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Using generating functions and limit theorems, we obtain a stochastic description of Carlitz compositions of large
integern (i.e. compositions two successive parts of which are different). We analyze: the numberM of parts,
the number of compositionsT(m,n) with m parts, the distribution of the last part size, the correlation between two
successive parts, leading to a Markov chain. We describe also the associated processes and the limiting trajectories, the
width and thickness of a composition. We finally present a typical simulation. The limiting processes are characterized
by Brownian Motion and some discrete distributions.

Keywords: Carlitz compositions, Smirnov words, polyominoes, central limit theorems, local limit theorems, large
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1 Introduction
A Carlitz composition ofn is a composition two successive parts of which are different (see Carlitz [6]).
T(m,n) will denote the number of Carlitz compositions ofn with mparts. AllT(·,n) compositions will be
considered as equiprobable. We callM the random variable (R.V.): number of parts. In [18], Knopfmacher
and Prodinger found asymptotic values for:T(·,n), the mean number of partsE[M], the number of general
compositions with exactlym equal adjacent parts, the mean of equal adjacent parts number, the mean of
the largest part. They also analyze Carlitz composition with zeros and with some restrictions. Carlitz
compositions can also be studied usingSmirnov words; see [10] and [18].

In [19], [20], and [21], Louchard analyzes some polyominoes (or animals) such as: directed column-
convex animals, column-convex animals and directed diagonally convex animals. He obtained asymptotic
distributions forM and for the size of columns. He also derived limiting processes for typical trajectories
and shapes. Related material can be found in [3].

In the present paper, we consider Carlitz compositions as particular polyominoes and obtain a stochastic
description of their behaviour for largen. We analyze the numberM of parts, the number of composition
T(m,n) with m parts, the distribution of the last part size, the correlation between two successive parts,
leading to a Markov chain. We consider also the associated processes and the limiting trajectories and
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shapes (which show a “filament silhouette”), the width and the thickness (part size) of a composition. We
present an algorithm for efficient large Carlitz composition simulation.

We use such tools as asymptotic analysis of generating functions (based on their singularities) leading
to central limit, local limit and large deviation theorems. The limiting processes are characterized by
Brownian Motion, the extreme value-distribution and some discrete distributions.

Our results can be summarized as follows: the numberM of parts andT(m,n) are analyzed in Theorems
2.1, 2.2, 2.3. The distribution of the last part size is given in Theorem 2.4. The distribution of intermediate
part size and the correlation between two successive parts are considered in Theorems 2.5, 2.6 (including
the Markov chain description). The associated processes are discussed in Theorems 2.7, 2.8, 2.9. The
simulation algorithm is given in Sec. 3.1 and the thickness is considered in Theorem 3.1, 3.2, and 3.3.

The paper is organized as follows: Section 2 gives the probabilistic analysis of Carlitz compositions,
Section 3 analyzes the simulation algorithm and the composition thickness, Section 4 concludes the paper.
An Appendix provides some identities we need in the paper. Several notations will appear in the sequel.
Let us summarize some of them:

• “
D∼” means “convergence in distribution.”

• N (µ,V) is the Normal (or Gaussian) random variable with meanµ and varianceV.

• “∼” means “asymptotic to” (n or m→ ∞).

• T(m,n) is the number of Carlitz compositions ofn with m parts.

• “Vertical distribution” means “Expression forT(m,n) for given number of partsm.”

• “Horizontal distribution” means “distribution of the number of partsM for givenn.”

• ⇒n→∞: weak convergence of random functions in the space of all right continuous functions having
left limits with values inR2 and endowed with the Skorohod metricd0 (see Billingsley [4] Chap.
III).

• VAR(T ) := Variance(T ).

• B(t) := the classical Brownian Motion.

2 Probabilistic analysis of Carlitz Compositions
In this section, we first analyze the numberM of parts. Then we obtain the distribution of the last part size
(LP). Next we compute the correlation between two successive intermediate parts, leading to a Markov
chain. Finally, we consider the associated processes and limiting trajectories.

2.1 Number of parts
Let T(m,n) be the number of Carlitz Compositions (CC) ofn with m parts and letfm(i,n) be the number
of CC with the same characteristics and last part of sizei. We shall markn by z, m by w and i by
θ. The corresponding generating functions (GF) satisfyf j(θ,z) = f j−1(1,z) zθ

1−zθ − f j−1(zθ,z), j ≥ 2 and

f1 = zθ
1−zθ . (The first part can be of any size.) Henceφ(w,θ,z) := ∑∞

1 w j f j(θ,z) satisfies

φ(w,θ,z) =
wzθ

1−zθ
+

wzθ
1−zθ

φ(w,1,z)−wφ(w,zθ,z).
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Fig. 1: Winding number ofh

Iterating, this leads to
φ = A1(w,θ,z)[1+D1], (1)

where

D1 := φ(w,1,z) = A1(w,1,z)/[1−A1(w,1,z)],

A1(w,θ,z) =
∞

∑
j=1

(−1) j+1 zjθw j

1−zjθ
. (2)

Notice that
1+D1 = 1/h, (3)

whereh(w,z) := 1−A1(w,1,z). This generating function was already known to Carlitz [6].
First setθ = 1. Whenw = 1 we get the GF of the total numberT(·,n) of CC(n) (CC ofn): this is given

by D1(1,z). The dominant singularity ofD1 is given by the rootz∗ (with smallest module) ofh(1,z), i.e.
z∗ = ·571349793158088. . . h(1,z) is analytic for|z| < 1. To be sure thatz∗ is the dominant singularity,
we use the principle of the argument of Henrici [11]: the number of solutions of the equationf (z) = 0
that lie inside a simple closed curveΓ, with f (z) analytic inside and onΓ, is equal to the variation of the
argument off (z) alongΓ, a quantity also equal to the winding number of the transformed curvef (Γ)
around the origin. The argument was used in Flajolet and Prodinger [8] in a similar situation. Figure 1
represents[ℜ(h),ℑ(h)] for z= .60exp(it ), t = 0..2π, whereh is converted into a series up toO(z60). The
winding number is 1, so thath has only one rootz∗ for |z|< .60.
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By singularity analysis,T(·,n) is asymptotically given by

T(·,n)∼− 1
z∗hz(1,z∗)

1
z∗n

= C1/z
∗n, n→ ∞, (4)

with C1 = 1
z∗A1,z(1,1,z∗)

= ·4563634741· · ·
(Fz means differentiation w.r.t.zand similarly forw). IndeedA1(1,1,z∗)≡ 1. Forw∈ [0,1], h is analytic

for |z|< 1 and forw∈ [1,∞], h is analytic for|z|< 1/w. Let us remark that the numerical computation of
h is delicate: this is an alternating series. So it is better to use (A1). This leads to

h(w,z) = 1−∑
k≥1

wzk

1+wzk .

The same technique has been used forA1(w,θ,z) andhw,hz.
Let us return to our asymptotic analysis. By Bender’s Theorems 1,3 and (3.2) in [2] we can get more:

we obtain the asymptotic distribution of the number of partsM in CC(n), where we consider all possible
T(·,n) as equiprobable. Let

r1 := −hw/hz,

r2 := −(r2
1hzz+2r1hzw+hw +hww)/hz.

Settingw = 1, z= z∗, we derive

µ1 := −r1/z
∗ = ·3506012746· · · ,

σ2
1 := µ2

1− r2/z
∗ = ·1339166786· · ·

Then Bender’s results lead to the following theorem.

Theorem 2.1 (Horizontal Distribution in CC(n)). The number M of parts in a CC(n) of large given n is
asymptotically Gaussian:

M−nµ1√
nσ1

D∼N (0,1), n→ ∞.

Also a local limit theorem holds:

T(m,n)∼ C1

z∗n
e−(m−nµ1)2/(2nσ2

1)
√

2πnσ1
, n→ ∞, m−nµ1 = O(

√
n).

Remark. C1 and µ1 are already given in Knopfmacher and Prodinger [18].

For n = 30, Figure 2 gives the observed normalized distribution ofM (observed = circle, asymptotic =
line), extracted from[z30]D1. There is an obvious bias: this will be explained later in Section 2.2.

Now if we fix mand considern as variable (there are, of course, an infinite number of CC for givenm),
we can obtain another asymptotic form forT(m,n): the conditioned distribution is given by

[wmzn]D1(w,z) =
1

z∗n
[wmzn]D1(w,zz∗).
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Fig. 2: Observed normalized distribution ofM(n = 30)

But, for z= 1, the dominant singularity ofD1(w,zz∗) is w∗ = 1. So with

C2 =
−1

hw(1,z∗)
= 1·3016594836· · · ,

µ2 := 1/µ1 = 2·852242911· · · , (5)

σ2
2 = σ2

1/µ
3
1 = 3·1073787943· · · ,

we obtain the following theorem.

Theorem 2.2 (Vertical Distribution in CC(n)). For large given number of parts m, T(m,n) is asymptoti-
cally given by

T(m,n)∼ C2

z∗n
e−(n−mµ2)2/(2mσ2

2)
√

2πmσ2
, m→ ∞, n−mµ2 = O(

√
m).

Note thatC1/C2 = µ1.
For further use, we have also computedC2( j) based on a first part of fixed sizej. We first derive

(conditioning onj):
φ(w,θ,z| j) = A2(w,θ,z| j)+A1(w,θ,z)D2, (6)

where

D2 := φ(w,1,z| j) = A2(w,1,z| j)/h,
A2(w,θ,z| j) = θ jwzj/(1+wzj),
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andA1 is given by (2).
This leads to

C2( j) =−A2(1,1,z∗| j)
hw(1,z∗)

=
−z∗ j

1+z∗ j

1
hw(1,z∗)

. (7)

Note that, by (A1),∑ j C2( j) = C2, as it should. Theorem 2.3 is still valid.

Bender’s theorems are based on the analysis ofϕ(w) = [ r(1)
r(w) ]n where r(w) is the root of (3), seen

as az-equation, andr(1) = z∗. But r(1)/r(w) is usually not a Probability GF (PGF). Indeed, we obtain
1

r(w) = 1+w− 1
2w2+ 7

12w3+ · · ·which of course doesn’t correspond to a PGF. Similarly, we could consider

t(z), the root of (3) (seen as aw-equation), witht(z∗) = 1, and analyze 1
t(z∗z) . But we can’t even construct

a series inz.
It is possible to derive a large deviation result for the number of parts, usingr(w).
Following Bender [2] Theorem 3, we first setw = es. We have

r ′(s) = −hwes/hz,

r ′′(s) = −(r ′2hzz+2r ′eshzw+eshw +e2shww)/hz.

where, here,hw = hw(w, r(w)), etc.
Bender leads to the following large deviation result:

Theorem 2.3 For m outside the range[nµ1−O(
√

n),nµ1 + O(
√

n)], choose s∗ such that µ= m/n =
−r ′(s∗)/r(s∗). The following asymptotic relation holds:

T(m,n)∼ e−ms∗A1[es∗ ,1, r(s∗)]
[r(s∗)]nσ(s∗)

√
2πn[−hz(es∗ , r(s∗))]r(s∗)

, n→ ∞,

with σ2(s∗) = (m/n)2− r ′′(s∗)/r(s∗).

The range of validity of Theorem 2.3 can be established as follows. First, we must consider the contour
of h(w,z) = 0. After detailed analysis, it appears that this contourh(w,z) = 0 is made of 2 parts: see
Figure 3.

Part I, forw∈ (0,1], z∈ [z∗,1), with r(w) −→
w→0

1.

Part II, forw∈ [1,w1),z∈ (1/w1,z∗] andw1 is the limit of the solution ofh[w, 1
w− ε] = 0,ε→ 0.

The computation ofw1 offers no special numerical problem and leads to

w1 = 2·584243690· · · ,z1 = 1/w1 = ·3869604109· · ·

(we must only be careful with the precision: 20 digits are enough in the range we use).µ(w1) andσ2(w1)
are given by

µ(w1) = ·4657044011· · · ,σ2(w1) = ·1056119001· · · .
The functionµ(w) is increasing from 0 toµ(w1),σ2(w) goes from 0 (forw = 0) to some maximum and

then decreases toσ2(w1). So finally, the range forµ is given by(0,µ(w1)), z= r(w) following the contour
defined above.

The verification of condition (V) of Bender’s Theorem 3 (which allows to go from a central limit
theorem to a local limit theorem) amounts to prove thath(es,z) is analytic and bounded for

|z| ≤ |r(ℜ(s))|(1+ δ) and ε≤ |ℑ(s)| ≤ π,
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Fig. 3: Contour ofh = 0 and domain of convergence

for someε > 0, δ > 0, wherer(s) is the suitable solution ofh(es, r(s)) = 0 (i.e. with r(0) = z∗): this
follows from the analyticity analysis ofh in the beginning of this section.

2.2 Distribution of the last part size in CC

We want to analyze the asymptotic distribution of the size LP of the last part of a CC(n). Settingw = 1 in
(1), we derive

[zn]φ(1,θ,z)∼ A1(1,θ,z∗)
−z∗nz∗hz(1,z∗)

, n→ ∞,

uniformly for θ in some complex neighbourhood of the origin. This may be checked by the method of
singularity analysis of Flajolet and Odlyzko, as used in Flajolet and Soria [9] or Hwang [13]. Normalizing
by the total number of CC(n) (4) this leads to the following asymptotic(n→∞) PGF for the last part size
LP:

G(θ) = A1(1,θ,z∗).

Expanding, this leads to

π1(i) := [θi ]G(θ) =
z∗i

1+z∗i
,

with typical geometric behaviour. Of courseG(1) = 1 by (A1) andE(LP) = ∑ iπ(i) = 2·5833049669· · ·.
Forn = 12, we have computed the observed normalized distribution ofLP corresponding to

[z12]φ(θ,1,z).
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Fig. 4: Observed normalized distribution of the last part size LP(n = 12).

This gives the following Figure 4 (observed = circle, asymptotic = line). The agreement is quite good.
We can now obtain more information from (1). The asymptotic distribution of the last part size in

CC(n) of m parts is related to[wmzn]φ(w,θ,z) and Bender’s Theorems 1 and 3 lead to the GF:

T(θ,m,n)∼ C1

z∗n
e−(m−nµ1)2/(2nσ2

1)
√

2πnσ1
G(θ),

for m− nµ1 = O(
√

n), uniformly for θ in some complex neighbourhood of the origin. Again the uni-
formity can be checked by following Bender’s analysis. Normalizing byT(m,n) (see Theorem 2.1), this
gives againG(θ). So we have proved the following result:

Theorem 2.4 For m−nµ1 = O(
√

n), the asymptotic distribution of the size LP of the last part in CC(n)
with m parts is given byπ1( j) = z∗ j/(1+z∗ j) for n→ ∞ uniformly for all j.

For instance, forn = 30,m = 9,11,13,(bnµ1c = 10,b
√

nσ1c = 2) we have computed the observed
normalized distribution of LP.

Figure 5 shows that the fit is quite good near the mean, but there is a bias for the two other values ofm:
n is not yet large enough to yield a distribution of LP that is nearly independent ofm

Returning to the proof of Bender’s theorem, we must compute from (1)[θkwm]ϕ1ϕ2[ z∗

r(w) ]n with

ϕ1(θ,w) = A1(w,θ, r(w)),

ϕ2(w) = − 1
r(w)hz(w, r(w))

,
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Fig. 5: Observed normalized LP distribution (cross:m= 9, circle:m= 11, box:m= 13,n = 30)

andr(w) is again the root of (3) withr(1) = z∗. But according to Hwang [13], [14, Theorem 2], we know
that the mean value ofM for largen is given byE(M)∼ nµ1 +v′(0), where

v(s) := log[ϕ1(1,es)ϕ2(es)/(ϕ1(1,1)ϕ2(1))],

i.e.

v′(0) =
ϕ1,w(1,1)
ϕ1(1,1)

+
ϕ2,w(1)
ϕ2(1)

= β say.

But it is easy to check thatϕ1,w(1,1) = 0 and

ϕ2,w(1) = [rwhz+z∗hz,zrw +z∗hz,w]/[z∗hz]2,
ϕ2(1) = −1/(z∗hz),

rw = −hw/hz.

From now on, we sethz = hz(1,z∗), etc.
Numerical computation givesβ = ·5365417012· · · This biasβ is now reintroduced in Figure 1 (n= 30).

This gives Figure 6, where the fit is now nearly perfect.

2.3 Correlation between two successive intermediate parts

Let us now turn to two successive partsm1,m1 +1, of sizek, j, such that their distances from the first and
the last part are of orderO(n). Let T(m,n, j) be the total number of CC(n) with m parts and last part size
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Fig. 6: Observed normalized distribution ofM with bias (observed = circle, asymptotic = line,n = 30)

j, let #(m,n,m1,k) be the total number of CC(n) with m parts, partm1 of sizek, and setm2 := m−m1.
We have, conditioning onj,

#(m,n,m1,k) = ∑
n1

∑
j 6=k

T(m1,n1,k)T(m2,n−n1, ·)| j.

With Theorem 2.4 (vertical form) and Theorem 2.2 [Eq. 7], this leads, after normalization byT(m,n), to
the following distribution:

#(m,n,m1,k)
T(m,n)

∼ ∑
n1

∑
j 6=k

e−(n1−m1µ2)2/2m1σ2
2

√
2πm1σ2

π1(k)×

×C2( j)
e−(n−n1−m2µ2)2/2m2σ2

2
√

2πm2σ2

/
e−(n−mµ2)/2mσ2

2
√

2πmσ2
, (8)

and with (A1) we readily obtain the following distributionπ2(k) for k:

π2(k) = ∑
j 6=k

π1(k)C2( j) =
−z∗k

(1+z∗k)2hw
.

For further use, we compute, for`≥ k

π2(`) = π(1)
2 (`)z∗k + π(2)

2 (`)z∗2k + O(z∗3k), k→ ∞,
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with

π(1)
2 (`) =−z∗(l−k)

hw
, π(2)

2 (`) =
2z∗2(l−k)

hw
. (9)

By (A2), we obtain∑∞
1 π2(k) = 1 and by (A3),∑kπ2(k) = µ2 as it should. So we obtain the following

theorem.

Theorem 2.5 The asymptotic(n→∞) distribution of intermediate part size is given byπ2(k), with mean
µ2.

But we can get more from (8), which shows that the asymptotic joint distribution (in stationary distribu-
tion) of two successive intermediate part sizesk and j is given by

π1(k)C2( j), j 6= k.

Normalizing byπ2(k), this leads to the following Markov chain related to two successive intermediate
parts:

Π(k, j) =
z∗ j(1+z∗k)

1+z∗ j , j 6= k. (10)

The chain is irreducible, recurrent positive and reversible. Of course the stationary distribution ofΠ is
given byπ2(k). Therefore, we obtain the following theorem.

Theorem 2.6 The asymptotic, n→ ∞, distribution of two successive intermediate parts in a CC (n) is
given by a Markov chainΠ(i, j), with stationary distributionπ2(k), and with mean µ2.

Let us now analyze the asymptotic behaviour ofΠ(i, j). This will be used in Sec. 3.2. For fixed̀, we
obtain

Π+(`,k) :=
∞

∑
j=k

Π(`, j) = (1+z∗`)
z∗k

1−z∗
(1+ O(z∗k)), k→ ∞.

For further use, we set

ϕ3(`) :=
1+z∗`

1−z∗
. (11)

2.4 Associated processes and limiting trajectories

Let us now turn to trajectories. Letxi be the size of parti and setX( j) := ∑ j
1xi . We haveE[X(m)]∼mµ2

and we must check that VAR[X(m)]∼mσ2
2 as given by (5). We first derivemσ2

X := VAR[X(m)]∼m[S2−
µ2

2]+2m∑∞
1 Cx

k where

S2 := ∑π2( j) j2 = 12·208296194· · · ,
Cx

k := ∑
i

∑
j

(i−µ2)π2(i)Πk(i, j)( j−µ2).

But it is easily checked thatS3 := ∑∞
1 Cx

k can be written as

S3 = lim
w→1

[
− 1

hw

{
∑
i

∑
j

i
1+z∗i

[θ j ]φ(w,θ,z∗|i) j
1+z∗ j −w∑

i

z∗i i2

(1+z∗i)2

}
−µ2

2
w2

1−w

]
.
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With (6), this can be simplified as

S3 = lim
w→1

[
∑
i

∑
j
− 1

hw

i
1+z∗i

j
1+z∗ j [θ

j ]
{

A2(w,θ,z∗|i)−wz∗iθi

w

+
A1(w,θ,z∗)A2(w,1,z∗|i)

wh(w,z∗)

}
− µ2

2w
1−w

]
.

This leads to (we setw = 1− ε)

S3 = lim
ε→0

[
−µ2

2

ε
+µ2

2 + ϕ̄6−
1
hw

[
− ϕ̄5(1)

hwε
+

ϕ̄5,w(1)
hw

− ϕ̄5(1)hww

2h2
w

]]
, (12)

where

ϕ̄6 :=
1
hw

∑
i

i2

(1+z∗i)2

z∗2i

(1+z∗i)
=−·95938032262· · · ,

ϕ5(w,θ, i) = A1(w,θ,z∗)A2(w,1,z∗|i)/w.

But A1(1,θ,z∗)≡G(θ), so we derive

− 1
hw
· −ϕ̄5(1)

hw
=− 1

hw
∑
i

∑
j

[
i

1+z∗i
· −z∗i

(1+z∗i)hw
. · z∗ j

1+z∗ j ·
j

1+z∗ j

]
≡ µ2

2.

So the singularity in (12) is removed.
Similarly, we obtain

ϕ̄5,w(1) = ∑
i

∑
j

[
i

1+z∗i
· j
1+z∗ j [θ

j ]ϕ5,w(1,θ, i)
]
,

and finally

mσ2
X ∼m

[
S2 +µ2

2 +2

{
ϕ̄6−

ϕ̄5,w(1)
h2

w
+

µ2
2hww

2hw

}]
= mσ2

2, (13)

by (A4) as expected.
We can now apply the Functional Central Limit Theorem (for dependent R.V.) (see for instance Billings-

ley [4, p. 168 ff.]) and we obtain the following result, whereB(t) is the standard Brownian Motion (BM).

Theorem 2.7
X([Nt])−µ2Nt

σ2
√

N
⇒ B(t), N→ ∞, t ∈ [0,1],

where N:= number of parts ofCC(n).

Let us now condition onX(m) = n. A realization ofX for fixed n is given by Theorem 2.7, where we
stop at a random timemsuch thatX(m) = n. Proceeding as in [19] it is easy to check that this amounts to
fix N = n/µ2 in Theorem 2.7 (denominator) and we obtain the following result.
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Theorem 2.8 Conditioned on X(m) = n,

X([mt])−µ2mt

σ2
√

n/µ2
⇒ B(t).

Let us now consider the oscillations ofX(·) around its mean. Let us define the lower oscillation bound
W−n and the rangeWn:

W−n := − inf
i ∈ [0,m]

[X(i)−µ2i],

Wn :=
{

sup − inf
[0,m] [0,m]

}
[X(i)−µ2i],

wherem is the number of parts in CC(n).

But now the lower boundW−n , normalized by
√

n/µ2 σ2, is asymptotically given by inf B(t)
[0,1]

and

the rangeWn corresponds to the range

{
sup − inf
[0,1] [0,1]

}
B(t). The densities of these R.V. are well

known: the first one is given by

f1(x) =
2e−x2/2
√

2π
,

the second one is given by

f2(x) =
8√
2π

∞

∑
k=1

k2(−1)k−1exp[−k2x2/2],

or

f2(x) = (
2
π

)1/2 1
x

L′(
x
2

),

where

L(z) = 1−2
∞

∑
k=1

(−1)k−1exp[−2k2z2]

= (2π)1/2 1
z

∞

∑
k=1

exp[−2(k−1)2π2/8z2],

by Jacobiθ–relations (see e.g. Whittaker and Watson [22].
This immediately leads to the following result

Theorem 2.9 For large n, and with N= n/µ2,
W−n /(σ2

√
N) has the asymptotic density f1,

Wn/(σ2
√

N) has the asymptotic density f2.

In summary, we can see the CC as a B.M. with some thickness (part size). The distribution of the thickness
is characterized by Theorem 2.6.
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Fig. 7: UnnormalizedX(·).

3 Simulations and thickness
In this section, we present an algorithm for CC(n) simulation, then we analyze the CC thickness maxi-
mum.

3.1 Realizations
A simulated realization of a CC(n) proceeds as follows.2 Start with a part of sizej at timei = 1 given
by π1( j). Proceed from a part of sizek at timei−1 to a part of sizej at timei by using a Markov chain
defined by the probability matrixΠ(k, j) given by (10). Stop the chain as soon asS:= ∑m

i=1 j i > n.
For n = 10.000, a typical unnormalized trajectory forX(i) is given in Figure 7, which shows a “fila-

ment silhouette.” A typical normalized trajectory forX(i)−µ2i
σ2
√

N
and X(i−1)−µ2i

σ2
√

N
, showing the thickness (here

the thickness is defined by the size of the parts) is given in Figure 8. Of course, both trajectories are
asymptotically equivalent forn→ ∞. A zoom oni = [1030..1050] is given in Figure 9.

3.2 Hitting times and maximum for CC thickness
Let us call thickness the part size. In this section, we derive the thickness hitting times (to high level)
asymptotic distribution. This leads to a maximum asymptotic density. We consider the setxi of R.V.
describing the thickness of CC. Let us define the setD := [k..∞), k >> 1. By (11), we see that the
probability transition toD is O(ε),ε = z∗k and by standard properties (see Keilson [16], Aldous [1]) we
know that the hitting time toD is such that (we dropk for ease of notation):

• E`[TD] = C3
ε + ψ(`)+ O(ε) (Actually a Laurent series exists forε sufficiently small),
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Fig. 8: NormalizedX(·), with thickness.
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Fig. 9: UnnormalizedX(·) with thickness (zoom).
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• Pr̀ [TD ≥ x]∼ e−x/E`[TD], x→ ∞.

We should writeC3(`) but we will soon check thatC3 is independent of̀. To computeC3 andψ(`), we
use the classical relation:

E`[TD] = 1+ ∑
j∈DC

Π[`, j]E j [TD] (14)

i.e.

C3 + ψ(`)ε = ε + ∑
j∈DC

Π[`, j][C3 + ψ( j)ε]+ O(ε2)

= ε + ΠC3− εϕ3(`)C3 +∑
j

Π(`, j)ψ( j)ε + O(ε2), (15)

andϕ3 is given by (11).
Eq. (14) leads to

1 = ∑
D

π2(`)E`(TD).

(This is equivalent to a formula of Kac, see [15]).
Therefore, we obtain

1 = C3∑
D

π(1)
2 (`), (16)

0 = ∑
D

π(1)
2 (`)ψ(`)+C3∑

D
π(2)

2 (`) (17)

(π(1)
2 andπ(2)

2 are given by (9)).
Comparison of powers ofε in (15) leads to[I −Π]C3 = 0, which confirms thatC3 is independent of̀.

We derive
ψ(`) = 1−ϕ3(`)C3 +∑

j
Π(`, j)ψ( j),

or
[I −Π]ψ = δ, with δ(`) := 1−ϕ3(`)C3. (18)

We must haveπ2δ = 0, therefore

1 = ∑π2(`)ϕ3(`)C3, C3 = 1/∑̀π2(`)ϕ3(`),

which fixesC3 =−hw(1−z∗). (This is of course equivalent to (16).)
We denote byM1 the Drazin inverse ofI −Π. We refer to Campbell and Meyer [5] for a detailed

definition and analysis of the Drazin inverse. We have

M1 = ∑
n≥0

(Πn−1×π2) = M2−1×π2, (19)

whereM2 := [I −Π + 1×π2]−1 = ∑n≥0[Π−1×π2]n is the potential used in Kemeny, Snell and Knapp
[17]. The solution of (18) is given byψ = M1δ + π2ψ.
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To fix C6 := π2ψ, we first derive

∑
D

π(1)
2 ψ = ∑

D
π(1)

2 M1δ +C6∑
D

π(1)
2 ,

and with (17),

C6 = [hw(1−z∗)
2

hw(1−z∗2)
−∑

D
π(1)

2 M1δ][−hw(1−z∗)].

We can summarize our results in the following form.

Theorem 3.1 The thickness hitting time E`[TD] to D := [k..∞], k>> 1 is given by

E`[TD]∼ C3

z∗k
+ ψ(`)+ O(z∗k),

with C3 =−hw(1−z∗), ψ(`) = M1[1−C3ϕ3(`)]+C6 (M1 is the potential kernel given in (19)).

Pr`[TD ≥ x]∼ e−xz∗k/C3,x→ ∞.

Now let M (t) := supi∈[1..t] xi (maximum thickness witht parts). We know that

Pr[M (t)< k] = Pr[TD ≥ t +1].

So, by standard asymptotic analysis,

Pr[M (t)< k]∼ exp[−exp[logt−k log(z∗−1)− logC3]], t→ ∞.

Set nowk := j +1 andC4 = z∗/C3.
By Theorem 2.1, we know thatt = nµ1 + O(

√
n) andµ1 = hw/(hzz∗).

Hence, we derive the following theorem (we use now the notationM (n)).

Theorem 3.2 Let
η := j− [logn+ logC4 + logµ1]/ log(z∗−1).

Then, with integer j andη = O(1),

Pr[M (n)≤ j]∼G1(η), n→ ∞,

where G1(η) := exp[−exp[−η log(z∗−1)]]. Let

ψ1(n) := log(C4nµ1)/ log(z∗−1) = [logn− log(−hz)− log(1−z∗)]/ log(z∗−1),

and η = j −bψ1(n)c− {ψ1(n)}. Asymptotically, the distribution is a periodic function ofψ1(n) (with
period 1), which can be written as

logPr[M (n)≤ (bψ1(n)c+k)e−{ψ1(n)} log(z∗−1) −→
n→∞
−e−k log(z∗−1).

We also have
Pr[M (n) = j]∼ f1(η),

where f1(η) := G1(η)−G1(η−1).
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Fig. 10: Distribution of maximum thickness.

The asymptotic moments ofM (n) are also periodic functions ofψ1(n). They can be written as Har-
monic sums which are usually analyzed with Mellin transforms: see Flajolet et al [7]. The asymptotic
non-periodic term in the moments ofM (n) is given by the following result.

Theorem 3.3 The constant term̄E in the Fourier expansion (inψ1(n)) of the moments ofM (n) is asymp-
totically given by

Ē[M (n)−ψ1(n)]i ∼
∫ +∞

−∞
ηi [G1(η)−G1(η−1)]dη.

It is well known that the extreme-value distribution functione−e−x
has meanγ and varianceπ2/6. From

this, we can for instance derive

Ē[M (n)]∼ ψ1(n)+
1
2

+
γ

log(z∗−1)
. (20)

The other periodic terms have very small amplitude (see Flajolet et al [7]).
Forn= 10.000, we have simulated 2.000 trajectories. The observed distribution for maximum thickness

is given in Figure 10.
The observed and limiting distribution function (DF) are given in Figure 11 (observed = circle, asymp-

totic = line). The limiting DF is given byG1[ j−ψ1(n)] and, due to the sensitivity ofG1 to the mean, we
have takenψ1(n) = M̄0(n)− 1

2 −
γ

log(z∗−1) whereM̄0(n) is the observed mean = 17·17. . . The limiting

meanĒ(M (n)) is given by (20) and leads to 17·09739171. . .
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Fig. 11: Observed and limiting DF.

4 Conclusion
Using some generating functions and limit convergence theorems, we have obtained a complete stochastic
description of Carlitz compositions. The same techniques could be used for some generalizations such as
Carlitz compositions with zeros and with some restrictions. In a recent paper by Hitczenko and Louchard
[12], the distinctness of classical and Carlitz compositions has been fully analyzed.

Acknowledgements

The pertinent comments of the referee led to improvements in the presentation.

References
[1] D. Aldous. Probability Approximations via the Poisson Clumping Heuristic. Springer-Verlag, 1989.

[2] E.A. Bender. Central and local limit theorems applied to asymptotics enumeration.Journal of
Combinatorial Theory,Series A, 15:91–111, 1973.

[3] Edward A. Bender. Convexn-ominoes.Discrete Math., 8:219–226, 1974.

[4] P. Billingsley. Convergence of Probability Measures. Wiley, 1968.

[5] S. L. Campbell and C. D. Meyer.Generalized Inverse of Linear Transformations. Pitman, 1979.



90 Guy Louchard and Helmut Prodinger

[6] L. Carlitz. Restricted compositions.Fibonacci Quarterly, 14:254–264, 1976.

[7] P. Flajolet, X. Gourdon, and P. Dumas. Mellin transforms and asymptotics: Harmonic sums.Theo-
retical Computer Science, 144:3–58, 1995.

[8] P. Flajolet and H. Prodinger. Level number sequences for trees.Discrete Mathematics, 65:149–156,
1987.

[9] P. Flajolet and M. Soria. General combinatorial schemes: Gaussian limit distribution and exponential
tails. Discrete Mathematics, 114:159–180, 1993.

[10] I. P. Goulden and D. M. Jackson.Combinatorial enumeration. John Wiley & Sons Inc., New York,
1983. With a foreword by Gian-Carlo Rota, Wiley-Interscience Series in Discrete Mathematics.

[11] P. Henrici.Applied and Computational Complex Analysis. Wiley, 1988.

[12] P. Hitczenko and G. Louchard. Distinctness of compositions of an integer: a probabilistic analysis.
Random Structures and Algorithms, 19(3,4):407–437, 2001.

[13] H.K. Hwang. Th́eor̀emes limites pour les structures aléatoires et les fonctions arithmétiques. 1994.
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A Appendix : Some combinatorial identities
Let us first setT(a,b,c) := ∑k≥1ka zbk

(1+zk)c .

∞

∑
1

z∗ j

1+z∗ j = 1. (A1)

Proof

∑
j≥1

(−1) j+1 zj

1−zj = ∑
j≥1

(−1) j+1 ∑
k≥1

zk j

=− ∑
k, j≥1

(−zk) j = T(0,1,1)

Since for the special choicez∗ of z the left side equals 1, the right side also does. Note that this is the
only identity where we need the valuez∗. All next identities are on arbitraryz. 2

∞

∑
1

z∗ j

(1+z∗ j)2 =−hw. (A2)

Proof

h(w,z) = 1+ ∑
j≥1

(−1) j zjw j

1−zj .

Hence

−hw = ∑
j≥1

(−1) j+1 jz j

1−zj

= ∑
j,k≥1

(−1) j+1 jz jk

= − ∑
j,k≥1

j(−zk) j

= T(0,1,2).

2

∞

∑
1

jz∗ j

(1+z∗ j)2 =−z∗hz. (A3)

Proof

−zhz = ∑
j≥1

(−1) j+1 jz j

(1−zj)2
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= ∑
j,k≥1

(−1) j+1 jkzjk

= − ∑
j,k≥1

k j(−zk) j

= T(1,1,2).

2

σ2
2≡ σ2

X. (A4)

Proof

S2 =
T(2,1,2)
T(0,1,2)

,

µ2
2 =

(
zhz

hw

)2

=
(

T(1,1,2)
T(0,1,2)

)2

,

ϕ̄6 =−T(2,2,3)
T(0,1,2)

,

σ2
X = S2−µ2

2 +2Σ,

or, by (13),

T(2,1,2)
T(0,1,2)

+
(

T(1,1,2)
T(0,1,2)

)2

−2
T(2,2,3)
T(0,1,2)

−2
ϕ̄5,w

T(0,1,2)2 −
ϕ̄5hww

(T(0,1,2))3 .

hww = ∑
j≥1

(−1) j+1 j( j−1)zj

1−zj

= ∑
j,k≥1

(−1) j+1 j( j−1)zjk

= − ∑
j,k≥1

j( j−1)(−zk) j

= 2T(0,2,3).

ϕ̄5 = h2
wµ2

2 = (zhz)2 = T(1,1,2)2.

ϕ5(w,θ, i) = ∑
k≥1

(−1)k+1 zkθwk

1−θzk ·
zi

1+wzi .
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[θ j ]ϕ5(w,θ, i) = ∑
k≥1

(−1)k+1zkwkzk( j−1) zi

1+wzi

= ∑
k≥1

(−1)k+1zk jwkzi ∑̀
≥0

(−1)`(wzi)`.

[θ j ]ϕ5,w(1,θ, i) = ∑̀
≥0

∑
k≥1

(−1)k+1zk jzizi`(k+ `)(−1)`.

ϕ̄5,w(1) = ∑
i≥1

∑
j≥1

∑̀
≥0

∑
k≥1

i
1+zi

j
1+zj (−1)k+1zk jzizi`(k+ `)(−1)`

= −∑
i≥1

iz2i

(1+zi)3 ∑
j≥1

jz j

(1+zj)2 + ∑
i≥1

izi

(1+zi)2 ∑
j≥1

jz j

(1+zj)3 .

This gives

ϕ̄5,w(1) = T(1,1,2)[T(1,1,3)−T(1,2,3)].

Soσ2
X becomes

σ2
X =

T(2,1,2)
T(0,1,2)

+
T(1,1,2)2

T(0,1,2)2 −2
T(2,2,3)
T(0,1,2)

− 2
T(1,1,2)[T(1,1,3)−T(1,2,3)]

T(0,1,2)2 −2
T(1,1,2)2T(0,2,3)

T(0,1,2)3 .

This should equalσ2
2 = σ2

1/µ
3
1 = 1/µ1− r2

3µ3
1
.

But, after a boring but simple computation we find

hzz=
1
z2

[
T(2,2,3)+T(1,2,3)−T(2,1,3)+T(1,1,3)

]
,

µ1 =
hw

zhz
=

T(0,1,2)
T(1,1,2)

,

hww = 2T(0,2,3),

hzw =
1
z

[
T(1,2,3)−T(1,1,3)

]
.

Therefore
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σ2
2 =

σ2
1

µ3
1

=
1
µ1
− r2

zµ3
1

=
T(1,1,2)
T(0,1,2)

− r2

z
T(1,1,2)3

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

+
r2
1hzz+2r1hzw+hw +hww

zhz

T(1,1,2)3

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− r2
1hzz+2r1hzw+hw +hww

T(1,1,2)
T(1,1,2)3

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

−
[
r2
1hzz+2r1hzw+hw +hww

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− T(0,1,2)2

T(1,1,2)2

[
T(2,2,3)+T(1,2,3)−T(2,1,3)+T(1,1,3)

]T(1,1,2)2

T(0,1,2)3

−
[
2r1hzw+hw +hww

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

−
[
T(2,2,3)+T(1,2,3)−T(2,1,3)+T(1,1,3)

] 1
T(0,1,2)

−
[
2r1hzw+hw +hww

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− T(2,2,3)
T(0,1,2)

− T(1,2,3)
T(0,1,2)

+
T(2,1,3)
T(0,1,2)

− T(1,1,3)
T(0,1,2)

−
[
2r1hzw+hw +hww

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− T(2,2,3)
T(0,1,2)

− T(1,2,3)
T(0,1,2)

+
T(2,1,3)
T(0,1,2)

− T(1,1,3)
T(0,1,2)

+ 2
T(0,1,2)
T(1,1,2)

[
T(1,2,3)−T(1,1,3)

]T(1,1,2)2

T(0,1,2)3

−
[
hw +hww

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− T(2,2,3)
T(0,1,2)

− T(1,2,3)
T(0,1,2)

+
T(2,1,3)
T(0,1,2)

− T(1,1,3)
T(0,1,2)

+ 2
[
T(1,2,3)−T(1,1,3)

] T(1,1,2)
T(0,1,2)2

−
[
−T(0,1,2)+2T(0,2,3)

]T(1,1,2)2

T(0,1,2)3

=
T(1,1,2)
T(0,1,2)

− T(2,2,3)
T(0,1,2)

− T(1,2,3)
T(0,1,2)

+
T(2,1,3)
T(0,1,2)

− T(1,1,3)
T(0,1,2)
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+ 2
[
T(1,2,3)−T(1,1,3)

] T(1,1,2)
T(0,1,2)2

+
T(1,1,2)2

T(0,1,2)2 −2T(0,2,3)
T(1,1,2)2

T(0,1,2)3 .

But now, we easily check that

T(2,1,3)−T(2,2,3)≡−2T(2,2,3)+T(2,1,2),

and
T(1,1,3)+T(1,2,3) = T(1,1,2).

Identification ofσ2
2 andσ2

X is now immediate.
2
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