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Variably scaled kernels: an overview

Milvia Rossini a

Abstract

This paper aims to provide an overview of variably scaled kernels introduced in [10] and review their
applications highlighting the contribution by Stefano De Marchi and his collaborators, especially in the
theoretical study of the so–called variably scaled discontinuous kernels.

1 Introduction
Variably scaled kernels (VSKs) are introduced in [10] to provide an alternative technique to handle the problem of choosing the
scale or shape parameter in kernel–based interpolation problems. The idea is to define a scale function

c : Ω ⊂ Rd → R, (1)

and to transform an interpolation problem from data-sites x j , j = 1, . . . , N in Rd to data locations (x j , c(x j)) in Rd+1 and to
use a fixed–scale kernel on Rd+1. The (d + 1)–variate solution is then evaluated at (x , c(x)) for x ∈ Rd and gives the d–variate
interpolant with a varying scale with x . Various examples in [10], show how VSK interpolants provide better results both in
terms of stability and accuracy than the fixed–scale kernels. They work quite well in cases spoiled by a considerable instability
of the standard method and they can significantly improve the recovery quality by preserving shape properties and particular
features of the function underlying the given data. In addition, the background theory coincides with fixed–scale interpolation on
the sub–manifold of Rd+1 given by the points (x , c(x)) of the graph of c.

This paper aims to review the applications and further studies on VKSs that the scientific community has been pursuing in
recent years. Important protagonists are certainly Stefano de Marchi and his collaborators, especially for the theoretical study of
the so–called variably scaled discontinuous kernels (VSDKs).

The outline of the paper is as follows. In Section 2 we briefly review the main theoretical aspects of kernel–based interpolation,
the role of the shape parameter for fixed scale kernels, spatially variable scale parameters, and the VSK theory. Section 3 deals
with stability issues while Section 4 shows how a proper choice of the scaling function c allows for a faithful interpolation of
the function underlying the given scattered data and highlights how they can be a valuable tool to approximate non–smooth
functions. Section 5 is devoted to the special case of variably scaled discontinuous kernels (VSDKs). Finally, concluding remarks
are drawn in Section 6.

2 Background

2.1 Preliminaries

The reader can refer to [37, 67, 75] for more details on the topic. A symmetric kernel

K : Ω×Ω→ R

defined on a domain Ω ⊆ Rd is very useful for a variety of purposes going from interpolation or approximation to solving PDE, if
certain nodes or centers X = {x1, . . . , xN} ⊂ Ω are used to define kernel translates K(·, x j) as trial functions.

If the kernel is positive definite, i.e. the kernel matrices with elements K(x i , x j), 1 ≤ i, j ≤ N are positive definite for all
choices of nodes, there is a native Hilbert space NK(Ω) in the background in which the kernel is reproducing, i.e.

g(x) = (g, K(·, x))NK (Ω) ∀x ∈ Ω, ∀g ∈NK(Ω).

The use of reproducing kernels in Hilbert spaces leads to various optimality properties and applications. Interpolation of values

{ f1, . . . , fN} on X = {x1, . . . , xN} (2)

proceeds via solving a linear system
AX a = f, f= [ f1, . . . , fN ]

T ,

with interpolation matrix AX = (K(x j , xk))1≤ j,k≤N , which is positive definite. The coefficient vector a ∈ RN then allows the
interpolant function to be written as

sX ,f(x) =
N
∑

j=1

a j K(x , x j). (3)
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By adding a lower degree polynomial to (3), the existence of a solution is ensured also for conditionally positive definite kernel.
In the sequel we consider radial kernels, i.e.

K(x , y) = φ(∥x − y∥2)

for a scalar function
φ : [0,∞)→ R.

The function φ is called radial basis function (RBF).

When dealing with scattered data and kernel–based interpolation, two indicators of data regularity have to be considered:
separation and fill–distances.

Definition 2.1. The separation–distance is

qX =
1
2

min
i ̸=k
∥x i − xk∥2 . (4)

It represents the radius of the largest ball that can be centered at every point in X such that no two balls overlap.

Definition 2.2. The fill–distance is

hX = sup
x∈Ω

�

min
xk∈X
∥x − xk∥2
�

. (5)

The quantity (5) is a measure of data distribution and indicates how well the data fill out the domain Ω. It denotes the radius of
the largest empty ball that can be placed among the data locations. They are respectively related to the interpolation matrix
conditioning and to the accuracy of the solution. It is worthwhile to remember the uncertainty or trade–off principle: there is
always a conflict between the theoretical accuracy that one can obtain and the numerical stability (see e.g. [68] and [70]). For
well–distributed data (i.e. qX ≈ hX ) a small error bound usually implies a large condition number of AX .

2.2 Scaled Kernels

It is well-known that kernels on Rd can be scaled by a positive factor δ. This turns to have a new kernel

K(x , y;δ) = K(x/δ, y/δ), ∀x , y ∈ Rd . (6)

In general, a large δ increases the ill–conditioning of kernel matrices, while small δ let the translates turn into sharp peaks which
approximate functions badly, if separated too far from each other.

The shape or scale parameter can be tuned by the user (according to the applications) and it plays an important role both in
the accuracy of the method and its stability. How to choose the scale parameter δ is a well-documented problem but not been
solved yet. It started with Hardy many years ago with multiquadrics. When working with a fixed scale one has several possibilities.
The most popular ones are to pick the parameter by some ad hoc criterion as done by Hardy and later by Franke (see [40] and the
reference therein), or to choose the parameter by some optimal criterium based for instance on a variant of the cross–validation
approach (leave-one-out) [63] and on its extension applied in the setting of iterated approximate moving least squares [40]
or in a more general k-fold cross validation deterministic and stochastic setting [52, 56]. Further optimization and searching
techniques were considered in [20, 21, 72]. A special case of scaling is the flat limit δ→∞ (see e.g. [36, 43, 48, 49, 69]).

Typically, optimal values, i.e. shape parameters providing good accuracy, give instability. As shown by R. Schaback in [70],
trade–off Principle between error and stability is unavoidable and "If users have strong reasons to insist on very good accuracy,
they have to face serious evaluation instabilities” and it is a challenge to cope with these. The literature on kernel-based methods
provides several of such techniques, e.g. Contour-Padé [42], RBF-QR [38, 41], and Hilbert-Schmidt-SVD in [39, Chapter 13]. In
[29] it is presented a rescaled-method based on a proper selection of the supports of compactly supported basis functions that
allows keeping the ill–conditioning under control.

People considered also the possibility to have the scale of a kernel translate varying with the translation. This means working
with functions

φ(∥x − x j∥2/δ j), 1≤ j ≤ N

in the radial case, [11, 44, 47]. In these cases, it is easy to come up with examples that let interpolation fail for certain non–uniform
choices of scale parameters. But in [9] sufficient conditions for the unique solvability of such interpolation processes are given.

This non–constant shape parameters framework is commonly referred to as interpolation with variable shape kernels when
δ j = δ(x j) for some smooth function δ and with random shape kernels when δ j is a positive random variable following some
probability distribution. See [22] where various random distributions were numerically examined for Gaussian and anisotropic
Gaussian kernels.

2.3 Variably Scaled Kernels

So far, it is clear the importance of the scale parameter or scale parameter vectors, and, to make more effective their potential, the
vector case can be generalized by introducing a scale function. In [10], this is done by letting the scale parameter be an additional
coordinate. This continuously allows varying scales without leaving the well–established theory of kernel–based interpolation. It
turns out that this approach can be fully understood as the standard fixed–scale method applied to a certain sub-manifold of Rd+1.
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Definition 2.3. Let K be a kernel on Rd+1. If a scale function

c : Rd → (0,∞)

is given, we define a Variably Scaled Kernel (VSK) on Rd by

Kc(x , y) = K((x , c(x)), (y, c(y))), ∀x , y ∈ Rd . (7)

If K is positive definite on Rd+1, so is Kc on Rd . Then interpolation of (2) proceeds as usual by solving a linear system Ac,X a = f
with a positive definite kernel matrix Ac,X = (Kc(x j , xk))1≤ j,k≤N .
A VSK interpolant is then written as

sc,X ,f(x) =
N
∑

j=1

a j Kc(x , x j) =
N
∑

j=1

a j K((x , c(x)), (x j , c(x j))),

and if the kernel K(x , y) = φ(∥x − y∥22), the interpolant is

sc,X ,f(x) =
N
∑

j=1

a jφ(∥x − x j∥22 + (c(x)− c(x j))
2).

Note that the interpolant is identical to the standard one if the scale function c is constant.
The scale function c(x) introduces a map

C : x 7→ (x , c(x)) (8)

that maps the space Rd into a d-dimensional sub–manifold C(Rd) of Rd+1 and a set of nodes X = {x1, . . . , xN} ⊂ Ω ⊂ Rd goes into
C(X ) ⊂ C(Ω) ⊂ C(Rd) ⊂ Rd+1. As a consequence, interpolation by the fixed-scaled kernel K takes place on Rd+1 at the point set

C(X ) = {(x1, c(x1)), (x2, c(x2)), . . . , (xN , c(xN ))}.

This means that in Rd+1 the kernel K(C(x), C(y)) is used and if we project points C(x) = ((x , c(x)) ∈ Rd+1 back to x ∈ Rd , the
projection of the kernel turns into the VSK Kc(x , y) on Rd , and the analysis of error and stability of the variably–scale problem in
Rd coincides with the analysis of a fixed–scale problem on a sub–manifold in Rd+1. This gives rise to two native spaces NK(C(Ω)),
and NKc

(Ω) that are isometric [10, Theorem 3.1].

The fill–distance (5) and the separation–distance (4) will transform with C , and will roughly be multiplied by a factor related to
the norm of the gradient of c or to the Lipschitz constant L of c, depending on the regularity of c. Namely,

∥C(x)− C(y)∥22 = ∥x − y∥22 + (c(x)− c(y))2

≤ ∥x − y∥22(1+ L)2

∥C(x)− C(y)∥22 ≥ ∥x − y∥22.

This shows that distances will blow up with C , letting separation–distances never decrease, thus enhancing stability. Fill–distances
may also blow up, increasing the usual error bounds. But this argument shows that one can successfully use the varying-scale
technique on points x j and xk that have very small separation–distances until one roughly gets that the transformed centers are
approximately uniformly distributed, that is

qC(X ) ≈ hX ≈ hC(X ),

improving in this way the interpolation matrix condition number and preserving the accuracy.
The examples in [10], show how this can be done in practice. Suitable choices of C make VSKs rather effective when a

considerable instability of standard methods spoils the results, or can significantly improve the recovery quality by preserving
shape properties and particular features of the underlying function. The following paragraphs discuss these issues through some
practical choices of the map C .

3 Stability issues
Let us start with the one-dimensional case with Ω = [−1,+1]. and two configurations of data-sites: Chebyshev points of the
second kind, x j = − cos(π( j − 1)/(N − 1)), 1≤ j ≤ N , and scattered (random) points. As test function we consider the Runge
function f (x) = 1/(1+ 25x2), and samples of size N = 35,45,55. The data samples will be both exact and affected by a small
additive noise from a normal distribution with zero mean and standard deviation σ. As a specific case, we choose the Gaussian
kernel at the fixed scale 0.1 ·

p
2.

3.1 Chebyshev points

For Chebyshev points the fill–distance behaves like 1/N , while the separation–distance behaves like 1/N 2, and this leads to
a very large condition in the kernel matrices, no matter which kernel is chosen. To handle that, the most natural choice is
to map the interval Ω = [−1,+1] ⊂ R to the semi–circle C1(Ω) ⊂ R2 via C1(x) = (x ,

p
1− x2). Then the resulting points are

equidistant, and the separation–distance will now behave like the fill–distance (see Table 1), i.e. like 1/N , and we can work with
a single–scale kernel in R2 for interpolation in C1(X ). The condition numbers of the fixed–scale and VSK matrices together with
the maximum interpolation errors e∞ for exact and noisy data with σ = 0.001 are given in Table 2. If there is no noise, the
single–scale methods are slightly superior despite the growing ill–conditioning. When small additive noise corrupts the data,
the bad condition spoils the results very seriously while, as expected, the significant reduction in the condition numbers of VSK
matrices saves the situation.
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N hX qX hC1(X ) qC1(X )

35 4.560e-02 2.133e-03 4.612e-02 4.618e-02
45 3.533e-02 1.274e-03 3.567e-02 3.569e-02
55 2.852e-02 8.459e-04 2.879e-02 2.908e-02

Table 1: Fill-distances and separation-distances of the given Chebyshev points and of the mapped ones by C1.

N cond fixed–scale fixed-scale e∞ fixed scaled e∞ (noise) cond VSK VSK e∞ VSK e∞ (noise)
35 3.269e+10 6.606e-04 2.000e-01 1.496e+02 7.888e-04 2.959e-03
45 2.004e+15 8.028e-05 7.398e+00 6.569e+03 1.273e-04 2.683e-03
55 9.783e+17 1.093e-05 3.298e+00 7.102e+05 1.871e-05 3.457e-03

Table 2: Interpolation of Runge function by fixed-scale and variably scaled Gaussians on Chebyshev nodes.

3.2 Scattered points

As shown in [10], even with scattered points {x1, x2, . . . , xN} in [−1, 1], it is possible to build a continuous map C2(x) = (x , c2(x))
that maps them into equidistant points z j ∈ R2. If hX is the fill–distance of the given points, one can guarantee

∥z j+1 − z j∥22 = (x j+1 − x j)
2 + (c j+1 − c j))

2 = αh2
X , α≥ 1,

by choosing
c j+1 = c j +
q

αh2 − (x j+1 − x j)2,

starting with c1 = 0. This gives a monotonic sequence, and by piecewise linear interpolation one obtains C2 with C2(x j) = z j , 1≤
j ≤ N , and c2(x) monotone increasing. Experiments with this strategy show a similar behavior as in the previous example. Table
3 displays the fill-distances and separation-distances of the given points and of the mapped ones by C2, when α= 1.5.

N hX qX hC2(X ) qC2(X )

35 1.420e-01 9.014e-04 1.752e-01 1.753e-01
45 6.968e-02 9.014e-04 8.830e-02 8.836e-02
55 6.968e-02 9.014e-04 8.811e-02 8.836e-02

Table 3: Fill-distances and separation-distances of the given scattered points and of the mapped ones by C2.

For N = 55, Figure 1 (left) shows the monotonic function c2 that increases sharply where there are nearby points, while it is
flat over holes in the node set.
Unfortunately, the non–differentiability of the map C2 and its very edgy behavior spoils convergence rates, but thanks to the
very low condition number of the VSK matrices, if we have noise with σ = 0.001, the variably scaled method outperforms the
fixed–scale one confirming once again to be stable and robust.

Another way to improve both the accuracy and the stability is to find "smoother" maps that reduce separation–distances without
increasing fill–distances too much. This can be done with a map C3(x) = (x , c3(x)) (see Figure 1, right) with

c3(x) =
N
∑

j=1

p j(x), (9)

where the functions
p j(x) = 1/π (arctan(γ j |(x − x j)|) + β)

increase more steeply at x j with a larger value of γ j , if the local density of the data locations is large at x j . The parameter β has
been selected via trials and errors. The results obtained with β = 0.1 are depicted in Tables 5 and 6. We observe that both the
growths of hC3(X ) and qC3(X ) are moderate. The growth of qC3(X ), although being very moderate, makes sure to lower the condition
number to levels that allow the backslash MatLab operator to provide reliable solutions. This and the fact that the fill–distance
remains of the same order as that of the given points improves the accuracy too. The scaling function (9) can be extended to
the two-dimensional case. Actually the 2D version C(x , y) = ((x , y), c(x , y)) was initially introduced in [10] to enhance the
interpolant reproduction quality. Here we consider

c(x , y) =
N
∑

j=1

p j(x , y), p j(x , y) = 1/π (arctan(γ j |(x − x j)|) + β) exp (−5 (y − y j)
2). (10)

Also, in this case, we look for "large” values of γ j when the point density is large around x j . Nevertheless, as observed in [34],
this could be computationally expensive and that is why here we fix γ j = 5e− 6 for all j = 1, ..., N . As before, β = 0.01 has
actually been selected via trials and errors. Table 7 provides fill and separation–distances for the mapped points compared with
the ones of the original point sets which are Halton points in [0,1]2 together with the corresponding kernel matrix condition
numbers. It is clear that stability is improved.

Dolomites Research Notes on Approximation ISSN 2035-6803



Rossini 65

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

Figure 1: Left: the monotonic scale function c2 with α= 1.5. Right: the scale function c3. N = 55.

N cond fixed–scale fixed-scale e∞ fixed-scale e∞ (noise) cond VSK VSK e∞ VSK e∞ (noise)
35 1.853e+12 6.976e-03 2.438e+01 1.009e+00 5.864e-01 5.865e-01
45 5.980e+17 3.960e-04 3.531e+01 2.430e+00 2.538e-02 2.505e-02
55 2.004e+17 2.741e-03 7.634e+02 2.432e+00 1.727e-02 1.846e-02

Table 4: Interpolation of Runge function by fixed-scale and variably scaled by c2 Gaussians on scattered points (α= 1.5).

3.3 Final remarks on stability and related papers

The above examples show how the proper use of the variable scale kernel Kc , i.e. a proper choice of C(x) = (x , c(x)) always leads
to a more stable interpolant and this is crucial for applications. So far, VSKs have been used with success in various articles. In
solving magnetohydrodynamic equations, [35] uses an ad hoc c(x , y) depending on the parameters of the considered problem. In
[59] an adaptive learning algorithm for RBF neural networks is implemented on variably scaled kernels with the scaling function
c2. The algorithm turns out to be accurate and stable especially for noisy data sets. The map C1 is used in [58] to provide a
meshless method to solve Burgers’ equation which constructs derivatives discretizations based on variably scaled Newton basis
functions for localized sets of nodes.
Stefano De Marchi and his collaborators perform in [33] a local computation via the partition of unity method of rational RBF
interpolants. The proposed method allows us to consider large data sets but might suffer from instability due to the ill-conditioning
of the local interpolation matrices. To avoid this drawback, they develop a stable computation of the rational RBF local interpolants
employing the VSKs, and given that the local domains Ωi are circular patches, they consider the following scale functions

ci(x , y) = 0.5+
Æ

υ+ [(x − x̃ i)2 + (y − ỹi)2], (x , y) ∈ Ωi , υ≥ 1,

that maps the circular patches centered in ( x̃ i , ỹi) on a semi-sphere of radius υ. They also remark that in compactly supported
RBFs, the scale function enables the user to control the sparsity of the interpolation matrix and the scale function

c(x , y) = ν
p

x2 + y2, ν≥ 1

makes the sparsity of the interpolation matrix grows with ν.

As mentioned before, (10) has been used in [34] where we investigate adaptivity issues for the approximation of Poisson equations
via radial basis function-based partition of unity collocation. The adaptive residual sub-sampling approach is performed with
quasi-uniform node sequences leading to a flexible tool which however might suffer from numerical instability that is overcome
by a hybrid method that makes use of VSKs scaled by (10) with γ j = 7e− 6, and β = 0. VSKs with the same map are used also
in [14] to provide a reliable approximation of the solution of elliptic partial differential equation with a singular forcing term,
describing a steady state flow determined by a pulse-like extraction at a constant volumetric rate.

4 Improving reproduction quality
VSKs can significantly improve the recovery quality by preserving shape properties and particular features of the underlying
function. In this section we consider data sampled from smooth functions. We start with a simple 1D example. We consider the
logistic function

f (x) =
1

Æ

1+ 2 exp−3 (10
p

2x2 − 6.7)
, (11)

and we take the N = 11 nodes X = {0, 0.2, 0.35, 0.4, 0.45, 0.5, 0.52, 0.66, 0.8, 1} with higher density where the function
changes more quickly and a lower density where it is nearly constant. We interpolate the set (X , f (X )) by using the C2 Wendland
RBF with δ = 10. As shown in Figure 2 (left), the fixed-scaled interpolant exhibits an undesired oscillation. If we consider as scale
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N hX qX hC3(X ) qC3(X )

55 6.968e-02 9.014e-04 7.988e-02 9.442e-04
75 5.219e-02 1.470e-05 6.571e-02 1.704e-05
95 4.043e-02 1.470e-05 4.309e-02 1.660e-05

Table 5: Fill-distances and separation-distances of the given scattered points and of the mapped points by C3.

N cond fixed–scale e∞ fixed–scale cond VSK e∞ VSK
55 2.004e+17 2.741e-03 1.250e+12 1.020e-03
75 6.814e+17 1.245e-03 9.787e+13 8.468e-05
95 2.063e+18 6.721e-05 6.085e+14 7.552e-06

Table 6: Interpolation of Runge function by fixed-scale and variably scaled by c3 Gaussians on scattered points.

function for the Wendland VSK c(x) = f (x), the interpolant behaviour is definitely improved (see Figure 2, right). This is obvious
as we are using complete information about the function we want to recover, but in general, this is not possible. Therefore finding
a scale function that incorporates the features of the underlying function is a challenging problem. The examples in [10], reveal
that using as scale function a "tight” multiquadric interpolant of the given data provides good results. Indeed, provided that some
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Figure 2: Dashed black line: f (x). Black dots: the given sample. Left: The C2 Wendland interpolant. Right: The VSK C2 Wendland interpolant.

a priori knowledge on the data sample is known, we can easily encode such information into the kernel and the VSKs can be
also seen in the context of feature augmentation tools. Precisely, and as underlined by [17], many methods based on feature
augmentation, e.g., zero padding and feature replication [25, 51, 57] fall into the general VSK setting. In [15] and [16], the
authors present a novel procedure for the extrapolation from samples that decay with an exponential or rational trend. In this
situation the scaling function is defined as a parametric weighted sum of a finite number of exponential terms, whose parameters
are deduced by a non-linear fitting of the samples. In [60] and [61] VSKs are used for interpolating hard X-ray visibilities where
the scaling function is defined by exploiting prior information on the flaring source. In this context, VSKs allow remarkable
image reconstruction accuracy when the information on the flaring source is encoded by a small set of scattered Fourier data and
when the visibility surface is affected by significant oscillations in the frequency domain. The link between VSKs and the field
of machine learning is investigated in [17] with a particular focus on support vector machine classifiers and kernel regression
networks where they propose to use a probabilistic approach based on the naive Bayes classifier in the first case, and non-linear
fitting of the data as an augmented feature in the second case. Under appropriate assumptions, the VSKs turn out to be more
expressive and more stable than standard kernels.

It is now well established that VSKs are an effective tool when one needs to interpolate data sampled from a non-regular
function. In 1D, f and/or its first derivative may be discontinuous at some points while in 2D, we assume that f is smooth
on n disjoint subsets Ωi of Ω such that Ω = ∪n

i=1Ωi , and that f or its gradient is discontinuous across ∂Ωi which represents
respectively the edges (faults) or gradient faults of f . It is evident that kernel–based methods are in principle not suitable for
non–regular function reconstruction since the obtained interpolant are linear combinations of translates of smooth functions
(at least continuous), so undesired artifacts appear in the final solution, i.e. the so–called Gibbs phenomenon occurs near the
edges or, in the case of gradient discontinuities, creases are over-smoothed. VSKs contribute to filling the gap between the
reconstruction of non-regular functions and kernels methods, and feature augmentation with suitable scaling functions allows us
to incorporate non–regular behaviors in a very simple way and make the VSKs truly performing especially when information
on singularities in the underlying function is a priori known. This was initially observed in the master thesis [18] and further
explored in [66] in the case of functions with discontinuous derivatives. Around the same time, discontinuous scale functions
were employed for edge detection [64] while their use in the reconstruction of discontinuous functions began to be studied by De
Marchi and his collaborators.
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N hX qX hC(X ) qC(X ) cond fixed–scaled cond VSK
81 1.272e-01 5.667e-04 1.278e-01 5.685e-04 1.202e+17 2.774e+03

256 8.367e-02 2.579e-04 8.512e-02 2.955e-04 2.538e+17 2.212e+04
1024 3.521e-02 1.584e-04 7.112e-02 2.077e-04 9.255e+17 2.826e+05
2048 2.873e-02 8.317e-05 8.478e-02 1.681e-04 1.785e+18 1.131e+06
4096 2.195e-02 2.513e-05 6.519e-02 6.606e-05 3.778e+18 2.310e+08

Table 7: Fill-distances, separation-distances of Halton points, of mapped ones by (10) and the associated kernel matrix condition numbers.

Here are some examples in one and two dimensions that confirm what has been stated above and show a way to define suitable
scaling functions. In what follows we use the C2 Wendland kernel.

Example 4.1. Let us consider the test function

f (x) =

(

sin2x , −1≤ x ≤ −0.3
0.2 exp (−x2) + 0.1, −0.3< x ≤ 0.1
|x2 − 0.49|, 0.1< x ≤ 1,

sampled at N = 55 scattered points in [−1,1]. We encode in the C2 Wendland kernel, as additional coordinates, three scaling
functionsψ1,ψ2,ψ3. The first two are step functions that mimic the jumps at x1 = −0.3, and x2 = 0.1, while the third mimics the
corner at x3 = 0.7 (see Figure 3,left). For a generic interval [a, b] and discontinuity point x∗ for f ′, ψ3 is defined as (see [66])

ψ3(x) =
§

1− 3/2|x − x∗|/R+ 1/2|x − x∗|3/R3, |x − x∗|< R,
0, otherwise, (12)

where 2R is the support of ψ3(x) which goes to zero smoothly. Extensive experiments have shown that R had to be chosen less
than (b − a)/2. Actually, we obtain fully equivalent results with the scale function ψ in Figure 3 (right). Figure 4 shows the
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Figure 3: Left: ψ3. Right: ψ. (R= 2).

standard fixed–scaled (δ = 1) C2 Wendland interpolant (right) and the VSK one (left) that outperforms the standard method as
also shown by the root mean square error e2 and maximum error e∞ in Table 8.
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Figure 4: Dashed black line: f (x). Left: fixed scale interpolant. Right: VSK interpolant.
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error fixed-scale VSK
e∞ 0.4739e+00 5.853e-03
e2 0.1212e-02 1.695e-05

Table 8: Example 4.1: Maximum and root mean square errors.

error fixed-scale VSK
e∞ 0.60881e+00 6.704e-03
e2 0.67831e-03 5.716e-06

Table 9: Example 4.2: Maximum and root mean square errors.

Example 4.2. We consider N = 625 Halton points in Ω= [0, 1]2 and the corresponding values sampled from the test function
depicted in Figure 5 (left)

f (x , y) = |y − 0.75− 0.1 sin(2π x)|+
§

x2, if(x − 0.3)2 + (y − 0.3)2 < (0.15)2

y2 − 0.5, otherwise, (x , y) ∈ Ω= [0,1]2,

which is discontinuous across ∂Ω1 = (x − 0.3)2 + (y − 0.3)2 = (0.15)2 and has first partial derivatives discontinuous across
∂Ω2 = y − 0.75− 0.1 sin(2π x) = 0. In this case, we can define the scale function that mimics both the jumps and the creases as

ψ(x , y) = χ(x−0.3)2+(y−0.3)2<(0.15)2 +
§

1− 3/2|y − Γ (x)|/R+ 1/2|y − Γ (x)|3/R3, |y − Γ (x)|< R,
0, otherwise, (13)

where Γ (x) = 0.75+ 0.1 sin(2π x), and R= 0.5 (see Figure 5, right). As in the previous example, we could have encoded the
different features by two scaling functions. Figure 6 shows the standard fixed–scaled (δ = 10) C2 Wendland interpolant (left)
and the VSK one (right) that, as expected, reproduces the features of the underlying function. The root mean square error e2 and
maximum error e∞ are given in Table 9.

Figure 5: Left: the test function f (x , y). Right: The scaling function (13).

5 Variably scaled discontinuous kernels
The examples 4.1 and 4.2 help us understand that the construction of a discontinuous kernel via a VSK is particularly simple,
indeed it is enough to use a piecewise constant scale function. Although a discontinuous kernel based on a Mercer decomposition
is given in [71], not much effort has been addressed to construct robust approximants for functions with jumps. This is done by
Stefano De Marchi and his collaborators in [31] where they define this new class of variably scaled discontinuous kernels, and
provide very general error bounds in terms of the power function. More precisely they consider the following setting:
Assumption 5.1. (i) The bounded set Ω ⊂ Rd is the union of n pairwise disjoint sets Ωi , i ∈ {1, . . . , n}.

(ii) The subsets Ωi have a Lipschitz boundary ∂Ωi .

(iii) Let Σ= {α1, . . . ,αn}, αi ∈ R. The function ψ : Ω→ Σ is piecewise constant so that ψ(x) = αi for all x ∈ Ωi . In particular,
the jumps of ψ appear only at the boundaries of the subsets Ωi . We assume that αi ≠ α j if Ωi and Ω j are neighboring sets.
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Figure 6: Left: fixed scale interpolant. Right: VSK interpolant.

The associated VSK Kψ is only piecewise continuous and denoted as variably scaled discontinuous kernel (VSDK). The scale
function ψ can be seen as the limit for k→ +∞ of a suitable sequence of continuous scaling functions {ψk}k∈N and this allows
them to prove the following error bound.

Proposition 5.1 ([31]). Let X = {x1, . . . , xN} be a set of distinct points in Ω and ψ be defined as in (5.1). Then for all f in the
native space of Kψ, NKψ(Ω)

| f (x)− sψ,X ,f(x)≤ PX ,Kψ(x)∥ f ∥NKψ
(Ω), x ∈ Ω

where PX ,Kψ is the power function.

As in the classical case, the error is bounded in terms of the power function and consequently takes into account both the VSK
and the given centers. The native space for VSDKs and error estimate in terms of global fill–distance for VSDK interpolation are
characterized by S. De Marchi and his collaborators in [28]. Based on the decomposition of the domain Ω, we define for s ≥ 0
and 1≤ p ≤∞ the following spaces of piecewise smooth functions on Ω:

WPs
p(Ω) =
¦

f : Ω→ R | fΩi
∈Ws

p(Ωi), i ∈ {1, . . . , n}
©

.

Here, fΩi
denotes the restriction of f to the subdomain Ωi and Ws

p(Ωi) denote the standard Sobolev spaces on Ωi . As norm on
WPs

p(Ω) we set

∥ f ∥pWPs
p(Ω)
=

n
∑

i=1

∥ fΩi
∥pWs

p(Ωi )
.

We also introduce the regional fill–distance hi on the subset Ωi:

hi = sup
x∈Ωi

inf
xi∈X∩Ωi

∥x − x i∥2,

and the global fill–distance
h= max

i∈{1,...,n}
hi .

The piecewise Sobolev space WPs
p(Ω) and the corresponding norm strongly depend on the decomposition of the domain Ω.

However, for any decomposition of Ω in Assumption 5.1, the standard Sobolev space Ws
p(Ω) is contained in WPs

p(Ω) and the
native space associated with Kψ is, under the assumptions of Theorem 5.2, the piecewise Sobolev space WPs

2(Ω). In fact we can
prove [28]:

Theorem 5.2. Let Assumption 5.1 hold true, and assume that the continuous strictly positive definite kernel K : Rd+1 ×Rd+1→ R
based on the radial basis function φ has the Fourier decay

φ̂(∥ · ∥)(ω)∼ (1+ ∥ω∥22)
−s− 1

2 , s >
d − 1

2
. (14)

Then, for the discontinuous kernel Kψ, we have
NKψ(Ω) =WPs

2(Ω),

with the norms of the two Hilbert spaces being equivalent.

Dolomites Research Notes on Approximation ISSN 2035-6803



Rossini 70

Sobolev–type error estimates, based on the global fill–distance h, are given in the following theorem.

Theorem 5.3. Let Assumption 5.1 be satisfied. Further, let s > 0, 1 ≤ q ≤∞ and m ∈ N0 such that ⌊s⌋ > m+ d
2 . Additionally,

suppose that the RBF φ satisfies the Fourier decay (14). Then, for f ∈WPs
2(Ω), and for all h≤ h0, we have that

∥ f − sψ,X ,f∥WPm
q (Ω)
≤ Chs−m−d(1/2−1/q)+∥ f ∥WPs

2(Ω)
. (15)

The constant C > 0 is independent of h.

The numerical experiments in [28, Section 4] confirm the theoretical error estimates given in Theorem 5.3 and, as already
observed above, show that if the discontinuities of a function are a priori known, the interpolation model based on the discontinuous
kernels is significantly better than fixed-scaled interpolation. On the other hand, the outcome of the variably scaled kernel
interpolation depends sensitively on the scaling function ψ i.e. on a correct knowledge of the subdomain Ωi boundaries. Therefore,
if the VSDK interpolation scheme is applied in a setting in which the edges are not known, a robust edge estimator is needed. In
[28, Section 4] some possible choices for such an estimator are discussed. They are essentially based on support vector machine
algorithms from machine learning (see e.g. [74] for a survey on the topic) that can be applied directly to scattered data and
provide segmentation of the domain Ω. Among the possible labeling strategies, one can use thresholds based on function values
or RBF coefficients [64]. Of course, other techniques could be used. There is extensive literature for gridded data, and in addition
to classical methods such as the Prewitt and Sobel algorithms, as well as the well-known Canny algorithm (see, e.g., [45]), a
variety of edge detectors has been proposed [7, 73], and various multiscale transforms can be applied to capture edge information.
Typical examples include wavelets and other "let” transforms (see e.g., [55, 62, 65, 76]), but we can find alternative approaches
that provide also an approximation of the edge profiles as, for instance, those in [2, 4, 5, 23]. For scattered data, we find a
number of papers developing algorithms for both edge detection and its profile approximation (see e.g. [1, 6, 12, 13, 24, 54]).
There are also strategies that combine the fault detection with the function reconstruction (see e.g. [3, 8, 46, 53]).

It is worth stressing that it is not enough to have a good approximation of the discontinuity curves, i.e. of ∂Ωi to avoid artifacts,
but you must ensure that each data site x j is assigned to the subdomain to which it belongs as done in [50], and more recently in
[19].

6 Concluding remarks
In this article, the properties and applications of VSKs have been reviewed. The scaling function plays a decisive role both in
the construction of the kernel and in its performance. Scaling functions improving stability of the interpolation process have
been designed and others have been studied to improve the quality of the reconstruction. VSKDs are particularly effective in the
interpolation of scattered data sampled from discontinuous functions, and have been successfully applied in magnetic particle
imaging which is a recent non–invasive tomographic technique that detects super-paramagnetic nano–particle tracers and finds
applications in diagnostic imaging and material science (see [26, 28] and reference therein). It is worth mentioning that in this
area the fake node approach [27, 32] is very effective too. Finally, very recently, VSKs have been interpreted in the framework
of persistent homology to deal with persistence diagrams in supervised learning approaches [30]. Variably scaled persistence
kernels (VSPKs) have been successfully tested in different classification experiments, and the obtained results show that they can
improve the performance and efficiency of existing standard kernels.

Although a lot has been done, there is still room for further applications and investigations on scaling function design that are the
core of VSKs.

Acknowledgements: This research has been accomplished within the Research ITalian network on Approximation (RITA) and
UMI-TAA. The author is a member of the INdAM research group GNCS.
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