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Computing weights for high order Whitney edge elements∗

Ludovico Bruni Bruno a · Ana Alonso Rodríguez a · Francesca Rapetti b

Abstract

The interpolation of differential forms is a challenging problem that is getting increasing attention. The
issue of finding unisolvent degrees of freedom to describe a differential form in terms of high-order
Whitney forms is an active area of research nowadays. In this paper we deal with a family of such degrees
of freedom, called weights, that fits with the physical and geometrical nature of the field to interpolate.
These weights play the role of interpolation coefficients when reconstructing scalar/vector fields in terms
of a set of selected multivariate polynomial forms. Weights are a generalization of the evaluations of
a scalar function at a set of nodes in view of its reconstruction on multivariate polynomial bases. As
in the nodal case, different sets of such weights are compared in terms of a Lebesgue constant. In this
contribution, we briefly recall their definition and provide examples of algorithms in low dimension to
compute their associated Lebesgue constant value. Insights to greater dimensions are offered as well.

1 Introduction
High order finite elements (FEs) methods combine the geometrical flexibility, namely the possibility of using a mesh to describe
the domain, with some basic facts from polynomial approximation theory which allow to construct a good interpolant. These
facts concern the polynomial bases which are used to express the interpolant, the sets of points which are chosen to compute the
coefficients appearing in the expression of the interpolant and high order quadrature formula which are necessary to preserve
accuracy when computing integrals. To get an idea on how these different numerical aspects play a crucial role in multivariate
polynomial approximations, we refer to, e.g., [19], [15], [9], [11], [6], [13], [26] and the references therein. In this work, we
wish to look at the cited basic facts when the fields to be interpolated are intended as differential k-forms [18, 5] (with 0≤ k ≤ n
and n the space dimension). Polynomial bases become high order Whitney forms, namely appropriate subspaces of trimmed high
order polynomial differential forms. The coefficients of the interpolant are suitable degrees of freedom (moments [21] or weights
[24]) of the field on sets of geometric objects belonging to the mesh which represents the physical domain. To compute moments
or weights, we may involve high order quadrature formula and we rely on the known literature, see e.g. [13].

High order weights are a physically motivated alternative [7] when working in electromagnetism or CFD. A weight is the
integral of a k-form on a k-simplex. This allows to keep the intuitive meaning of these degrees of freedom as evaluations at points
(k = 0), circulations along edges (k = 1), fluxes across faces (k = 2) and, generally, densities in volumes (k = n), regardless of
the polynomial degree r. Weights thus reflect the nature of the fields they are associated with and preserve for any approximation
degree r ≥ 0 the meaning of degrees of freedom as cochains [12], in the spirit of Whitney original work [28] dating back to 1957.

As nodal evaluations of a scalar field are done at the nodes of suitably selected sets in the mesh elements, similarly, weights of
a field, intended as a k-form, are computed on suitably selected sets of small simplices of dimension k (nodes for k = 0, edges
if k = 1, faces for k = 2, volumes for k = n) [24]. We thus introduce for k > 0 notions such as the Vandermonde matrix, the
Lebesgue constant, which are used in classical polynomial interpolation for k = 0 to evaluate the quality of the approximation.

We recall that, for scalar fields w, weights coincides with classical nodal degrees of freedom, namely the values of w at a
set of points in the computational domain. A lot of work in the literature has been devoted to study how these points have to
be chosen (see for example [22, 17, 27]). A guiding aspect consists in reducing the Lebesgue constant in order to expect for
a more reliable interpolated. This concept has recently been exteded to small simplices [3]. It is thus possible to imagine to
consider different sets of small k-simplices whose vertices are associated with different sets of interpolations points as explained
in [1] and thus to compare different families of weights by such a generalized Lebesgue constant. For weights associated with
small simplices a direct proof of unisolvence has been given [12] in the case of uniform distributions. For the generation of non
uniform distributions of small simplices, we refer to [2].

Polynomial differential forms and operators acting on them are straightforward implementable, we refer to [14] for the
interested reader. In this work we present algorithms that allow to compute the generalized Lebesgue constant associated with
1-simplices and thus compare different choices of weights for Whitney 1-forms. In particular, in Section 2 we recall definitions
and develop the machinery needed to perform such computation. Section 3 is devoted to a formal construction of small simplices
and a technique for moving towards different families is offered. We present an explicit example of this construction considering
warp and blend nodes for the availability of explicit routines. Weights and associated quantities are introduced. A generic
pseudo-algorithm, which can be applied for any degree r and k-forms in Rn, is provided. Few Matlab programs in the cases k = 0
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and k = 1 for n= 1 are presented in Section 4. The software provided for n= 1 and k = 1 is a model to write the algorithm for
the other cases, as shown in Section 5. Finally, some numerical results are offered in Section 6.

2 Polynomial differential forms on simplices
The role of the spaces of polynomial differential forms in numerical analysis has been improving its relevance in the last fifteen
years [5]. We recall basic concepts about the spaces P−r Λ

k(T ) and address the reader to [4] for more details.
Let Altk(Rn) be the vector space of multi-linear alternating maps (Rn)k → R. We denote with Pr(Rn) and Hr(Rn) the spaces

of polynomials and homogeneous polynomials in n variables respectively. Spaces of differential k-forms on Rn are denoted by
Λk(Rn). We put the spaces PrΛ

k(Rn) and HrΛ
k(Rn) of, respectively, complete and homogeneous polynomial differential k-forms

of degree r, as
PrΛ

k(Rn)
.
= Pr(Rn)⊗Altk(Rn) , HrΛ

k(Rn)
.
=Hr(Rn)⊗Altk(Rn). (1)

They are both finite dimensional subspaces of Λk(Rn). Letting d denote the exterior derivative, the space of trimmed polynomial
differential forms is the unique subspace P−r Λ

k(Rn) of PrΛ
k(Rn) satisfying (see [5])

PrΛ
k(Rn) = P−r Λ

k(Rn)⊕ dHr+1Λ
k−1(Rn). (2)

Note that P−r Λ
0(Rn) = PrΛ

0(Rn) = Pr(Rn). Let T ⊂ Rn be an n-simplex and denote its vertices by [x 0, . . . , x n]. We will extensively
use the following known facts about simplices:

• A k-subsimplex Fσ
.
= [xσ(0), . . . , xσ(k)] of T is a simplex generated by only k + 1 vertices of T . We call edge a simplex

generated by two vertices and face a simplex generated by three vertices. We denote the collection of k-subsimplices of T
by ∆k(T ).

• We denote by Sk
n the set of increasing permutations σ : {0, . . . , k} → {0, . . . , n}. We may associate a k-subsimplex

Fσ ∈∆k(T ) with the permutation σ ∈Sk
n that indexes its vertices. We consequently denote by Fσ \σ(i) the (k−1)-simplex

generated by all the vertices of Fσ with the exception of σ(i).

• Simplices may be formally combined to obtain chains [20], i.e. finite formal linear combinations of simplices with real
coefficients. The most natural example of chain is the boundary ∂ T of T , which is not a simplex itself but the collection of
(k− 1)-simplices T \σ(i), i = 0, . . . , n, with a ± sign induced by the orientation. For example, if T = [x 0, x 1, x 2], then
∂ T = [x 1, x 2]− [x 0, x 2] + [x 0, x 1], which is a 1-chain on the edges ∆1(T ) of T .

• A simplicial complex X is a collection of simplices with the property that any two simplices of X are either disjoint or they
intersect in a simplex of X. The collection of all subsimplices of T has thus a structure of simplicial complex.

Any point of T can be defined in terms of its barycentric coordinates {λ0, . . . ,λn} with respect to the vertices of T , namely

T =

¨

x ∈ Rn, x =
n
∑

i=0

λi x i , with 0≤ λi ≤ 1 and
n
∑

i=0

λi = 1

«

.

Polynomial differential forms ω ∈ PrΛ
k(Rn) may be written as ω =

∑

σ∈Sk
n

p(xσ(0), . . . , xσ(k))dxσ with p ∈ Pr(Rn), being dxσ
the volume form, namely dxσ(1) ∧ . . .∧ dxσ(k) such that

∫

[xσ(0) ,...,xσ(k)]
dxσ = vol([xσ(0), . . . , xσ(k)]) = 1/k !. Spaces PrΛ

k(T ) and

P−r Λ
k(T ) are obtained by restricting from Rn to T . One has (see [12])

dimP−r Λ
k(T ) =

�

r + k− 1
k

��

n+ r
n− k

�

.

A basis for P−r Λ
k(T) is given by the following rule. Recall that any Fσ ∈ ∆k(T) is associated with an increasing permutation

σ : {0, . . . , k} → {0, . . . , n}. For each Fσ ∈∆k(T ) define the associated Whitney k-form ωFσ ∈ Λk(T ) as

ωFσ .
= k!

k
∑

i=0

(−1)iλσ(i)dλσ(0) ∧ . . .∧ d̂λσ(i) ∧ . . .∧ dλσ(k),

where the hat means that the underlying term is omitted from the expression. A basis for P−1 Λ
k(T) is

�

ωFσ , Fσ ∈∆k(T )
	

, as
shown in [28]. Note that for k = 0, if Fσ is the vertex x i , then ωFσ is just the barycentric coordinate λi . The case 0< k < n is less
evident (see [21], [5]). Denoting by ωFσ the Whitney k-form associated with the k-simplex Fσ and by wFσ the corresponding
vector (referred to as proxy) field, we have for example:

• If k = 1 and Fσ = [xi ,x j], then
ωFσ = λidλ j −λ jdλi , wFσ = λi∇λ j −λ j∇λi .

• If k = 2 and Fσ = [xi ,x j ,xk], then

ωFσ = 2(λidλ j ∧λk −λ jdλi ∧λk +λkdλi ∧λ j),

wFσ = 2(λi∇λ j ×∇λk −λ j∇λi ×∇λk +λk∇λi ×∇λ j).

Whitney forms of lower polynomial degree r = 1 can be defined by means of the following recursive formula.

Dolomites Research Notes on Approximation ISSN 2035-6803



Bruni Bruno · Alonso Rodríguez · Rapetti 3

Lemma 2.1. If Fσ is a k-simplex of T with k ≥ 1, then

ωFσ =
k
∑

i=0

(−1)iλσ(i)dω
Fσ\σ(i).

Proof. A direct computation (see [12]) shows that dωFσ = (k+ 1)! dλσ(0) ∧ . . .∧ dλσ(k), and this yields the equality
∑k

i=0(−1)iλσ(i)dωFσ\σ(i) =
∑k

i=0(−1)iλσ(i)k!dλσ(0)∧ . . .∧ d̂λσ(i) ∧ . . .∧ dλσ(k) =ωFσ .

Now, let λα denote the product λα0
0 · . . . ·λαn

n with α= (α0, . . . ,αn) ∈ I(n+ 1, r − 1), the set of multi-indices (α0, . . . ,αn) of
n+ 1 integers αi ≥ 0 such that |α| .

=
∑n

i=0 αi = r − 1. Whitney k-forms of higher polynomial degree r > 1 are simply obtained by
considering products of λα, homogeneous polynomials of degree (r − 1) in the barycentric coordinates λi , with Whitney k-forms
of polynomial degree 1. Note that redundancies may occur, as proved in [24], [12]. Indeed, we have the following result.

Lemma 2.2. Let Fσ be a (k+ 1)-simplex. Then we have the following relation among Whitney k-forms:

k+1
∑

i=0

(−1)iλiω
Fσ\σ(i) = 0.

As an illustration of Lemma 2.2, if Fσ is a 2-simplex, it can be verified by a direct computation that λ0ω
[x1 ,x2] −λ1ω

[x0 ,x2] +
λ2ω

[x0 ,x1] = 0. Let us consider, for each increasing permutation σ : {0, . . . , k} → {0, . . . , n}, the subset

Iσ(n+ 1, r − 1)
.
= {α ∈ I(n+ 1, r − 1) | αi = 0 ∀i < σ(0)} .

One then has
P−r Λ

k(T ) = span
�

λαωFσ | Fσ ∈∆k(T ), α ∈ Iσ(n+ 1, r − 1)
	

. (3)

The restriction i < σ(0) in the definition of Iσ(n + 1, r − 1) is imposed to avoid, in the set λαωS generating P−r Λ
k(T), the

redundancies predicted by Lemma 2.2. For a detailed construction we address the reader to [8]. Before going to the next section,
we recall that spaces of polynomial differential forms are endowed with a norm, called 0-norm [16], which reads the features of
the support they are defined on. Such a norm reads

‖ω‖0
.
= sup

c∈Ck(T )

1
|c|0

�

�

�

�

∫

c

ω

�

�

�

�

, (4)

where Ck(T ) denotes the space of all k-chains supported in T (i.e. the formal linear combinations of simplices supported in T
and not only of the k-subsimplices of T) and |c|0 the k-th Hausdorff measure of c. For k = 0, we have ||.||0 = ||.||∞.

3 Small simplices and generalized Lebesgue constant
In the following, we are interested in the space P−r Λ

k(Rn) that allows for reconstructions of polynomial degree r of regular fields
with minimal information. In this section we present the so-called weights, namely degrees of freedom introduced in [24] for
ω ∈ P−r Λ

k(T ), in an n-simplex T , which will be involved in such as reconstruction.
One possible choice of degrees of freedom for fields in PrΛ

0(T) are evaluations on the points of the principal lattice of
top-dimesional simplices T . More precisely, for a k-simplex T let Lr(T )

Lr(T )
.
=
§

x ∈ T | λi(x ) ∈
§

0,
1
r

, . . . ,
r − 1

r
, 1
ª

for i = 0, . . . , k
ª

, (5)

be the set of points of the principal lattice of order r of T (see Figure 1, left). Then the spaces {ω 7→ ω(s) | s ∈ Lr(T)} are a
unisolvent set of degreed of freedom for PrΛ

0(T ). The natural way of extending these degrees of freedom to the cases k = 1, . . . , n
is to consider integrals on k-cells topologically contained in T . These degrees of freedom are called physical since they have a
natural physical interpretation: e.g. for k = 1 they are the work done by a force (a 1-form) along a line (a 1-cell).

Definition 3.1. Let ω ∈ P−r Λ
k(T ) and let s ⊂ T be a k-simplex. The weight of ω on s is the scalar quantity

∫

s
ω.

The term “weight” is chosen in relation with the double role of Whitney forms. These k-forms are shape functions that
reconstruct fields in a simplex T from their degrees of freedom associated with objects in ∆k(T ). Furthermore, the same k-forms
allow to express any manifold of dimension k contained in T as weighted sum of objects in ∆k(T), see [23]. This generalizes
what is known for k = 0. Whitney 0-forms on a simplex T are the barycentric functions λi : T → [0, 1] associated with the nodes
in ∆0(T ). Barycentric functions are the shape functions that allow to linearly reconstruct scalar fields from their nodal values
at the vertices of T . Furthermore, any point x ∈ T is the weighted sum of the vertices of T with coefficients given by λi(x),
i = 0, . . . , dim (T ).

Assume now that, for each simplex T , for each k, we have a finite set of k-cells {s1, s2, . . . } contained in T and such that
distinct cells have disjoint interiors. To use these k-cells to supports weights, we need them to be unisolvent, in the sense of the
following definition.

Definition 3.2. A family of small k-cells {s1, . . . , sN} is said to be unisolvent for P−r Λ
k(T) if N = dimP−r Λ

k(T) and for all
ω ∈ P−r Λ

k(T ) we have
∫

si

ω= 0 ∀i = 1, . . . , N =⇒ ω= 0.
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An example of such k-cells are the small k-simplices introduced in [24]. For any ξ ∈ Rn, consider then the map

β : x 7→ βξ(x ) =
1
r
(x − x 0) + ξ,

which allows to define the small simplices as follows.

Definition 3.3. Let T be an n-simplex and F ∈∆k(T ). The set of small k-simplices of order r of T is

X k
r (T )

.
=
�

βξ(F) | F ∈∆k(T ), ξ ∈ Zr(T )
	

. (6)

An easy dimension count shows that
#X k

r (T )≥ dimP−r Λ
k(T ),

where equality holds only for k = 0, k = n or r = 1. Spaces X k
r (T ) bear the following feature, as proved in [12].

Proposition 3.1. Let ω ∈ P−r Λ
k(T ). If

∫

s

ω= 0 ∀s ∈ X k
r (T ),

then ω= 0.

An algorithm for extracting N unisolvent simplices from X k
r (T) was proposed in [1] following the enumeration given for

extracting a basis of P−r Λ
k(T) from its system of generators. Observe that we may associate any s ∈ X k

r (T) with a pair (Fσ,α)
through the mapping

(Fσ,α) 7→ s =
1
r

�

Fσ + [x 0| . . . |x n]α
T
�

.

By direct computation one sees that any s ∈ X k
r (T ) can be written in such a way, constructing then a bijection between X k

r (T ) and
∆k(T )× I(n+ 1, r − 1). However, if one considers the subset associated with ∆k(T )× Iσ(n+ 1, r − 1), which is

X k
r,min(T )

.
=
�

βξ(F) | F ∈∆k(T ), ξ= [x 0| . . . |x n]α, α ∈ I(n+ 1, r − 1)
	

. (7)

In Figure 1 an example of the set X k
r,min(T ) is represented for r = 3 and T ⊂ Rn. It is evident that X k

r,min(T ) = X k
r (T ) when k = 0

and k = n, whereas unisolvent 1-simplices are obtained by discarding horizontal inner edges.

x 1 x 2

x 0

x 1 x 2

x 0

x 1 x 2

x 0

Figure 1: Left to right: a depiction of the sets X 0
3,min(T ), X 1

3,min(T ) and X 2
3,min(T ), being T a 2-simplex.

One has the following result, which was claimed in [1] and proved in [8].

Theorem 3.2. Let ω ∈ P−r Λ
k(T ). If

∫

s

ω= 0 ∀s ∈ X k
r,min(T ),

then ω= 0. Moreover,
#X k

r,min(T ) = dimP−r Λ
k(T ).

Definition 3.4. Fixed any basis B .
= {ω1, . . . ,ωN} for P−r Λ

k(T) and any set of k-simplices Sk
r (T) = {s1, . . . , sN}, we define the

associated generalized Vandermonde matrix V as the matrix whose (i, j)-th entry is

Vi, j
.
=

∫

si

ω j . (8)

Constructing the matrix V as in (8), one sees that a collection of k-simplices Sk
r (T) is unisolvent for P−r Λ

k(T) if and only
if the associated generalised Vandermonde matrix is not singular. This latter property does not depend on the choice of the
basis for P−r Λ

k(T ) but the condition number of V . In the following we rely on the Bernstein polynomial basis (see, e.g., [19]) to
construct high order Whitney forms. This Bernstein basis is classically used in discrete exterior calculus because of its properties
with respect to derivation (after derivation we obtain again a Bernstein polynomial) and it is expressed in terms of barycentric
coordinates.
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We in fact follow [8] and construct different families of simplices as follows. The space X k
r,min(T ) has a structure of simplicial

complex [20]. We thus deform it by means of a simplicial isomorphism ϕ, which is, roughly speaking, a mapping that pushes
vertices of X k

r,min(T) to other points preserving adjacencies. To be more definite, we ask the image of X k
r,min(T) under ϕ to be

a simplicial complex such that
�

ϕ(vσ(0)), . . . ,ϕ(vσ(k))
	

form a small k-simplex of the new family if and only if
�

vσ(0), . . . , vσ(k)
	

form a small k-simplex in X k
r,min(T ). As an example of this construction, we considered the warp and blend deformation proposed

by Warburton in [17]. We thus considered simplices whose vertices do not belong anymore to Lr(T ) but to the set of warp and
blend nodes to construct new sets of small k-simplices starting from X k

r (T ). A three-dimensional depiction is offered in Figure 2:
on the left we show the simplicial complex X k

r,min(T) and on the right its image under the simplicial isomorphism induced by
the vertex maps that sends points of the principal lattice Lr(T ) to warp and blend nodes. We stress that this choice is driven by
the computability of the set of warp and blend nodes for an arbitrary degree r, see [17]. The associated Vandermonde matrix
resulted invertible for any checked r ≥ 0.

Figure 2: The action of the simplicial isomorphism induced by the warping and blending deformation.

In the following, we sketch the set of functions which yield an estimation of the Lebesgue constant. The description is detailed
for n= 1 but needs to be completed by the user for n> 1.

The general procedure we adopt for constructing a set of edges from the uniform one is the following. We enumerate
vertices of X 0

r (T) by a lexicographical order, which means that (x1, . . . , xn) > (y1, . . . , yn) if x1 > y1 or x i = yi for i = 1, . . . ,`
and x`+1 > y`+1. We construct the connectivity matrix A ∈ ZN×(k+1) associated with X k

r (T), which will be the same used for
constructing the set Sk

r (T ). In details, the i-th row of the matrix A contains the global indices of the (k+1) vertices of the simplex
si following the orientation induced by T .

Step 1: Construction of the simplicial complex

compute in T the set of uniformly distributed nodes X 0
r (T )

save the connectivity matrix A of X k
r,min(T )

apply the simplicial isomorphism ϕ to X 0
r (T )

construct Sk
r (T )

.
= ϕ

�

X k
r,min(T )

�

using A and ϕ(X 0
r (T ))

return A and Sk
r (T )

The following pseudo-algorithm shows how to compute the generalized Vandermonde matrix, with no restriction on the
degree r, of the order of the form k and in any dimension n.

Step 2: Computation of the generalized Vandermonde matrix

fix a basis B .
= {ω1, . . . ,ωN } for P−r Λ

k(T )
choose a set of k-simplices Sk

r (T ) = {s1, . . . , sN }
compute V`, j =

∫

s`
ω j by a simplicial quadrature rule for `, j = 1, . . . , N

Once the generalized Vandermonde matrix is computed, if it is invertible, one may define the so called cardinal basis for
P−r Λ

k(T ), which is in duality with weights in the sense that
∫

si

w j = δi, j ,

Dolomites Research Notes on Approximation ISSN 2035-6803



Bruni Bruno · Alonso Rodríguez · Rapetti 6

being the right hand side the Kronecker delta. In other words w j =
∑N
`=1(V

−1)` j ω`, being V−1 the inverse of the generalised
Vandermonde matrix given in Definition 3.4. In contrast with the case k = 0, the explicit expression of the cardinal basis functions
when k > 1 relies on V−t . For this reason, in what follows, we shall discuss a basis for P−r Λ

k(T) which is characterised by a
limited growth of the conditioning of V . The cardinal basis extends the concept of Lagrange basis, which was defined only for
polynomials, i.e. for the space P−r Λ

0(T ). Such an object is crucial as it yields the generalized Lebesgue constant [3].

Definition 3.5. Let Sk
r (T ) = {s1, . . . , sN} be a unisolvent and minimal collection of small simplices for P−r Λ

k(T ). The generalized
Lebesgue constant associated with Sk

r (T ) is

Λr
.
= sup

c∈Ck(T )

1
|c|0

N
∑

j=1

|s j |0

�

�

�

�

∫

c

w j

�

�

�

�

. (9)

For k = 0, the quantity Λr defined in (9) reduces to the classical Lebesgue constant Λr = supx∈T

∑N
j=1 |w j(x)|.

To estimate Λr we consider a test set M of M k-simplices supported in T and a quadrature rule and proceed in the following
way. The larger the collection of k-simplices M, the more reliable the computed value Λr . Note that, as soon as M is fixed and
finite, it is sufficient to compute Λr on simplices and not on chains anymore. Let us define

Wi, j
.
=

∫

ci

ω j , ci ∈M, ω j ∈ B. (10)

We construct the diagonal matrices S and C

Si, j
.
=

�

|si |0 if i = j
0 otherwise

and Ci, j
.
=

�

|ci |−1
0 if i = j

0 otherwise,

where |s|0 denotes the measure of the simplex s, see [16]. Hence one obtains that

Λr ≈ ‖CW V−1S‖∞. (11)

Note that this does not depend on the dimension n of the ambient space nor on the order of the form k.

Step 3: The numerical estimation of the Lebesgue constant

choose a set M of test k-simplices
compute the N × N diagonal matrix S such that Si,i = |si |0
compute the M ×M diagonal matrix C such that Ci,i = |ci |−1

0 , for ci ∈M
compute W`, j =

∫

c`
ω j by a simplicial quadrature rule for `= 1, . . . , M and j = 1, . . . , N

compute Λr as Λr = ‖CW V−1S‖∞.

The importance of controlling such a quantity is explained by the next result. Let Sk
r (T ) be a unisolvent set of small k-simplices.

Consider the associated cardinal basis. It is then immediate to construct the interpolator

Π : Λk(T )→ P−r Λ
k(T )

η 7→ Πη .
=

N
∑

i=1

�

∫

si

η

�

wi .

The Lebesgue constant bounds the quality of this interpolation, in an appropriate norm. In fact, one has (see [3])

‖η−Πη‖0 ≤ (1+Λr)‖η−Πη∗‖0,

being Πη∗ the best fit approximation, that is, the element of P−r Λ
k(T) which minimizes the quantity ‖η−Πη‖0. In the next

sections, we aim at presenting a Matlab sofware implementing the proposed pseudo-codes. Numerical results obtained for k = 0, 1
in any dimension n= 1, 2,3 can be found in [2]. They will be exemplified in Section 6.

4 Starting with n= 1
We show some algorithms that allow to compute the generalized Vandermonde matrix and hence the generalized Lebesgue
constant for different choices of points in the unit segment I = [0, 1]. The reason for starting with n= 1 is twofold. On the one
side, it is easier to underline the changes in the software for n= 1 when passing from k = 0 to k = 1. On the other hand, the
modifications to adapt the software for n= 1 to higher dimension n= 2 or 3 are only a few, as we are going to explain in the
next section. In what follows we consider some Matlab functions. Among these functions, the following are intrinsic:

• nchoosek(n,k) is the binomial
�n

k

�

;

• linspace(x,y,n) provides a vector of n equispaced points between x and y , extremal points included;
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• length(v) returns the number of elements of the vector v;

• norm(A,p) computes the p-norm of the matrix A. If p = inf it computes the infinity norm;

• vecnorm(A) computes the 2-norm of each column of the matrix A.

• abs(x) computes the absolute value of the number x. If the argument is a vector, it works component-wise;

• diag(v) creates a diagonal matrix whose elements are that of the vector v;

and some others have been implemented:

• gll(n) provides a vector of n+ 1 Gauss-Lobatto-Legendre points (GLL for short) between −1 and 1, extremal points
included. Recall that the i-th GLL point is the i-th zero of P ′r−1(x), being Pr(x) the Legendre polynomial of degree r.
Such a routine is taken from [17], and moves Chebyshev points towards GLL ones by performing a Newton-Raphson
approximation. Nodes are then sorted in an increasing order. We refer to the warp and blend procedure since we are using
directly the functions in [17] that provides the simplicial isomorphism. This non uniform distribution of nodes is just an
example (see [26] for an overview on existing such distributions). The procedure to estimate the Lebesgue constants is
completely independent of the choice of the set of small edges;

• evalBern(x,r) evaluates all the Bernstein basis functions of Pr(T ) at x (Algorithm 2);

• integrateBern(a,b,r) computes the integral of all the Bernstein basis functions of Pr(T ) on [a, b] (Algorithm 5);

• QuadGaussLeg(r) offers the Gauss-Legendre quadrature rule of degree r. It returns a triple containing the number of
quadrature nodes, the coordinates of quadrature nodes in [−1, 1] and the corresponding weights (from [17]);

• connect(Nint) constructs the small edge-to-small node connectivity matrix of the Nint small edges (Algorithm 6).

The first Algorithm constructs the small simplices and the test mesh. They play the role, respectively, of X 0
r,min(T ) and C0(T )

introduced in Section 2.
In the following algorithms the test mesh M is represented by the array TMesh.

Algorithm 1 Initialization

Ensure: The test mesh TMesh= (x) and the interpolation mesh T = (xequi) or T = (xgll) in the interval [0, 1].

1: M = input(’number of points in the test mesh: ’); . Test mesh size
2: x = linspace(0, 1, M); . Test mesh points
3: r = input(’degree of the polynomial interpolation over the interval: ’); . Polynomial interpolation degree
4: N = r+1; . Number of interpolation mesh points
5: xequi = linspace(0, 1, N); . Uniform interpolation mesh points
6: xgll = (-gll(r)’+1)/2; . Gauss-Lobatto-Legendre interpolation mesh points

The sets of points introduced in Algorithm 1 are used also in the case k = 1 as extremities of the small edges to consider, as
we will explain.

4.1 Nodal case k = 0

To begin with, we implement the case of scalar functions when interpolated by polynomials (k = 0). Algorithm 3 describes the
construction of the (generalized) Vandermonde matrix with respect to the Bernstein basis. Such a basis is well suited as it reduces
the conditioning of the Vandermonde matrix. Its elements are

bi,r(x) =
�

r
i

�

x i(1− x)r−i , for i = 0, . . . , r. (12)

Note that, in one dimension, Bernstein basis functions are obtained by introducing a binomial coefficient in front of the monomial
basis functions λα, since λ1 = x , λ0 = 1− x and α= (α0,α1) = (r − i, i) with i = 0, . . . , r.

Algorithm 2 the N = r + 1 Bernstein polynomial basis functions in dimension n= 1 evaluated at x

Ensure: The vector bernk0 containing the values of the N Bernstein polynomials (of degree r) at x .

1: function bernk0 = evalBern(x, r)
2: N = r+1; . Number of Bernstein basis functions of Pr(R)
3: bernk0 = zeros(N,1);
4: for i = 1: N
5: coef = nchoosek(r, i-1); . Bernstein coefficients
6: bernk0(i) = coef*x^(i-1)*(1-x)^(N-i);
7: end
8: end

Algorithm 4 implements the approximation of the Lebesgue constant.
In Algorithm 3, lines 7 and 8 are simplified since for a node x we have |x |0 = 1. Algorithm 5 is the analogous of Algorithm 3

and we need to take into account correctly the norm |s|0 for any small or support edge s.
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Algorithm 3 Construction of the Vandermonde matrix for k = 0 on the interpolation mesh

Require: The interpolation meshes T = (xequi) and T = (xgll) of N points.
Ensure: The Vandermonde matrix V (called VE for uniform and VG for GLL points) on the Bernstein basis in [0,1].

1: function [B, C] = Vandk0(xequi, xgll)
2: N = length(xequi); r = N-1;
3: VE = zeros(N); VG = zeros(N); . Vandermonde matrix at uniform and GLL interpolation nodes
4: for i = 1 : N
5: bernk0E = evalBern(xequi(i), r); bernk0G = evalBern(xgll(i), r);
6: VE(i,:) = bernk0E’; VG(i,:) = bernk0G’;
7: end
8: condk0E = cond(VE); condk0G = cond(VG); . Conditioning of VE and VG
9: B = VE \ eye(N); . Invert and transpose VE and VG

10: C = VG \ eye(N); . eye is the identity matrix and \ is the direct system solution command
11: end

Algorithm 4 Evaluation of the Lebesgue constant for k = 0 on the test mesh

Require: The test mesh TMesh= (x) of M points and the matrix V−1 (called B for uniform and C for GLL interpolation).
Ensure: The Lebesgue constant (called LebConstE0 for uniform and LebConstG0 for GLL points).

1: function [LebConstE0, LebConstG0]= Lebk0(x, B, C)
2: M = length(x); N = size(B,1); r = N-1;
3: W0 = zeros(M, N); . Vandermonde matrix W0 at the test mesh points
4: for i = 1 : M
5: bernk0 = evalBern(x(i), r);
6: W0(i,:) = bernk0’;
7: end
8: LebFunctE0 = W0*B; . Uniform node Lebesgue function at the M test mesh points
9: LebFunctG0 = W0*C; . GLL node Lebesgue function at the M test mesh points

10: LebConstE0 = norm(LebFunctE0, inf) . Lebesgue constant for uniform interpolation
11: LebConstG0 = norm(LebFunctG0, inf) . Lebesgue constant for GLL interpolation
12: end

4.2 Edge case k = 1

Algorithm 7 creates the generalized Vandermonde matrix associated with a collection of edges supported in [0, 1]. A description
of the extension of this algorithm to higher dimensions is given in Section 5.

Algorithm 5 The integral of the N = r + 1 Bernstein polynomial basis functions in dimension n= 1 on [a, b]

Ensure: The vector bernk1 containing the integrals of the N Bernstein polynomials (of degree r) on [a, b].

1: function bernk1 = integrateBern(a, b, r)
2: N = r+1;
3: [nng, sg, wg] = QuadGaussLeg(N); . GLL quadrature nodes and weights in [−1,1]
4: c = (b-a)/2; d = (a+b)/2;
5: xqd = c*sg + d; wqd = c*wg; . Transport GLL quadrature nodes and weights on [a, b]
6: bernk0 = zeros(N,1); bernk1 = bernk0;
7: for i = 1: nng
8: bernk0 = evalBern(xqd(i), r);
9: bernk1(:) = bernk1(:) + wqd(i)*bernk0(:);

10: end
11: end

It is immediate to modify Algorithm 7 to obtain a rectangular matrix W as defined in (10). Algorithm 8 computes the
Lebesgue constant for k = 1 provided a test mesh M and the generalized Vandermonde matrix associated with the Bernstein
basis for P−r Λ

1([a, b]). Since we aim to estimate such a quantity by using a finite test mesh, we may write it in terms of matrix
calculus as in the nodal case k = 0. We assume that the test mesh M is passed as a matrix TMesh whose i-th column contains the
endpoints of the i-th edge. For instance, when n= 1, TMesh(:, i) = [p0 p1]T represents the segment [p0, p1] contained in [a, b].
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Algorithm 6 Small edge to small node connectivity for n= 1

Ensure: The array Ed2Pt(2, Nint).

1: function Ed2Pt = connect(Nint)
2: Ed2Pt = zeros(2,Nint);
3: Ed2Pt(1, :) = [1:Nint];
4: Ed2Pt(2, :) = [2:Nint+1];
5: end

Algorithm 7 Construction of the Vandermonde matrix for k = 1 on the interpolation mesh

Require: The interpolation meshes T = (xequi) and T = (xgll) and their connectivity Ed2Pt.
Ensure: The Vandermonde matrix V (called VEe for uniform and VGe for GLL edges) on the Bernstein basis in [0,1].

1: function [A, D] = Vandk1(xequi, xgll, Ed2Pt)
2: N = length(xequi); r = N-1;
3: Nint = N-1; . Number of edges in the interpolation mesh
4: VEe = zeros(Nint); VGe = zeros(Nint); . Vandermonde matrix at uniform and GLL edges
5: for i = 1 : Nint
6: e1 = Ed2Pt(1,i); e2 = Ed2Pt(2,i);
7: a = xequi(e1); b = xequi(e2); bernk1E = integrateBern(a, b, r-1);
8: a = xgll(e1); b = xgll(e2); bernk1G = integrateBern(a, b, r-1);
9: VEe(i,:) = bernk1E’; VGe(i,:) = bernk1G’;

10: end
11: condk1E = cond(VEe); condk1G = cond(VGe); . Conditioning of VEe and VGe
12: A = VEe \ eye(Nint); . Invert and transpose VEe and VGe
13: D = VGe \ eye(Nint); . eye is the identity matrix and \ is the direct system solution command
14: end

Algorithm 8 Evaluation of the Lebesgue constant for k = 1 on the test mesh

Require: The test mesh TMesh = (x), (inverse of the) Vandermonde matrices V−1 (called A for uniform and D for GLL interpolation
edges), vertices of small simplices xequi and xgll and their connectivity Ed2Pt.

Ensure: The Lebesgue constant (called LebConstE1 for uniform and LebConstG1 for GLL edges).

1: function [LebConstE1, LebConstG1] = Lebk1(xequi, xgll, A, D, Ed2Pt, TMesh)
2: M = size(TMesh,2); N = size(A,1);
3: vSe = abs(xequi(Ed2Pt(2,:))-xequi(Ed2Pt(1,:))); . Vector containing lengths of equispaced small edges
4: vSg = abs(xgll(Ed2Pt(2,:))-xgll(Ed2Pt(1,:))); . Vector containing lengths of gll small edges
5: Se = diag(vSe);
6: Sg = diag(vSg);
7: for i=1:M
8: bernk1 = integrateBern(TMesh(1,i), TMesh(2,i), N-1);
9: W1(i,:) = bernk1’;

10: end
11: vC = 1./abs(TMesh(2,:)-TMesh(1,:));
12: C = diag(vC) ;
13: LebConstE1 = norm(C*W1*A*Se, inf) . Lebesgue constant for uniform edge interpolation
14: LebConstG1 = norm(C*W1*D*Sg, inf) . Lebesgue constant for GLL edge interpolation
15: end

5 Making for n> 1
In higher spatial dimension, the Bernstein basis (12) is extended to Whitney forms by means of barycentric coordinates:

bα(λ) =
�

r − 1
α0 · . . . ·αn

�

λαωFσ . (13)

Few changes have to be done in the proposed algorithms to stick with this generalisation, in particular:

• For what concerns the initialization, the test mesh of the reference element T can be computed using a mesh generator.
Lines 6 and 7 in Algorithm 1 have to be replaced by two functions computing the coordinates of the points of the principal
lattice of order r of T , namely the set X 0

r (T), and the coordinates of the points of the set Sk
r (T). For the non uniform

distribution of nodes, we can adopt any among those proposed in the literature (see [17, 27]).
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• The connectivity matrix Ed2Pt of the small edges has to be re-implemented in the case n> 1 in Algorithm 6. Its definition
depends on the numbering of the nodes at the generation step. We keep the same name Ed2Pt for the connectivity matrix.
We keep either xequi (for equidistributed) or xgll (for nonuniform), in accordance with the case n = 1, for the sets of
vertices of small simplices.

• Algorithm 2 is replaced with its greater dimensional counterpart, giving Bernstein basis functions in n variables and degree
r − 1. The remaining degree to reach r comes from equation (3).

• A new version of Algorithm 5 for higher dimensions has to be written. In fact, if ωFσ is the Whitney 1-form associated
with Fσ ∈∆1(T ) and e is an edge supported in the simplex T , we have

∫

e

ωFσ = |e|0(ωFσ (be) · t e),

where be denotes the barycenter of e and t e the unit vector tangent to e. Recalling that elements of P−r Λ
k(T) may be

written as λαωFσ , |α|= r − 1, this yields (see [25])
∫

e

λαωFσ = |e|0(ωFσ (be) · t e)

∫

e

λα.

The latter term is a constant that depends on α and the measure of e, making the computation a consequence of the old
version of Algorithm 5, with the definition of the Bernstein basis functions generalized for n> 1.

In accordance with the case n= 1, we assume that the test mesh M is passed as a matrix whose i-th column contains the
endpoints of the i-th edge. Thus the matrix TMesh representing M has 2n rows, since it contains on the same column coordinates
of points p0 and p1. For instance, when n = 2, TMesh(:, i) = [x0 y0 x1 y1]T represents the segment that joins p0 = (x0, y0)
and p1 = (x1, y1). We implicitly assume that this segment is contained in T . If an explicit function for computing generalised
Vandermonde matrices for k = 1 and n> 1 is given and a collection of 1-simplices is provided, Algorithm 8 is easily adapted to
this case as follows.

Algorithm 9 Evaluation of the Lebesgue constant for k = 1 and n> 1 on the test mesh

Require: The test mesh TMesh = (x), matrix W and (inverse of the) Vandermonde matrices V−1 (called A for uniform and D for
GLL interpolation edges), vertices of small simplices xequi and xgll and their connectivity.

Ensure: The Lebesgue constant (called LebConstE1 for uniform and LebConstG1 for GLL edges).

1: function [LebConstE1, LebConstG1] = Lebk1(xequi, xgll, A, D, Ed2Pt, TMesh)
2: n = size(TMesh,1)/2; . The dimension of the space
3: vSe = vecnorm(xequi(:,Ed2Pt(2,:))-xequi(:,Ed2Pt(1,:))); . Vector containing edge measures
4: Se = diag(vS);
5: vSg = vecnorm(xgll(:,Ed2Pt(2,:))-xgll(:,Ed2Pt(1,:))); . Vector containing edge measures
6: Sg = diag(vS);
7: vC = 1./vecnorm(TMesh(n+1:2*n,:)-TMesh(1:n,:)); . Vector containing (inverse of) edge lengths of TMesh
8: C = diag(vC)
9: LebConstE1 = norm(C*W*A*Se, inf); . Lebesgue constant for uniform edge interpolation

10: LebConstG1 = norm(C*W*D*Sg, inf); . Lebesgue constant for GLL edge interpolation
11: end

6 Numerical results
We present two kinds of results. The first one aims at motivating the use of Bernstein polynomials instead of the monomial ones.
We compare the condition number of the Vandermonde matrix associated with uniform small edges X 1

r,min(T ), when the matrix is
computed with respect to monomial and Bernstein bases. Results for n= 2, 3 in Table 1 show that Bernstein polynomials help in
reducing the conditioning of the generalised Vandermonde matrix. Results for other choices of simplices given in [2] agree with
this behaviour, in the sense that the conditioning of the Vandermonde matrix is more sensible to the selection of the polynomial
basis rather than to the selection of the small simplices supporting the degrees of freedom.

The second result illustrates Lebesgue constants computed by means of the algorithms given in Section 4. In particular,
Table 2 presents a comparison between these constants computed on the set X 1

r,min(T) and on that associated with warp and
blend 1-simplices for n= 2, 3. In accordance with what is known for the nodal case, we see that for edges as well non uniform
distributions yield lower values of the Lebesgue constant.

We end this section with the script (Algorithm 10) that allows to compute the approximation of the Lebesgue constant using
a uniform test mesh with M nodes mesh for n= 1, and the two values of k, k = 0 and k = 1. Note that lines 1 to 6 in Algorithm
10 are those of Algorithm 1. The routines gll and QuadGaussLeg have to be available.
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cond(V ), T ⊂ R2 cond(V ), T ⊂ R3

r monomial b. Bernstein b. monomial b. Bernstein b.

1 1.0000× 100 1.0000× 100 1.0000× 100 1.0000× 100

2 9.6391× 100 9.6391× 100 1.1074× 101 1.1074× 101

3 3.3437× 101 2.6374× 101 7.1243× 101 4.2973× 101

4 1.6905× 102 7.1572× 101 4.3252× 102 1.3742× 102

5 9.9617× 102 2.0038× 102 3.4161× 103 4.2761× 102

6 5.3075× 103 5.6324× 102 2.3708× 104 1.3035× 103

7 3.3716× 104 1.5876× 103 1.9066× 105 3.9360× 103

8 2.1106× 105 4.4782× 103 1.5399× 106 1.1751× 104

9 1.3707× 106 1.2635× 104 1.3852× 107 3.4779× 104

Table 1: Condition number of the generalised Vandermonde matrix associated with uniform small edges X 1
r,min(T) for the standard triangle

T ⊂ R2 and the standard tetrahedron T ⊂ R3 with respect to the total polynomial degree r. We compare the monomial basis λαωF for P−r Λ
k(T )

with the Bernstein basis BαωF .

Estimated value Λr , T ⊂ R2 Estimated value Λr , T ⊂ R3

r uniform warp and blend uniform warp and blend

1 1.00 1.00 1.00 1.00
2 4.94 4.94 6.41 6.41
3 7.92 6.71 11.23 10.80
4 12.17 8.16 18.04 15.25
5 18.92 9.60 29.37 20.79
6 29.95 11.62 46.76 28.32
7 48.31 14.51 74.19 36.03
8 79.45 17.65 127.53 45.82
9 133.03 20.32 218.19 57.24

Table 2: Lebesgue constants Λr associated with the set X 1
r,min(T ) of uniform small edges and the set of small edges with vertices in warp and

blend nodes for the standard triangle T ⊂ R2 and the standard tetrahedron T ⊂ R3.

Algorithm 10 Example of main for n= 1 and k = 0, 1

1: M = input(’number of points in the test mesh: ’); . Test mesh size
2: x = linspace(0, 1, M); . Test mesh points
3: r = input(’degree of the polynomial interpolation over the interval: ’); . Polynomial interpolation degree
4: N = r+1; . Number of interpolation mesh points
5: xequi = linspace(0, 1, N); . Uniform interpolation mesh points
6: xgll = (-gll(r)’+1)/2; . Gauss-Lobatto-Legendre interpolation mesh points
7: [B, C] = Vandk0(xequi, xgll); . Vandermonde matrices for k = 0
8: [LebConstE0, LebConstG0] = Lebk0(x, B, C) . Lebesgue constants for k = 0
9: Ed2Pt = connect(r); . Same connectivity for xequi and xgll

10: [A, D] = Vandk1(xequi, xgll, Ed2Pt); . Vandermonde matrices for k = 1
11: TMesh = [x(1:end-1); x(2:end)]; . Edges of the test mesh
12: [LebConstE1, LebConstG1] = Lebk1(xequi, xgll, A, D, Ed2Pt, TMesh) . Lebesgue constants for k = 1
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