ∂Ωk are outer boundaries.

We seek an algebraic PI-formula with Algebraic Degree of Exactness ADE = n. In view of the addivity of the integral, this is
immediately obtained by collection of PI-formulas with ADE = n on each Ωk, and in turn these can be obtained by nonoverlapping
splitting of Ωk.

Indeed, we start observing thatΩk is the union of say Lk circular segments and a polygon Pk. More precisely, since Γk = ∪
Lk
j=1Γk, j

for some arcs Γk,1, . . . , Γk,Lk
, letting Γ (1)k, j , Γ (2)k, j the extrema of each Γk, j (ordered counterclockwise), we have that Ωk is the union of

1. the circular segments Sk, j , j = 1, . . . , Lk whose boundary is defined by Γk, j and the linear segment connecting Γ (2)k, j with Γ (1)k, j ,

2. the polygon Pk whose sides are the segments obtained by connecting Γ (1)k, j with Γ (2)k, j for j = 1, . . . , Lk.

Notice that taken any two of these circular segments cannot overlap, otherwise there would be an arc portion of one segment,
that is a portion of the boundary of Ω, contained in the interior of another, that is in the interior of Ω. This also implies that Pk is
a simple polygon, otherwise we would have two overlapping circular segments.

We are now ready to determine a cubature formula on Ωk. Again, by additivity of the integral, it is sufficient to have an
algebraic PI-formula with ADE = n on the circular segments Sk, j and on the simple polygon Pk.

Figure 6: Product Gaussian quadrature nodes of algebraic exactness degree n= 6 on two circular segments with angular extension π/2 (left)
and 3π/2 (right).

Concerning circular segments, by no loss of generality (up to a rotation and a translation) we can consider a circular segment,
say S, of a disk centered at the origin with radius r, corresponding to a vertical cut with angular extension say 2σ, 0< σ < π;
see Figure 6. Then following [7], by the injective transformation x(u,θ ) = (r cos(θ ), ru sin(θ )), u ∈ [−1, 1], θ ∈ [0,σ], and the
same with θ ∈ [−σ, 0], both with Jacobian r2 sin2(θ ), we get the cubature formula of product Gaussian type

∫∫

S

p(x) dx=
1
2

∫ 1

−1

∫ σ

−σ
p(x(u,θ )) r2 sin2(θ ) dθ du=

⌈ n+1
2 ⌉
∑

s=1

⌈ n+2
2 ⌉
∑

t=1

λs,t f (xs,t) =
⌈ n+1

2 ⌉⌈
n+2

2 ⌉
∑

h=1

λh f (xh) , ∀p ∈ P2
n(S)
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λs,t = r2 sin2(ϕt)ωs zt , xs,t = (r cos(ϕt), rus sin(ϕt)) , (3)

where {(us,ωs)} are the nodes and weights of the algebraic Gauss-Legendre formula for degree n in [−1,1], and {(ϕt , zt)} are
the angular nodes and weights of the subperiodic trigonometric Gaussian formula for degree n+ 2 in [−σ,σ] developed in
[6] (the last sum in h simply corresponds to a renumbering of the nodes). Indeed, the key points are that p(x(u,θ)) sin2(θ) ∈
Pn([−1,1])

⊗

Tn+2[−σ,σ]) that is the tensor product space of univariate algebraic polynomials of degree not exceeding n
and univariate trigonometric polynomials of degree not exceeding n+ 2 (where subperiodicity means that the trigonometric
polynomials are restricted to a subinterval [−σ,σ] of the period), and that the nodes are substantially repeated twice by symmetry.
The corresponding Matlab code gqcircsegm.m can be found at [21].

Concerning the simple polygon Pk, whose number of sides is Lk, i.e. the number of circular segments pertaining to Ωk,
we have adopted the algebraic cubature rule with positive weights and internal points on general polygons, even not simply
connected or disconnected, implemented in [2]. In such cases, the corresponding algorithm determines a minimal triangulation
of the polygon (via the Matlab polyshape and triangulation routines), with a number of triangles equal to Lk −2, and then,
by the best known rules over each triangle with ADE = n, a PI cubature formula on the whole polygon.

-
k,1

-
k,2

+
k

Figure 7: A multiply connected union and the definition of its boundary.

The case in which a component Ωk is not simply connected is a little more complicated. Suppose that its outer boundary is Γ+k
while Γ−k,1, . . . , Γ−k,sk

are the closed curves determining the inner boundaries, one for each possible hole (see Figure 7).
The component Ωk is the union of

1. the circular segments defined by the arcs in Γ+k ,

2. the circular segments defined by the arcs in each Γ−k,1, . . . , Γ−k,sk
,

3. the not simply connected polygon Pk having as sides the segments connecting each of the previous arcs.

Observe that again ∂Pk does not cross itself, that is Pk is a simple polygon with holes.
One of the possible difficulties, in the case of a not simply connected domain, consists in detecting the boundary of a connected

but not simply connected component of Ω. Consider two closed curves Γ1, Γ2. Let P1, P2 be respectively the polygons obtained by
connecting the subsequent vertices of the arcs determining, respectively, Γ1 and Γ2. Then, if P1 contains in its interior a vertex of
P2, necessarily Γ2 is the boundary of a hole inside the region spanned by Γ1.

Once we have determined Γ+k , Γ−k,1, . . . , Γ−k,sk
, we can obtain a PI cubature formula on this subdomain, by a PI algebraic rule on

the not simply connected polygon Pk (having as outer vertices the extremal points of its ordered sequence of arcs, and as inner
vertices the extremal points of the ordered sequence of arcs of each Γ−k, j , j = 1, . . . , sk), and PI formulas constructed as described
above on the remaining circular segments, whose union is the closure of Ωk\Pk.

The collection of all these PI cubature formulas provides eventually a PI cubature formula exact on P2
n

∫∫

Ω

p(x) dx=
∑

k, j,h

λk, j,h p(xk, j,h) +
∑

k,l

λk,l p(xk,l) =
M
∑

i=1

λi p(xi) , ∀p ∈ P2
n , (4)

where the first sum corresponds to the collection of circular segments {Sk, j} and the second to the collection of the (possibly
multiply connected) polygons {Pk}, whereas the final sum is simply a renumbering of the whole set of nodes. Notice that,
denoting by L =

∑

k Lk the overall number of circular segments (that is tipically proportional to the number of disks, or
more precisely to the number of disks which contribute to the boundary of the union), and recalling the classical lower
bound [23] for a cubature formula with ADE = n that is Vn = dim(P2

[n/2]) ≈ (1 + n/2)(2 + n/2)/2 = (n + 2)(n + 4)/8,
we get that the cardinality of the polygon cubature formula is at least (L − 2C)Vn ≈ (L − 2C)(n + 2)(n + 4)/8, where C
denotes the overall number of connected components of the union. Then the overall cardinality M is at least of the order of
L(n+ 1)(n+ 2)/4+ (L − 2C)(n+ 2)(n+ 4)/8> LN/2+ (L − 2C)N/4= (3L/4− C/2)N . This possibly large cardinality M can
be reduced to at most N = dim(P2

n) by Caratheodory-Tchakaloff subsampling, as described in the next subsection, obtaining a
compression ratio of at least 3L/4− C/2.
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3.1 Caratheodory-Tchakaloff subsampling

The possibility of reducing the cardinality of a PI cubature formula inserts in the more general problem of measure compression,
that is finding a discrete representative with low-cardinality finite support of a given multivariate measure, keeping invariant
a certain number of polynomial moments. Such a problem has a long history, dating back at least to V. Tchakaloff with his
celebrated theorem in 1957 [24].

Technically, in the case of a starting discrete measure (like a cubature formula) with high-cardinality support X = {x1, . . . ,xM} ⊂
Rd and positive point-masses array λ= (λ1, . . . ,λm), the problem can be formulated as that of finding a subset of the support,
say {ξ1, . . .ξm} ⊂ X such that

M
∑

i=1

λi p(xi) =
m
∑

ℓ=1

wℓ p(ξℓ) , ∀p ∈ Pd
n ,

or equivalently in matrix terms finding a sparse nonnegative solution u ∈ RM of the underdetermined moment system

u≥ 0 : V tu= b = V tλ , V = [p j(xi)] , 1≤ i ≤ M , 1≤ j ≤ N , (5)

where V is a Vandermonde-like matrix in any total-degree polynomial basis span(p1, . . . , pN ) = Pd
n , and b = (b j) =

�∑M
i=1 λi p j(xi)

�

is the corresponding moment array. We recall that existence of a nonnegative solution u∗ with a number of nonzeros m≤ N is
ensured by the well-known Caratheodory theorem [4] on conical linear combination of a set of N < M vectors in RM , applied to
the columns of V t . The nonzero components of u∗ then are the new weights {wℓ} associated to a reduced support {ξℓ} ⊂ X .

Over the past decade, there has been a renewed interest in the numerical as well as in the probabilistic literature on the
solution of (5) by optimization algorithms, namely by Linear or Quadratic Programming; cf. e.g. [11, 16, 25] with the references
therein. Here we adopt the NNLS (NonNegative Least-Squares) approach developed in [22, 16] that consists in solving

compute u∗ : ∥V tu∗ − b∥2 =min
u≥0
∥V tu− b∥2 , (6)

by Matlab implementations of the well-known Lawson-Hanson active-set algorithm [13], which automatically determines a
sparse solution to (6). Its application gives a residual ε= ∥V tu∗ − b∥2 that is typically very small, say < 10−14 for n≤ 30. We
point out that there are several versions of NNLS codes available in Matlab. One is the built-in function lsqnonneg, based
on the Lawson-Hanson algorithm while an open-source version is present in the package NNLSlab [18]. A new and promising
acceleration of the Lawson-Hanson algorithm is implemented in the routine LHDM first discussed in [10], based on the concept of
column selection by deviation maximization instead of standard column pivoting for QR factorizations (cf. also [8, 9] for a full
theoretical and numerical analysis of the deviation maximization approach).

We can then conclude by stressing that by Caratheodory-Tchakaloff compression of the PI cubature formula for arbitrary disk
union developed above, we are able to provide a final PI formula whose support is a subset of the original one, with cardinality
not exceeding the dimension of the exactness polynomial space. The corresponding Matlab codes are freely available at [19].

Remark 1. It is worth obtaining an estimate of the convergence rate by the PI cubature formulas just derived, related to the
integrand smoothness. Denoting by p∗n the best uniform approximation polynomial in P2

n to a continuous integrand f on Ω, we
get easily the estimate

�

�

�

�

�

∫∫

Ω

f (x) dx−
m
∑

ℓ=1

wℓ f (ξℓ)

�

�

�

�

�

≤
�

�

�

�

∫∫

Ω

( f (x)− p∗n(x)) dx

�

�

�

�

+

�

�

�

�

�

∫∫

Ω

p∗n(x) dx−
m
∑

ℓ=1

wℓ p∗n(ξℓ)

�

�

�

�

�

+

�

�

�

�

�

m
∑

ℓ=1

wℓ (p
∗
n(ξℓ)− f (ξℓ))

�

�

�

�

�

≤

�

area(Ω) +
m
∑

ℓ=1

wℓ

�

∥ f − p∗n∥∞,Ω = 2 area(Ω)∥ f − p∗n∥∞,Ω

where we have used the fact that the formula is exact in P2
n so that the second summand on the first row vanishes, and that the

weights are positive. On the other hand

∥ f − p∗n∥∞,Ω ≤ ck n−k

 

n−1
k
∑

α1+α2=0

∥∂ α1
x ∂

α2
y f ∥∞,Ω +

∑

α1+α2=k

oscΩ(∂
α1
x ∂

α2
y f ; 1/n)

!

, ∀ f ∈ C k(Ω) ,

where oscΩ is the oscillation on Ω of a continuous function, i.e. oscΩ(g;h) = sup{|g(u)− g(v)| , u,v ∈ Ω , |u− v| ≤ h}, and ck
is a positive constant. The convergence rate shown in the last bound is a consequence of a classical Jackson-like estimate for
multivariate euclidean balls by Ragozin [17, Thm. 3.4, p. 164], via the immediate property that the maximum uniform error on
a finite union is the maximum of the uniform errors on the single components.

4 Numerical experiments
The purpose of this section is to numerically compare the cubature rules obtained with the present algorithm with that implemented
in [20] by the inclusion-exclusion principle, also reporting for the latter the presence of negative weights. Our numerical tests
have been performed on a Apple M1 CPU with 16 GB of RAM, using Matlab R2022a. The open source codes are available at [19].

We consider three different domains, having a complicated geometry:
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• the simply connected domain Ω1 is the union of 15 random disks, with all the centers contained in the square [0, 1]× [0, 1]
and random radii in [0,1] (see Figure 8-left);

• the domain Ω2 is Ω(r1)
2 ∪Ω

(r2)
2 , where Ω

(r j )
2 , j = 1,2, is the union of 19 disks with centers P

(r j )
k = (r j cos(θk), r j sin(θk)),

where θk = 2kπ/19, k = 0, . . . , 18 and radius equal to r j/4, with r1 = 2 and r2 = 4; notice that the set is the disconnected
union of two multiply connected unions (see Figure 8-center);

• the domain Ω3 is the union of the sets Ω(1)3 , Ω(2)3 defined as follows; letting tk = 5k/44, k = 0, . . . , 44, the set Ω(1)3 is the
union of the disks with centers P(1)k = (2.5cos(2tk), 2tk) and radius r(1)k = 0.3, while Ω(2)3 is the union of the disks with
centers P(2)k = (2.5 sin(2tk), 2tk) and radius r(2)k = 0.3; the set is connected but not simply connected (see Fig, 8-right).

In the Tables, varying the domains, we display the quality of the cubature rules, named F(ull), C(ompressed) and O(ld), on a
sequence of exactness degrees. We may observe that:

• we get always cardC = N = dim(P2
n)< cardF ≪ cardO and remarkable compression ratios cardF/cardC varying in the

examples from about 4 to more than 100 (indeed we expect, as discussed above after formula (4), a ratio size of at least
3/4 the number of circular segments involved);

• the number negwO of negative weights of the old formula implemented in [20] is a consistent fraction of the overall weights,
and the stability parameter σO =

∑

|wO|/
∑

wO (not reported for brevity), independently of the degree is σO ≈ 213.0 on
Ω1, σO ≈ 1.785 on Ω2 and σO ≈ 1.675 on Ω3, while for both the new rules is always equal to 1 since all the weights are
positive;

• we compare the moments with respect to the product Chebyshev basis of the smaller cartesian boxes containing the
domains Ωk, via the new rule and the compressed one (using LHDM for solving the NNLS problem), by means of the Root
Mean-Square Deviation RMSDF,C = ∥bF − bC∥2/

p
N and RMSDF,O = ∥bF − bO∥2/

p
N , both being extremely small with the

first not far from machine precision and the second at most of the order of 10−12;

• CPUF , CPUC , CPUO are the detected cputimes and show that: (i) the new rule for mild degrees is faster than that proposed
in [20]; (ii) boundary tracking time (not reported for brevity) requires on average respectively 6e-3s, 3e-2s, 2e-1s; (iii) as
expected, the compression stage becomes relevant when one increases the ADE.

Figure 8: From left to the right, the domains Ω1, Ω2, Ω3 in which we perform our tests. In each of them we represent in black and red respectively
the new cubature pointset and the compressed one, for ADE = 5.

Table 1: Comparison of cubature rules with ADE n= 5,10, 15,20, 25, on the disk union Ω1 (F=Full, C=Compressed, O=Old).

ADE card F cardC cardO RMSDF,C RMSDF,O negwO C PU F C PUC C PUO

5 81 21 447584 4e− 16 2e− 12 223672 4e− 03 5e− 03 1e+ 01
10 252 66 1166652 8e− 16 2e− 12 583056 4e− 03 9e− 03 2e+ 01
15 498 136 2465379 9e− 16 1e− 12 1232082 4e− 03 4e− 02 2e+ 01
20 839 231 3921247 1e− 15 1e− 12 1959716 4e− 03 2e− 01 3e+ 01
25 1261 351 6103524 1e− 15 1e− 12 3050292 6e− 03 8e− 01 4e+ 01

5 Conclusion
We have implemented an algorithm that computes an algebraic Positive-Interior cubature formula on an arbitrary union of planar
disks. The outcome of the algorithm gives several interesting information on such sets, that could be useful in applications where
modelling by finite disk collections is adopted. In fact the algorithm:

• detects the connected components of the union;
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Table 2: As in Table 1 for the disk union Ω2.

ADE card F cardC cardO RMSDF,C RMSDF,O negwO C PU F C PUC C PUO

5 1444 21 1632 4e− 14 8e− 14 1056 6e− 02 5e− 02 9e− 01
10 4560 66 4896 1e− 14 4e− 14 3168 6e− 02 9e− 02 9e− 01
15 8968 136 9792 2e− 14 2e− 14 6336 6e− 02 2e− 01 9e− 01
20 15124 231 16456 4e− 14 1e− 13 10648 6e− 02 6e− 01 9e− 01
25 22724 351 24752 6e− 14 1e− 13 16016 8e− 02 8e− 01 9e− 01

Table 3: As in Table 1 for the disk union Ω3.

ADE card F cardC cardO RMSDF,C RMSDF,O negwO C PU F C PUC C PUO

5 2878 21 6824 6e− 15 9e− 13 3112 2e− 01 2e− 01 3e+ 01
10 9060 66 19224 6e− 15 1e− 12 9216 2e− 01 3e− 01 3e+ 01
15 17836 136 39384 6e− 15 9e− 13 18522 2e− 01 4e− 01 3e+ 01
20 30073 231 64614 7e− 15 9e− 13 30976 2e− 01 1e+ 00 3e+ 01
25 45188 351 98644 1e− 14 9e− 13 46732 3e− 01 3e+ 00 3e+ 01

• detects the outer and possible inner boundaries of each connected component (i.e. detects also the possible holes providing
their boundary);

• constructs nodes and weights of a PI-formula exact for polynomials of a given total-degree, with cardinality increasing
proportionally to the overall number of disks times the degree squared;

• allows then to compute immediately at machine precision some relevant features in applications, such as the area of the
union and its first and second monomial moments (i.e. its “center of mass” and “moment of inertia” for a constant density);

• finally, provides a compressed PI-formula with cardinality not exceeding the dimension of the exactness polynomial space,
irrespectively of the overall number of disks.
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