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Using generating functions and limit theorems, we obtain a stochastic description of Carlitz compositions of large
integern (i.e. compositions two successive parts of which are different). We analyze: the ni¥mbEparts,

the number of compositioriB(m, n) with m parts, the distribution of the last part size, the correlation between two
successive parts, leading to a Markov chain. We describe also the associated processes and the limiting trajectories, the
width and thickness of a composition. We finally present a typical simulation. The limiting processes are characterized
by Brownian Motion and some discrete distributions.
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1 Introduction

A Carlitz composition of is a composition two successive parts of which are different (see Carlitz [6]).
T(m, n) will denote the number of Carlitz compositionsrofvith m parts. AllT (-,n) compositions will be
considered as equiprobable. We ®althe random variable (R.V.): number of parts. In[18], Knopfmacher
and Prodinger found asymptotic values fof:, n), the mean number of pafi§M], the number of general
compositions with exactlyn equal adjacent parts, the mean of equal adjacent parts number, the mean of
the largest part. They also analyze Carlitz composition with zeros and with some restrictions. Carlitz
compositions can also be studied usBmirnov wordssee [10] and{18].

In [19], [20], and [?1], Louchard analyzes some polyominoes (or animals) such as: directed column-
convex animals, column-convex animals and directed diagonally convex animals. He obtained asymptotic
distributions forM and for the size of columns. He also derived limiting processes for typical trajectories
and shapes. Related material can be foundiin [3].

In the present paper, we consider Carlitz compositions as particular polyominoes and obtain a stochastic
description of their behaviour for large We analyze the numbd of parts, the number of composition
T(m,n) with m parts, the distribution of the last part size, the correlation between two successive parts,
leading to a Markov chain. We consider also the associated processes and the limiting trajectories and
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shapes (which show a “filament silhouette”), the width and the thickness (part size) of a composition. We
present an algorithm for efficient large Carlitz composition simulation.

We use such tools as asymptotic analysis of generating functions (based on their singularities) leading
to central limit, local limit and large deviation theorems. The limiting processes are characterized by
Brownian Motion, the extreme value-distribution and some discrete distributions.

Our results can be summarized as follows: the nurivwbef parts andr' (m, n) are analyzed in Theorems
2.1, 2.2, 2.3. The distribution of the last part size is given in Theorem 2.4. The distribution of intermediate
part size and the correlation between two successive parts are considered in Theorems 2.5, 2.6 (including
the Markov chain description). The associated processes are discussed in Theorems 2.7, 2.8, 2.9. The
simulation algorithm is given in Sec. 3.1 and the thickness is considered in Theorem 3.1, 3.2, and 3.3.

The paper is organized as follows: Section 2 gives the probabilistic analysis of Carlitz compositions,
Section 3 analyzes the simulation algorithm and the composition thickness, Section 4 concludes the paper.
An Appendix provides some identities we need in the paper. Several notations will appear in the sequel.
Let us summarize some of them:

“

I)H “ H H H H ”
e “~” means “convergence in distribution.

A (V) is the Normal (or Gaussian) random variable with mpamd variance/.

e “~” means “asymptotic to”rf or m — ).

e T(m,n) is the number of Carlitz compositions ofxith mparts.

e “Vertical distribution” means “Expression fdr(m,n) for given number of parts.”
e “Horizontal distribution” means “distribution of the number of pavidor givenn.”

e =_.»: Weak convergence of random functions in the space of all right continuous functions having
left limits with values inR? and endowed with the Skorohod metdg (see Billingsley [4] Chap.

).
e VAR(T) := VarianceéT).

e B(t) := the classical Brownian Motion.

2 Probabilistic analysis of Carlitz Compositions

In this section, we first analyze the numibéof parts. Then we obtain the distribution of the last part size
(LP). Next we compute the correlation between two successive intermediate parts, leading to a Markov
chain. Finally, we consider the associated processes and limiting trajectories.

2.1 Number of parts

Let T(m,n) be the number of Carlitz Compositions (CC)rofvith m parts and leff(i,n) be the number
of CC with the same characteristics and last part of giz&/e shall markn by z, m by w andi by
8. The corresponding generating functions (GF) satf${9,z) = fj_1(1, z)% —fj-1(28,2),j > 2 and
fy = 125. (The first part can be of any size.) Hergev, 8, 2) := 7w f;(8,2) satisfies

pis) pis)
o(w,0,2) = 1Vi—ze + 1vi—zecp(vv, 1,2) —wo(w, 28,2).
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Fig. 1: Winding number oh

Iterating, this leads to

@=A1(W,0,2)[1+ D], 1)
where
Dii=gwl2) = A(WL2)/[1-AW12)]
© Jewl
_ 1)+ 22 z
A1(w,8,2) Z T (2)
Notice that
1+D;=1/h, 3)

whereh(w,z) := 1— A;(w, 1,z). This generating function was already known to Carlitz [6].

First setd = 1. Whenw = 1 we get the GF of the total numb€&(-, n) of CC (n) (CC ofn): this is given
by D1(1,2z). The dominant singularity dD; is given by the roogz" (with smallest module) dfi(1,z), i.e.
z* =-.571349793158088. h(1,z) is analytic for|zl < 1. To be sure that* is the dominant singularity,
we use the principle of the argument of Henricil[11]: the number of solutions of the equUdtipa- 0
that lie inside a simple closed curfie with f(z) analytic inside and ofi, is equal to the variation of the
argument off (z) alongl", a quantity also equal to the winding number of the transformed ctifive
around the origin. The argument was used in Flajolet and Prodinger [8] in a similar situation. [Figure 1
represent$] (h), 0(h)] for z= .60exyit), t = 0..21, whereh is converted into a series up &Zz°°). The
winding number is 1, so thdithas only one roat* for |z < .60.
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By singularity analysisT (-, n) is asymptotically given by

1 1

Tm~ Trh(1,z) z"

:Cl/Z*nv n— oo, (4)
; 1
(F, means differentiation w.r.zand similarly forw). IndeedA; (1,1,z*) = 1. Forw € [0, 1], his analytic

for |zl < 1 and forw € [1,], his analytic for|z] < 1/w. Let us remark that the numerical computation of
his delicate: this is an alternating series. So it is better to use (Al). This leads to

wZ

k>1

The same technique has been usedNdw, 6, z) andhy, h;.

Let us return to our asymptotic analysis. By Bender’s Theorems 1,3 and (3[2) in [2] we can get more:
we obtain the asymptotic distribution of the number of pMts1 CC(n), where we consider all possible
T(-,n) as equiprobable. Let

rl = _hW/hZ7
Settingw = 1, z= z*, we derive
W = -—r1/Z"=-3506012746-,
02 = W—ry/7 =-1339166786 -

Then Bender'’s results lead to the following theorem.

Theorem 2.1 (Horizontal Distribution in CCn)). The number M of parts in a @) of large given n is
asymptotically Gaussian:
M-nw o

o1 A(0,1), n— oo.

Also a local limit theorem holds:

Cy e (m-nw)?/(2n0?)
T(m,n)N%\/z_To_l, n— oo, m—np1:O(\/r_l)

Remark. C; and | are already given in Knopfmacher and Prodingeri[18].

Forn = 30, FigureP gives the observed normalized distributioMdbbserved = circle, asymptotic =
line), extracted fromiz3°|D;. There is an obvious bias: this will be explained later in Section 2.2.

Now if we fix mand considen as variable (there are, of course, an infinite number of CC for gien
we can obtain another asymptotic form fofm, n): the conditioned distribution is given by

WZ'|D1(w2) = —- W"ZDy(w,2Z).

1
zn
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0.1+

Fig. 2: Observed normalized distribution bf(n = 30)

But, forz= 1, the dominant singularity dd;(w,zZ") isw* = 1. So with

-1
W = 1/u =2-852242911.-, (5)
05 = 03/ =3-1073787943 -,

we obtain the following theorem.

Theorem 2.2 (Vertical Distribution in CGn)). For large given number of parts m,(fh, n) is asymptoti-
cally given by
T C, e (-mip)?/(2ma3) o
mn~———————/ ' m—oo N—Mp= m).
(mn) ~ = e - o = O(v/M)
Note thatC; /C; = .
For further use, we have also computeg| j) based on a first part of fixed size We first derive
(conditioning onj):
®(w,0,7]) = Ao (W, 0,2]]) + A1 (W, 8,2)D2, (6)

where

Dz = owL2j)=Am1zj)/h
AowO.2l)) = Owz/(L4wa),
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andA; is given by [R).

This leads to ( ) J.
. Ax(1,1,7] -z 1
= = . ) 7
C=""hiz) CTrzinz) )
Note that, by (A1) ;Cz(j) = Cz, as it should. Theorem 2.3 is still valid.
Bender’s theorems are based on the analysip(af) = [%]” wherer(w) is the root of KF), seen

as az-equation, and (1) = z*. Butr(1)/r(w) is usually not a Probability GF (PGF). Indeed, we obtain
ﬁ =1+w— 3w?+ w3+ - which of course doesn't correspond to a PGF. Similarly, we could consider
t(z), the root of QS) (seen asv&-equation), witht(z) = 1, and analyzg(fl—z). But we can’t even construct
a series ire.

It is possible to derive a large deviation result for the number of parts, uéivig

Following Bender2] Theorem 3, we first set= €°. We have

r'(s) = —hye’/hy,
r"(s) = —(r"%hgy+ 2r'ehpy+ €hy + €Shyw) /hy.

where, herehy, = hy(w,r(w)), etc.
Bender leads to the following large deviation result:

Theorem 2.3 For m outside the rangény — O(y/n),ny + O(y/N)], choose & such that = m/n =
—r'(s")/r(s*). The following asymptotic relation holds:
—ms'
T(mn) ~ e M Ae%,1,r(s")] Chew,
[r(s)]"o(s") v2rm[—hy(e®, r(s))]r (s")
with 0%(s") = (m/n)2 —r"(s*) /r(s").

The range of validity of Theorem 2.3 can be established as follows. First, we must consider the contour
of h(w,z) = 0. After detailed analysis, it appears that this contiow, z) = O is made of 2 parts: see
Figure[8.

Part |, forw e (0,1], z€ [Z", 1), with r (w) " 1.

W—

Part Il, forw € [1,wy),z€ (1/w1,z*] andwy is the limit of the solution of[w, + —¢] = 0,e — 0.
The computation oifv; offers no special numerical problem and leads to

wy = 2-584243690--,23 = 1/w; = -3869604109- -

(we must only be careful with the precision: 20 digits are enough in the range weu(isg) ando?(w;)
are given by
H(wp) = -4657044011- -, 0%(w;) = -1056119001. - .

The functionu(w) is increasing from 0 teu(wy ), 0?(w) goes from 0 (fow = 0) to some maximum and
then decreases t(w). So finally, the range fanis given by(0, u(w)), z= r(w) following the contour
defined above.

The verification of condition (V) of Bender's Theorem 3 (which allows to go from a central limit
theorem to a local limit theorem) amounts to prove ti@, z) is analytic and bounded for

2 <Ir(0(s)I(1+98) and e<|0(s)| <,
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Fig. 3: Contour ofh = 0 and domain of convergence

for somee > 0, & > 0, wherer(s) is the suitable solution dfi(e® r(s)) = 0 (i.e. withr(0) = z*): this
follows from the analyticity analysis dfin the beginning of this section.

2.2 Distribution of the last part size in CC

We want to analyze the asymptotic distribution of the size LP of the last part of a)C8ettingw= 1 in
(m), we derive
Al(l7 672*)

(Z'¢9(1,6,2) ~ Lz’ n— oo,

uniformly for 6 in some complex neighbourhood of the origin. This may be checked by the method of
singularity analysis of Flajolet and Odlyzko, as used in Flajolet and Soria [9] or Hviaing [13]. Normalizing
by the total number of C@) (@) this leads to the following asymptotjno — «) PGF for the last part size

LP:

G(8) = A1(1,6,7).
Expanding, this leads to
. 7
B\ o | _
m(i) = [06(6) = 1~ i

with typical geometric behaviour. Of cours€1) = 1 by (Al) andE(LP) = Y im(i) = 2- 5833049669 -.
Forn= 12, we have computed the observed normalized distributidiPaforresponding to

[2%)9(6,1,2).
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Fig. 4: Observed normalized distribution of the last part sizer-P(12).

This gives the following Figurg 4 (observed = circle, asymptotic = line). The agreement is quite good.
We can now obtain more information frorfi (1). The asymptotic distribution of the last part size in
CC(n) of mparts is related tov"Z"|@(w, 8,z) and Bender’'s Theorems 1 and 3 lead to the GF:

il
2 Vamo, (8),

for m— nw = O(y/n), uniformly for 8 in some complex neighbourhood of the origin. Again the uni-
formity can be checked by following Bender's analysis. Normalizingd'los, n) (see Theorem 2.1), this
gives agairG(0). So we have proved the following result:

T(6,mn) ~

Theorem 2.4 For m—npy = O(y/n), the asymptotic distribution of the size LP of the last part in@C
with m parts is given by (j) = z*! /(14 z)) for n — oo uniformly for all j.

For instance, fon = 30,m=9,11,13 (|nw | = 10,|/no1| = 2) we have computed the observed
normalized distribution of LP.

Figure[d shows that the fit is quite good near the mean, but there is a bias for the two other vaiues of
nis not yet large enough to yield a distribution of LP that is nearly independanmt of

Returning to the proof of Bender's theorem, we must compute fﬁ)ﬁebw]q;lq)z[%w)]” with

$1(6,w) = Ag(w,8,r(w)),

1
W) = W)’
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0.2+

0.1+

Fig. 5: Observed normalized LP distribution (cross= 9, circle:m= 11, box:m= 13,n= 30)

andr(w) is again the root of[{3) with(1) = z*. But according to HwandgT13][T14, Theorem 2], we know
that the mean value ofl for largen is given byE(M) ~ nyy +V/'(0), where

v(s) :=log[01(1,€%)$2(€7) /(91(1, 1)$2(1))],

i.e.
_ ¢ltw(17 1) ¢2,w(1) .
VO="510D "o P S
But it is easy to check that; w(1,1) =0 and
daw(l) = [rwhz+Z'hyatw+Z'hgw]/[Z°0)?,
b2(1) = -1/(Z'hy,
rw = —hy/h.

From now on, we sét, = h,(1,7*), etc.
Numerical computation givgs= -5365417012- - This biasf is now reintroduced in Figure h& 30).
This gives Figurg]6, where the fit is now nearly perfect.

2.3 Correlation between two successive intermediate parts

Let us now turn to two successive pamts, m; + 1, of sizek, j, such that their distances from the first and
the last part are of orded(n). Let T (m,n, j) be the total number of C@) with m parts and last part size
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Fi) E

Fig. 6: Observed normalized distribution bf with bias (observed = circle, asymptotic = lime= 30)
j» let #im,n,my, k) be the total number of C@) with m parts, partm of sizek, and setmp := m—my.
We have, conditioning o,

mnm17 z T mlanla T(nhvn_nlf)“'

nlj

With Theorem 2.4 (vertical form) and Theorem 2.2 [[EQ. 7], this leads, after normalizatidiirbyn), to
the following distribution:

#(m,n,my, K) e—(nl—mluz)z/Zmlcg
T(m.n) 22 Vrmo,
g (N—M—mpip)?/2mp05 /o (n—mip)/2mo3

xCa(]
2(1) V/ 2T 02 v/ 2110
and with (A1) we readily obtain the following distributian (k) for k:

T[l(k) X

; 8

: —zK
(k) = J;(T[l(k)cz(l) = 1+2%2h,

For further use, we compute, fér> k

) =160 (0)2% + 62 (0)2% + 0(2%), k- oo,
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with

T'(zl) (0) = n(zz _ ZZ*ZW k) ' ©

By (A2), we obtainy T Th(k) = 1 and by (A3),z krp(k) = W as it should. So we obtain the following
theorem.

Theorem 2.5 The asymptoti¢n — o) distribution of intermediate part size is given igy(k), with mean
Ha.

But we can get more fronf](8), which shows that the asymptotic joint distribution (in stationary distribu-
tion) of two successive intermediate part sikemdj is given by

T (K)Ca(j), | #k

Normalizing byt (K), this leads to the following Markov chain related to two successive intermediate
parts:

Zi(14+z%) |
127 j #k (10)
The chain is irreducible, recurrent positive and reversible. Of course the stationary distribufiois of
given byt (k). Therefore, we obtain the following theorem.

Theorem 2.6 The asymptotic, r- o, distribution of two successive intermediate parts in a CC (n) is
given by a Markov chaifil(i, j), with stationary distributiorm (k), and with mean a1

Let us now analyze the asymptotic behaviouitf, j). This will be used in Sec. 3.2. For fixed we
obtain

nﬂm)::i (ej):(1+z*/) z! (1+o<z*k)) Kk — oo,
1=

For further use, we set
1+ 24

4)3([) = 1_7 .

11)

2.4 Associated processes and limiting trajectories

Let us now turn to trajectories. L&tbe the size of paitand seX(j) := lel We haveE[X(m)] ~ mLp
and we must check that VAR (m)] ~ ma3 as given by/[(5). We first deriveo? := VAR[X(m)] ~ mS, —
3] +2my$ CX where
S = ZT[Z j2=12.208296194. -
G = Y D (i—m)m() (I,J)(J*H2)~
[

But it is easily checked tha& := 37 C{ can be written as

_ 1 i - o 212 e
S = lim [hw {Izz T 0lew 8.2l fwlz (1+z*i)2}“%1—w1 :
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With (B), this can be simplified as

. j Ax(W,0,Z[i) —wz'6
S = Jm zz_m1+z*'1+z*l[ ]{ w
AL(W,B,7)Ag(W,1,Z°[i) | HBw
+ wh(w, z*) }_ 1—W:| '
This leads to (we set=1—¢)
T P—z 1 és(1) ¢5w( 1) 65(1)hww
%l'fb[ 18+ *m{* hwe | by 2N H (12)
where
Fo = i’ z? = —-95938032262
be = m,z(1+z°*i)2(1+z*i)__'
¢5(W,e,i) = Al(W,e,Z*)Az(W, 1,Z*|I)/W

ButA:(1,0,Z°) = G(8), so we derive

1 —¢5( 1 ~z! zl i1
Che __h_wzz{uz*" (A+z0hy 1127 1+27]

So the singularity in[{12) is removed.
Similarly, we obtain

j
- Z; [1+z*' 1+7] 0'105.(1,8 I)]

and finally

2 2 — Gsw(1) U-%hww 2
by (A4) as expected.

We can now apply the Functional Central Limit Theorem (for dependent R.V.) (see for instance Billings-
ley [4, p. 168 ff.]) and we obtain the following result, wheé) is the standard Brownian Motion (BM).

Theorem 2.7 X(INH]) Nt
—H2
—— = = B(t),
P (t)

where N:= number of parts o€C(n).

Let us now condition otX(m) = n. A realization ofX for fixed n is given by Theorem 2.7, where we
stop at a random time such thatX(m) = n. Proceeding as in[19] it is easy to check that this amounts to
fix N =n/pz in Theorem 2.7 (denominator) and we obtain the following result.

N—o, tel0,1],
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Theorem 2.8 Conditioned on Xm) = n,
X([mt]) — pomt
02¢/N/12

Let us now consider the oscillations ¥{-) around its mean. Let us define the lower oscillation bound
W,;,” and the rang¥\,,:

= B(t).

W, = —inf [X(i) — i,
i €[0,m]

W, = { sup — inf }[X(i)uzi],
[0, m] [0,m]

wheremis the number of parts in Q@).

But now the lower bountlj,”, normalized by, /n/> 02, is asymptotically given by inf  B(t) and

[0,1]
the rangeA, corresponds to the ran%e sup — inf }B(t). The densities of these R.V. are well
[0,1] [0,1]
known: the first one is given by
267/2
f1(X) = ——,
l( ) \/ZT

the second one is given by

fo(X) = \/%[ kikz(_l)klexp[_kzxz/a,

or

B = (V2L

),

where

Liz) = 1—2%(—1)k*1exp[—2k222]
k=1

(211)1/2% S expl-2(k— 12r2/82,
k=1

by JacobB-relations (see e.g. Whittaker and Watson [22].
This immediately leads to the following result

Theorem 2.9 For large n, and with N= n/y,

W, /(02¢/N) has the asymptotic density, f

Wh/(02¢/N) has the asymptotic density. f

In summary, we can see the CC as a B.M. with some thickness (part size). The distribution of the thickness
is characterized by Theorem 2.6.
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Fig. 7: UnnormalizedX(-).

3 Simulations and thickness

In this section, we present an algorithm for @Csimulation, then we analyze the CC thickness maxi-
mum.

3.1 Realizations

A simulated realization of a C@) proceeds as follows Start with a part of sizg at timei = 1 given
by y(j). Proceed from a part of sizeat timei — 1 to a part of sizqg at timei by using a Markov chain
defined by the probability matriX (k, j) given by (ID). Stop the chain as soonSas= 5", ji > n.

Forn = 10.000, a typical unnormalized trajectory i) is given in Figurg]7, which shows a “fila-
ment silhouette.” A typical normalized trajectory fégz);%z' and X<'c:2%“2', showing the thickness (here

the thickness is defined by the size of the parts) is given in Figure 8. Of course, both trajectories are
asymptotically equivalent fan — c. A zoom oni = [1030.105( is given in Figurd]9.

3.2 Hitting times and maximum for CC thickness

Let us call thickness the part size. In this section, we derive the thickness hitting times (to high level)
asymptotic distribution. This leads to a maximum asymptotic density. We consider theafdR.V.
describing the thickness of CC. Let us define theBet [k..o), k >> 1. By (1), we see that the
probability transition tcD is O(g),& = z* and by standard properties (see Keilson [16], Alddus [1]) we
know that the hitting time t® is such that (we drok for ease of notation):

o E/[Tp] = % +W(¢) + O(e) (Actually a Laurent series exists feisufficiently small),
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560 7000 500 2500 3000
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Fig. 8: NormalizedX(-), with thickness.
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Fig. 9: UnnormalizedX(-) with thickness (zoom).
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* Pre[TD z X] ~ eix/E‘/[TD], X — 00,

We should writeC3(¢) but we will soon check thats is independent of. To computeCs andy(¢), we
use the classical relation:

E/fTo] =1+ _zc e, j1E;{[To] (14)
ie. ;
Ca+u(e = 8+AZCH[&i][Csw(i)SHO(sz)
= s+:'T(D:3—a¢3(12)Cg+zl'l(é,j)w(j)wo(sz), (15)

andds is given by [TIL).
Eq. (I#) leads to

1= gﬂz(g)Eg(TD).
(This is equivalent to a formula of Kac, seel[15]).

Therefore, we obtain
1=Cs g %) (0), (16)

0= gné” (OW(e) +csgn§2) ) (17)

(T[(zl)andrré2> are given by|ﬂ9)).
Comparison of powers afin (3) leads tdl — M]Cz = 0, which confirms tha€s is independent of.
We derive

W(0) =1 93(0)Cs+ 3 ML W()).
J

or
I—Mw=23 with 3(¢):=1—¢3({)Cs. (18)

We must haver,d = 0, therefore

1=3 m(0)$a(f)Cs, Cs= 1/2”2(5)%(4)7

which fixesCs = —hy(1—z*). (This is of course equivalent tp {16).)
We denote byM; the Drazin inverse of — . We refer to Campbell and Meyetl [5] for a detailed
definition and analysis of the Drazin inverse. We have

M1 = zo(ﬂn—le[z)ZMz—lXT[z, (19)

A

whereM; = [| =M+ 1x ]! = 5,50[M — 1 x T,]" is the potential used in Kemeny, Snell and Knapp
[Z]. The solution of [TB) is given by = M0+ TR\.
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To fix Cg := TR, We first derive
gné”w = gré”wllmce > s

and with (I7),
Co = Ihw(L~2) o S 76 M3 (12

We can summarize our results in the following form.
Theorem 3.1 The thickness hitting time,Hp] to D := [k..«], k >> 1is given by

ETo] ~ =% +W(t) + O(z%)
with G = —hyw(1—Z*), P(£) = M1[1—Cad3(¢)] + Cs (M1 is the potential kernel given ifi (119)).
Pry[To > X ~ 2 /% x s w.
Now let M (t) := supcy 1 % (Maximum thickness withparts). We know that
P (t) <kl =PrTp >t+1].
So, by standard asymptotic analysis,
P (t) < K| ~ exp—expllogt — klog(z 1) —logCs]], t — .

Set nowk := j+1 andCs = Z*/Cas.
By Theorem 2.1, we know that= np 4+ O(y/n) andpy = hy/(hzZ").
Hence, we derive the following theorem (we use now the notatigm)).

Theorem 3.2 Let
n:= j—[logn+logCs +logp]/log(z1).
Then, with integer j and = O(1),
P (n) < j]~Gi(n), n— oo,
where G(n) := exp—exp—nlog(z-~1)]]. Let
1 (n) := log(Canta)/log(z~*) = [logn — log(—h;) —log(1 - Z')]/log(z" ),
andn = j— [g1(n)] — {wi(n)}. Asymptotically, the distribution is a periodic functionf(n) (with

period 1), which can be written as

logPr{M (n) < ([Wi(n)] +k) e {Win}log(zt) | _ gklogz 1)
Nn—oo
We also have
PAM (n) = j] ~ f1(n),

where f(n) :=G1(n) — G1(n —1).
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0.2+

Fig. 10: Distribution of maximum thickness.

The asymptotic moments 6% (n) are also periodic functions alf1(n). They can be written as Har-
monic sums which are usually analyzed with Mellin transforms: see Flajolet Et al [7]. The asymptotic
non-periodic term in the moments 8 (n) is given by the following result.

Theorem 3.3 The constant terr& in the Fourier expansion (ity1 (n)) of the moments d#/(n) is asymp-

totically given by
_ . +o00

E[M(n) —Pai(n)]' ~ » N'[Gi(n) — Gi(n — 1)]dn.

It is well known that the extreme-value distribution functierf * has meary and variance?/6. From
this, we can for instance derive

ELM()] ~ Gn()+ 5 + oo (20)
The other periodic terms have very small amplitude (see Flajolet €t al [7]).

Forn=10.000, we have simulated 2.000 trajectories. The observed distribution for maximum thickness
is given in Figurg10.

The observed and limiting distribution function (DF) are given in Figute 11 (observed = circle, asymp-
totic = line). The limiting DF is given byz:[j — W1(n)] and, due to the sensitivity @ to the mean, we

have takenp;(n) = Mp(n) — % - ﬁ whereMy(n) is the observed mean = 177... The limiting

meanE (9 (n)) is given by [2P) and leads to 189739171..
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0.6+

0.4+

Fig. 11: Observed and limiting DF.

4 Conclusion

Using some generating functions and limit convergence theorems, we have obtained a complete stochastic
description of Carlitz compositions. The same techniques could be used for some generalizations such as
Carlitz compositions with zeros and with some restrictions. In a recent paper by Hitczenko and Louchard
[2], the distinctness of classical and Carlitz compositions has been fully analyzed.
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A Appendix : Some combinatorial identities
Let us first sel (a,b,C) := J =1 ka—zb;kk—.

(1+29¢
0 Z*J
=1 Al
1+ 2z (A1)
Proof
z) .
( 1)1+1 _ (_1)J+1 i
=1 1-2 i>1 k>1
=— 3 (-#Y'=T(0,11)
k,j>1
Since for the special choicg of z the left side equals 1, the right side also does. Note that this is the
only identity where we need the valae All next identities are on arbitrary, O
o) zkj
Yz e (A2
Proof o
 Zw
hiwz) =1+ Y} (-1) -
gl 1-7
Hence
_ — _ ijlj—zj
= Y (D
2
= -5 =2
= T(0,1,2).
O
0 JZ*J
———— =-Zh,. A
Z T+712 2. (A3)
Proof
—zh, = (_1)J+17,
;1 (1-2))2
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= (—=1)1*1jkz
-y ki(=29!
k=1
T(1,1,2).

Proof

i () - (F613)
T(2,2,3)

66:?(0,1,2)’

or, by (I3),

Il

N

_| -
©
N

w
S~—

ZonK Z
e .
¢5(w,6,|)_k21( VT ex 1+wz’
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[0']¢s(w,6,i) = kzl(— 1)L k(- 11+ —

= —DRHIXIWZ S (—1)f(w2)’.

k;( ) go< ) (w2)

[07]¢sw(1,8,i) (=1)KHKIZZ k+0)(-1)".
>0k>1

dsw(1) ;gg Z 1+zl —1)RHIKIZ 2 (K 0) (1)

iz% jz jz!

- Z 1+2)3 Z 1+2)2 Z 1+z' 21; 1+2)3

This gives
dsw(1) =T(1,1,2)[T(1,1,3) - T(1,2,3)].

Sog% becomes

,  T(212 T(E12? _T(223)
% T T(0,12) "TO0.L2?2 “T(0.12)
_ LTMLLDT13-T(,23)] T(L127T(0.23)
T(0,1,2)2 T(0.1,2)°

This should equab3 = 02 /18 = 1/py — 3%3
But, after a boring but simple computation we find

he= 3 [T(22947(123) - T(213) +T(L.13)].

hww = 2T(0,2,3),

1
haw= ~[T(1,2,3) = T(1, 1,3)]

Therefore
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TR,
T(L,12) rT(1,12)°
T(0,1,2) zT(0,1,2)3
T(1,1,2) | r3hg+2rihpw+ hy+haw T(1,1,2)°
T(0,1,2) zh, T(0,1,2)3
T(1,1,2)  r2hyp+ 21haw+ hw+ M T(1,1,2)°
T(0,1,2) T(1,1,2) T(0,1,2)3
T(1L12) [, T(1,1,2)2
T(O 12) [ Thaz+2r1hyw+hy + hww} w
T(1,1,2) T(0,1,2)? T(1,1,2)2
TO012 TLi2p [T(2,2,3)+T(1,2,3)—T(2,173)+T(171,3)]W
T(1,1,2)°
[zrlh”” P+ hWW} T(0,1,2)3
T(1,1,2 1
7TE0)1,2; - [T(2,2,3)+T(1,2,3)—T(2,1,3)—|—T(1,1,3)} 013
T(1,1,2)°
2102w+ P+ | 0127
T(1,12) T(223) T(L,23) T(213) T(L13)
T(0,1,2) T(0,1,2) T(0,1,2) T(0,1,2) T(0,1,2)
T(1,1,2)
[Zrlhzw-l- hw+hww} W
T(1,1,2) T(223) T(123)  T(213 T(113)
T0,12) T(0,12) T(0,L2) T(0.1,2 T(0.12)
T(0,1,2) T(1,1,2)?
2112 [T(l,z,s) ~T(1,1,3) 0127
T(1,1,2)
[Pt P T(0,1,2)°
T(1,1,2) T(223) T(123  T(213 T(113)
T(0.1,2) T(0.1,2) T(0,12) 'T(0,12) T(0.12)
Z[T(l 2,3)-T(1,1 3)} T(1,1,2)
i b} (O 1 2)
T(1,1,2)°
[-T(O,1,2)+2T(0,2,3)} T0 127
T(1,1,2) T(223) T(1,23) T(213 T(1,13)
T(012) T(0,1,2) T(0,12) 'T(0,12 T(0,12)
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T(1,1,2)

n 2[T(1,2,3) ~TLI 55
T(1,1,2)? T(1,1,2)?
To,122 102310128

But now, we easily check that
T(2,1,3)-T(2,2,3) =-2T(2,2,3)+T(2,1,2),

and
T(1,1,3)+T(1,2,3) =T(1,1,2).

Identification ofo3 ando% is now immediate.
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