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We propose martingale central limit theorems as an appropriate tool to prove asymptotic normality of the costs of
certain recursive algorithms which are subjected to random input data. The recursive algorithms that we have in mind

are such that if input data of si2¢ produce random costsy, thenLy 2 Ln-+Ln_n+ Ry for N > ng > 2, wheren

follows a certain distributioffy on the integerg0,...,N} andLy 2 Ek for k> 0. Lp, Ln—n andRy are independent,
conditional onn, andRy are random variables, which may also dependocorresponding to the cost of splitting
the input data of siz& (into subsets of siza andN — n) and combining the results of the recursive calls to yield

the overall result. We construct a martingale difference array with rows convergig:te "\’}\%“ . Under certain
N

compatibility assumptions on the sequeriBg)n>o We show that a pair of sufficient conditions (of Lyapunov type)

for Zy 24 A[(0,1) can be restated as a pair of conditions regarding asymptotic relations between three sequences. All
these sequences satisfy the same type of linear equation, that is also the defining equation for thedEegngRse.

In the case that thBy are binomial distributions with the same paramgteand for deterministi®y, we demonstrate

the power of this approach. We derive very general sufficient conditions in terms of the se¢fegh¢so (and for

the scaleRy = N® a characterization of those leading to asymptotic normality &y .
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1 Introduction

There are several methods in the literature to detect asymptotic normality of appropriately normalized
costs of recursive algorithms. Among the most prominent approaches are the use of bivariate moment
generating functions (cfO[Z14,115/1167 22], sometimes assisted by singularity analysis of generating
functions [7] and depoissonization devices [17]), urn models [(cf.[[20.-23, 24]), approximation by Brow-
nian excursions (cfC[11]), and the contraction method (ci. [26[28,-29, 30]). Occasionally the martingale
limit theorem has been used to prove the existence of a limiting distributiori{cf]27, 28]). However, we
do not know of any applications of central limit theorems for martingale difference arrays in the analysis
of recursive algorithms. The aim of this paper is thus to demonstrate that the latter are valuable tools that
can supplement the other methods.

1365-8050%C) 2001 Maison de I'lnformatique et des Métiatiques Disates (MIMD), Paris, France



364 Werner Schachinger

When we study recursive algorithms which are subjected to random input data, martingales arise in
a very natural manner when we make predictions of costs on the basis of the information available by
keeping track of the recursive calls performed so far. The following example should make this clear:
Assume that some recursive algorithm, when applied to random input data i ,s@meduces random
costsLy, which satisfyLg = L1 = 0, almost surely, and fad > 2

Ln 2 LN0+EN1+I‘N, (1)

whereNC follows a certain distributioRy on the integerg0,...,N}, N* =N—N°, Ly 2 [, fork>0,and
Lo, Lyt are independent, conditional 8. Finallyry is a constant, corresponding to the cost of splitting
the input data of siz8l (into subsets of siz8® andN') and combining the results of the recursive calls to
yield the overall result. The best guess that we can make aeinowing justN, is Xy o0 = /N := [E Ln.

If we also know the value dX°, we can improve our guess:

xN.,l = XN,O“V‘ENO +€N1 +rn—4N.

If the algorithm splits the data subset of si@first (into subsets of size¥® andN°1), the next we get
to know will be the value oN. This will lead to another improvement of our guess Qf

XN,2 = XN,1 + oo + Lo +Tyo — £o-

Under certain integrability conditions dry, the sequencéXyi)i>o constructed this way will be a mar-
tingale with respect to a certain filtration obtained by accumulating information about subset sizes. In the
lucky case that knowing all subset sizes almost surely deterrhjgese haveXy; — Ly almost surely

and inL?, which opens the door for applying classical central limit theorems for martingale difference
arrays. Under certain assumptions on the sequéfggi>o (which still allow for the standard probabilis-

tic models of algorithms associated with binary search trees, digital search trees, tries, ...) we will derive
easy-to-use conditions (at the cost of having a narrower range of applicability than the classical Lindeberg
conditions) implying asymptotic normality of codtg. The setting which will be our favorite playground

for demonstrating applications of these conditions is roughly the following:

If in (L) we fix IP (N = k) = (%) p(1— p)N~* for 0 < k < N and some fixed & p < 1, we obtain a
recursion that shows up again and again in the study of additive valuations of the (binary) trie data structure
(cf. [9, 19,[21]) under the Bernoulli model. The number of internal nodgs=(1) and the external path
length ¢n = N) of a trie are perhaps the most important examples. Jacquet and Régnier [14, 15] proved
asymptotic normality of both the number of internal nodes and of the external path length in a binary trie
under the Bernoulli model, and in the case of the number of internal nodes also proved convergence of
moments of any order. There is related work by Jacquet and Szpankawski [16], who proved asymptotic
normality of the internal path length of a digital search tree under the Bernoulli model. These results are
achieved using clever bounds for bivariate moment generating functions combined with a poissonization-
depoissonization step. Employing contraction properties of suitably chosen probability metrics, Rachev
and Rischendorfl[26] and Feldman, Rachev anidg€&hendorfj4] proved asymptotic normality laf for
the sequencey = 1 under very general probabilistic models, including the Bernoulli models. There is a
remark in [26] saying that under certain conditions sequengeso(+/N) would generate asymptotically
normallLy.
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Thus the following question naturally arises: Which sequericgs>2 generate additive valuations
on the set of tries equipped with the Bernoulli model that behave asymptotically normal? We will give
answers that in particular cover the caggs= 1 andry = N and to a large extent clarify the role played
by the sequences = o(v/N).

The paper is organized as follows: In Sectjpn 2 we set up a correspondence between algorithms that
split tasks into at most two “subtasks”, and labeled binary trees. Furthermore we describe the class
of probabilistic input models we are going to allow. Essentially we will demand that the costs for the
two subtasks and the split-and-combine cost are independent, given the “sizes” of the subtasks, and that
the distribution of the cost of a certain task is the same, regardless if it is the task the algorithm starts
with, or if it occurs as a subtask in some deeper level of recursion. CQsté$ algorithms can then be
regarded as “random additive valuations”, generated by corresponding split-and-combine vaRgtions
on probability spaces consisting of labeled binary trees of fixed “$izdf we demand that trees of fixed
“size” are almost surely finite (which reflects the wish that the algorithm, when applied to random input,
will almost surely stop in finite time), it turns out that moments of the costs are finite, if only the same
moments of the corresponding split-and-combine valuation are finite. Next we will construct martingales
converging to the costsy and will also derive linear recurrence relations for expectations and variances
of Ly. The same type of linear recurrence relations occurs again twice in LEmma 1, which states sufficient
conditions for asymptotic normality of normalized costs (wherends too) in terms of the solutions of
the latter linear recurrence relations and the sequéviaod_ )n>o.

In SectionB we are going to apply Lemija 1 to find answers to the question: Which are the sequences
(rn)ns2, such thaly, as defined by{{1) under the Bernoulli model, satishﬁ% 2 A((0,1)? Our

answers will be in terms of growth conditions for the sequeftg@n>2 and for sequences which are
obtained by smoothing the sequences of first and second differen¢eg)gf,. The verification of the
conditions of Lemma]1 requires a careful study of the type of linear recurrence equation that defines the
sequencélE Ly)n>o0, Which is the content of two propositions. (For better readability of the paper the
proof of one of these is deferred to the appendix.) For the class of sequgnedd® we can even obtain
a complete characterization: There is asymptotic normality foregny p # % and only fora < 2, if
p= 1. Only a part of that characterization will be achieved by applying Lelﬁma 1. ltis in the nature of that
lemma that it can deal only with sequendeg)n>2 that do not grow too fast, as it exploits negligibility
in the limit of the martingale differences.

Examples 1 and 3, given in Sectignh 4, are the missing links in the characterization of the sequences
rn = N2, In Example 1 we demonstrate that there is no normal limiting distribution in the gases
%, a> % and in Example 3 we appeal to a “nonclassical” central limit theorem for martingale difference
arrays to establish asymptotic normality for the capes %, a > 1. In Example 2 we will show that
the sufficient conditions derived in Sectiﬁn 3 are sharp in some sense, by supplying for tlpe:c%se
a sequenceéry)n>2, which does not lead to a normal limiting distribution, but satisfigs= O(v/N)
and thus falls very short of satisfying one of our sufficient conditions for asymptotic normality, namely

P2 e Q, v =0(VN).

We denote convergence (resp. equality) in distributior%i—’b(/resp.g), andA((0,1) denotes a standard
normal random variable. We patv b = max(a,b) andaA b = min(a, b) for real numbers andb. The
indicator function of a sef is denoted }, and for a Boolean expressi@we let 1g) be 1ifBis true
and 0 otherwise. The difference operathris defined byAx = Xi+1 — Xk for sequenceg)k>o0. We will



366 Werner Schachinger

use the standard asymptotic notatiah®, Q and®.

2 Preliminaries and a key lemma

We assume that we are given a class of problginand that to eaclA € 4 is associated a nonnegative
integer|A|, the size ofA. Examples of such classes would be the set of all finite sequences (which we want
to sort) that are permutations of initial segments of the natural numbers, where the size of a sequence is the
number of its terms, or the set of all finite binary trees (the path lengths of which we want to determine),
where the size of a tree is the number of nodes it consists of.

We will consider algorithms which are recursive in the sense that a prohlent of sizeN is split
into two primary subproblen®’, A” € 4 of smaller or equal sizes, which are subjected to the same given
algorithm. This splitting continues recursively, until subproblem sizes fall below somerigvdhese
small subproblems are attacked directly (nonrecursively) by the algorithm. Splitting and combining causes
costs, that depend on the problem to be split (perhaps only via the size of that problem), but can also have
a stochastic component. Another source of randomness comes into play, if we subject the algorithm to
a probabilistic input model: Each of the sely := {A € 4 : |A| = N}, assumed to be countable, for
simplicity, is supplied with a probability measure, according to which elemen@afan be chosen at
random. The cost of our algorithm, when applied to input frdm thus becomes a random variable.
Properly normalized, these random variables might have a limit in distribution, Whero.

We will utilize the following representation of the cascade of subproblems just described in terms of
labeled binary trees: To each problénwe construct a finite binary tree=t(A), with nodes labeled by
the setNU {—1} and the labeling not required to be one-to-one. The g\z®f the problemA is the
label of the root of the treA), whose left and right subtre¢@\') andt(A”) correspond td\'s primary
subproblems and A”. We proceed recursively, until we reach subproblem sizes lessrthaithis
happens after finitely many steps, if we assyBigv |B”| < |B|, for any subproblend of A with |B| > no,
whereB', B” denote the primary subproblemsRfand that{B'| v |B”| = |B| may occur only finitely many
times. Each of the countably many problems of sizéor 0 < n < ng, can be represented by a unique
finite labeled binary tree, whose root is labefeand whose remaining nodes we label for definiteness by
-1

We defineTy := {t(A) : A€ Ay} for N > 0, andT_; to be the set containing the empty tree and the
finite binary trees with all nodes labeled byl. Moreover we let the sizg| of t € Uy~_1 Tn be —1 if
t is empty, and the label of the root bbtherwise, i.e. |t| = N:< t € Ty. Let {vq,vo,v3,...} be some
enumeration of the vertex sét of the infinite complete binary tretg, such thaw; is the root oft.,, and
vj is a successor of only if i < j. For any finite binary treewe denote the vertex set bby 7/(t), and
we leti;: V(t) — v be the embedding dfin t.,, that satisfies;(root(t)) = v1, andu is the left (right) son
of vin tiff 1(u) is the left (right) son of;(V) in te. Fort € Uys_; Tn we denote by the subtree of

which has its root in;1(v;). Note that eithet' is empty, otV ¢ T - Leftand right subtrees dfresp.

. : i 0
t()) are denoted, andt; (resp.tﬁ') andt!" ) and sometimes we depict thattas /\ . The cost_ of the
tp tr
algorithm, when applied to problefy can now be given in terms of additive valuation of the treet(A):

Additive valuations. A (deterministic) valuation on a family of tree§ is any functionX : T — R, and a
random valuation is any functionX : T — L%(Q, G), WhereL%(Q, G) denotes the set of random variables
on a probability spac€Q, G,Q). We shall concentrate on the particular clasadfitive valuations L,
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defined ory>o Tn, Which can for someg > 2 be described by

R(t), [t] <o,

RO+ L) + L), =0 t= N\, @)
t( tr

L(t) =

whereRis some simpler valuation dgy-o Tn- In the language of recursive algorithnisaccounts both
for the costs of treating small subprobleB®f size |B| < ny and for the costs of the split and combine
steps. We say thdk generates L. We assume that, fdt| > ng, R(t) depends o € T, only via ||, ||
and|t;|, i.e.R(t) = R(|t|,|t|,|tr|). However, for|t| > 0 we allowR(t) to be a random variable, that is, we
consider random additive valuatiohét) = L(t,w), generated byR(t) = R(t,w), with w € Q for a given
probability spac€Q, G,Q), where we assume thR(t), L(t;) andL(t;) are independent. To be precise,
this calls for existence of countably many mutually independent random varﬁ@léts, wherei € N,

t € Un>oTn and for fixedt the RM(t) are i.i.d., so we can tak@ = [0,1], G the o-field of Lebesque
measurable sets {0, 1], andQ the Lebesque measure. This allows for represeritiag follows,

L= S RIY). (3)
i:t0]>0

For example, a (deterministic) additive valuatibris generated byR(t) = 1>y}, and hereL(t(A))
counts the split and combine steps, that our recursive algorithm needs when applied to problem

The probabilistic model for Ty.  We will work with the probability spac€Tn, Fn, Py ), where the set
Ty is countable, so we simply defirfg to be the set of all subsetsf;. Givent € Ty, N > ng, we assume
thatt, andt, are independent, conditional §ft|, |t:| }, and moreover thaly (t, = t*|[t,| = [t*|) = P (")
andPy(t = t*|Jt| = |t*]) = P (t*). The latter says that the distribution of some subtfesf t depends
only on its sizelt*| and not on the position of its root in the treeThus, given the probability measures
P, for n < ng, and forN > ng the splitting probabilities

pN,k/,k// = IP(‘t(‘ == k/7 ‘tr| == k” |t| == N),

we have folN > ng the following recursive definition of the probability measuRrs

PN () = Pnyjt e | Pt () Py (e )-

Our assumptions on the splitting probabilities, that guarantee almost sure finitehesgafare that for
N > ng we have

Pu(fte] V[te| <N) =1 =Pn([te| Alte[ <N),

Pt V[t <N) = z Pk =: Ty > 0. 4)

0<K VK’ <N

We denote by = X (t, w) the random variable on the filtered probability spéBe x Q, Fn x G, Fn, Py x
Q), obtained by restricting a random additive valuatioto Ty. In particular we will have to deal with the
sequences of random variabl@g )n>0 and (Ly)n>o0- The definition of the filtration&y will be given
shortly.
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According to [R) we call the sequence of random varialfle¢)n>o0 the generating sequence of the
valuation L. The sequence of random variablgs )n>o can now be defined by the following system of
equalities in distribution:

@{RN, N < ng ©)

Ly 2 _

RN+LN’+LN"7 N2n07
whereN’, N” are random variables with joint distributid®y (N’ = k', N” = k") = py i v Satisfying [#),
Lk 2 L for k > 0, andRy;, Ly, Ly~ are independent, conditional g, N” 1.

Moments of additive valuations. Equations[(5) can be used to obtain recurrence relations for the mo-
ments ofLy. Itis easy to see that [En|™ < o for N > 0 is implied by IEJRy|™ < o for N > O:
Assume thatn > 1 (the case & m < 1 can be treated similarly). Iy = 1 it is easy to deduce from

(8) that
IE |[Rn|™, N < ng
E|Ly|™ <
I 4 gma <IE|RN”‘+2 max IE|Lk|m> , N> nq,
0<k<N
and this furnishes a proof by induction _&hfor IE |lLn|™ < oo for N > 0. In the casety < 1 we define
1) o= it = 3, 100 = {i € 1®) : [tV] < [t} andl (t) := {i € 1(t) : |t*| < [t/}, and obtain
L=y R+ § L)+ ¥ L), 6)
i€t i€l () i€l ()

Now K := |I(t)| — 1 is geometrically distributed with parametay, and|l,(t) Ul (t)| = [I(t)| + 1. More-
over, in the first sum of[{6) all but one of the teriR® (t)) have the conditional distribution &y given
N’V N” =N, and the remaining term has the conditional distributioR@fgivenN’ v N” < N. Since

IE [Ry|™
m / "
=N| <=
|E[\RN| N'VN N}_l_ ,
IE [Ru|™

E [|Ru|™|N' VN" < N| < =ENE and
U | } TN

11 1

— V=< —,
1-Th TN Ty — TR
finiteness of IBLy|™ follows again by induction o from

e {'Ew’

N <
2M-LE (K +2)"( —L IE |Ry|™+ max IE |Ly|™ N > ng.
(k2 (g BRI max EIL™). Ny

The filtrations Fy. The filtrationFy = { Fn,i,i > 0} is defined byFn o = {0, Ty x Q}, and fori > 1 by
Fi = otV RO D)1 < j <},

where we defin® ) (t0)) = 0 for [t()| = —1. Note thatt!” |, |t//)| andR()(t())) are measurable functions
on(TnyxQ,In x G) for j > 1.
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A martingale with terminal value Ly —IE Ly. We assume IER,%, <o forN>0,thusry :=IERy, /N =

IE Ly andvy := VarLy are all finite. We want to represebf; — ¢y as the terminal value of some mar-
tingale. This is possible since the random varidhle- /y is absolutely integrable (and has even finite
second moment, due to our assumptiorRgnOne (and a very easy) way to do this is to take the sequence

of conditional expectations with respect to the elements of a filtration. So let us consider the sequence
(Xn,i)i>0, Which is a martingale with respect to the filtratiBg, defined by

XN = ii)\N,i, (7)

where the random variablds ; = An i (t) (dependencies an are always suppressed) are giveriRy =
¢y and fori > 1 by
Ani = [E [Ln| i) — IE [Ln| Pnji—1]
0, if [tV =—1
R0 () if (i (8)
= (t )_E\t(i)\’ if 0 <[tV < ng
R(i)(t(i)) Jrg‘t(i)‘ Jrg‘t(i)‘ 75“0)‘, if |t<i>‘ > ng.
/A r

Sincely is measurable with respectddl ;- #n.i) and since B2 < oo, we haveXy,j — Ln, Py x Q-a.s.
and inL?(Ty x Q, Fn X G, Py x Q), asj — o, by P. Levy’s theorem (cf.[[35, pp. 111, 134]).
We are now going to derive recurrence relations for expectations and variariggsrakingi = 1 and
N > ng, (B) is simply
Ang =Ru+ v + O — N,
whereN’, N” are random variables with joint distributid® (N’ = k',N” = k") = pyx . Of course
IE [An,1| Pn0] = O, and this yields the following recurrence for the sequeiigén=o

o = 'n, N < ng ©
N+ ZK/,k" pN,k’,k" ((k/ +‘€k”)7 N > No.

(The conditionry > 0 for N > ng ensures thaf(9) can be uniquely solved (ft)n>0.) A similar recur-
rence is obtained for the sequerieq)n>o: We define

Var Ry, N < np

10
E (RN+£N/+€N’/_€N)27 N > np. (10)

svi=E M1l Fuol = {
By squaring the equations

Ly —On 2 )\N717 _ N < ng
)\N7l+ LN’ — EN’ —+ LN” — EN”, N > ng

and carefully exploiting independence when computing expectations, we obtain

VN =SN+ :“{NZno} g PN,k Kk (Vk’ +Vk//). (11)
k . U
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Sufficient conditions for asymptotic normality of % Assumingvy > 0 for all sufficiently large

N, we can define a martingale difference ar{&yi, #n.i }i>onx0 by

AN,
Co AN 12
EN,I \/\m ( )
Now NN — s g5 Py x Q-a.s., thus by a basic central limit theorem for martingale difference arrays

VN
(cf. [B3, p. 543, Theorem 4]52‘/;_% LA AL(0,1) will follow from the “conditional normalizing condition”

Z'E €811 Fi1] P 1 asN—w, (No)
i=
and the “conditional Lindeberg condition”
ZIE [Eﬁ,i]l{\g,\,#ibs}‘f]’—N,i—l] LN 0, asN — o, for eache > 0. (Li)
i=

In order to obtain bounds on the convergence rate in the central limit theorem we might rather want to
verify some stronger Lyapunov type conditions instead. In (No), convergence in probability is implied by
convergence in?, for somea > 0, and (Li) is implied by convergence to 0lirt of 37 IE £33 | Fn i),

for somea > 1, (because aflljy.¢y < €272%(x|%,) yielding conditions (Ng) and (Liy). The following

lemma builds upon these observations, i.e. the conditions)@tal (Liy) will be expressed as asymptotic
relations between three sequences, which all satisfy the same type of linear equation that is also the
defining equation for the sequen@g )n>o.

Lemma 1. Let (Ly)n>0 be the sequence of random variables defined by equéfipim terms of the
sequence of random variabléRy)n>0, which we assume to satisl’r:';1|R;\||Za < oo for N > 0 and some

a> 1. Let moreover y > 0 for all sufficiently large N. We define sequenc¢es)n>o, (g(\,a))Nzo and
recursively define sequenc@gn )n>o, (v&a))NZo by

ON = Jinzng) g” PNk ke (SN Ve + Vi — W), (13)
WN = ON + Jgnzng) Z PNk ke (Whe + Wier ), (14)

k7 !
s$& = E A1/, (15)
VF\la) = S'(\‘a> +:“{N2no} Z pN,k’,k” (VI((?) +VI((‘3)) (16)

k, i

Lty 2 e i
Then e~ A(0,1) is implied by

Wy =0(\), asN-— o, (Noy)
v =0(), asN— w. (Lia)
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Proof. Our first observation is that

2 St [t| < no,
V()= S ENE | Fyia] = g Sy =1
2ENuAT 2 SO (s v v, iz

is a (deterministic) valuation of the additive tygé (2), generatedpywith IEVy = VarLy. The second
equality is verified noting that the random variatil¥ |, defined orly, generates a-algebrao(|t()|) C
Fn,i—1 and that, defining_1 1 = 0, we havePy x Q-a.s.

P (i <X Fnio1) =P (i <X [tV]) = 1P UIGIR t0]) = R (%), (17)
whereFy(x) := IP (An 1 < X) for N > —1. For the third equality we note that the multisétt) := {|t)] >
0:i > 1} can be decomposed BKt) = {|t|} UM(t;) UM(t;). MoreoverVy is the terminal value of the
predictable quadratic variation process of the martinglg )i>o, thus I[EVy = VarLy indeed holds, cf.
[33].

Similarly we construct another additive valuatig¥(t), generated by some deterministic valuation
Oy, such thatvy := IEWN = VarVy. The definition [I3) of the sequen¢en)n>o is obtained by just
mimicking (I0), and [14) is the system of equations analogougo (11) that determines the sequence

2
(wn)n>0. Now (Noy) is just another way of writing IE<VNV—L"N) — 0, which implies (No). Furthermore

(a) . - 2a
V=S E [ AN Fria]
N I; 1 I

again corresponds to an additive valuatiéf? (t) of type (2), which is generated by the deterministic

valuations‘(f‘1> =1 |)\m,1\2a. The system of equationg{16) thus determines the seqt@e@:ﬁzo, where

(a) . (a) . P . @ . . . .

vy’ = IEVy". Again (Lig) is just another way to write IééNr — 0, which implies (Li). O
Remarkl. The nice thing about this lemma is that it provides sufficient conditions for asymptotic nor-
mality that are entirely expressed in terms of solutions of a certain system of linear equations that already
showed up in[{9) and{lL1). Putting bold lowercase letters for sequences and dendtiag(byk)n k>0

the infinite identity matrix and b = (P k)n k>0 the infinite matrix satisfying

N k>N
Prk = 0, < ngork> (18)
Yo<k<N(Pnkk T Pni k), €lse
these systems can be written as
(I1—PY¥=r, (I—Pv=s, (I-Pw=ag, (I-PVv® =53, (19)

Often only asymptotic equivalents of the sequences s andv will be needed to obtain asymptotic
equivalents of the sequenoesands'®. Knowing asymptotic equivalents of the right hand sidegin (19)

will often be enough to obtain asymptotics of the corresponding solutions. Master Theorems are around
that deal with such questions, cf-]31].
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The use of (Ng) and (Lk) has another advantage: We get bounds on convergence rates for free! By
results of Heyde and Brown13] and Haeusler [12] there is a conGtasuch that

2) 1
) VN +WN |5
Py (% < x) —CD(X)‘ <G (N—2> . (20)

sup
VN

XeR

Also large deviations results in termséﬁ‘ﬂ can be obtained, cf. Grama[10].

Of course we could have formulated Lemma 1 using conditiong)(snd (Li) for someb > 0 and

a> 1. Now (Ng,) would be.w,(\,) =0(\W), asN — oo, Wherewf\‘b) is defined in terms of

o) == E [IV(0) =g | = |V (te) = vi P~ IV (1) = v 7]
which is a nice expression in the “well known” sequensasidv only whenb = 2. Verifying (Lip) and
the “unpleasant” (Ng) for someb # 2, b > 1 would however be rewarded with a version pf] (20), with

. . 1/(1+2b) )
right hand sideC, ((v,(\,b> +W§\,b>)/v*,3,) , cf. [13,012].
Note that (Ly) imposes additional integrability conditions on the random variaRlem the sense that

sﬁ‘) < o (and thuwf\,a) < o) for N > 0 only if IE |Ry|?® < o for N > 0. On the other hand, concerning
(Noz), wy < o as long asy < o for N > 0.

Remark2. Generalizations of this approach to additive valuationsneary trees form > 2, and even to

the case where there is no upper bound for the degrees (i.e., no upper bound for the number of primary
subproblems) seem to be straight forward. Extensions to multivariate limiting distributions and asymmet-
ric valuations of the fornh.(t) = R(t) + 1 jy>n,) (aL(t) +bL(tr)), where the casga, b) = (1,0) is perhaps

the most interesting, also seem to be within reach. Moreover one can think of allowing a wider class of
probabilistic models by resigning the condition that the distribution of a subtiefesome tree¢ depends

only on its sizgt*| and not on the position of its root in the treevhich would necessitate introducing a
whole family of valuations, indexed by the nodes of the infinite binary tree.

3 Deterministic additive valuations of the trie data structure

We are now going to demonstrate the strength of Lerfima 1 by proving asymptotic normality of a large
class of additive valuations of the trie data structure. This class includes some of the most important
characteristics of the trie data structure, such as the number of its nodes, its external path length, or the
number of its external internal nodes, which give clues on the space requirements and the time complexity
of associated update operations. We now give concise descriptions of tries and the probabilistic models
we are going to use.

Binary tries. The trie (cf. [9,[T9[21]) is designed to store data which have keys that are given as se-
guences over a finite alphali®t Here we confine ourselves to the binary trie, i.e. the éase{0,1}.

Now let a setS= {k(i) € * : 1 <i < N} of keys be given. The trie built from these keys is a binary

tree, whose internal nodes serve as branching nodes. Each leaf (external node) either stores one key or
is empty. If we label in this tree each edge to the left (resp. right) O (resp. 1), we obtain an encoding of
the leaves by taking the 0-1-sequence along the path starting from the root. kAigestored in the leaf
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encoded b¥;'s minimal unique prefix among thHe keys inS. Note that the order of the keys is irrelevant

in this construction, and that different s&sS may lead to the same trte The set of all tries built from

N distinct keys is denotetly, and|t| = N is said to be the “size” of To be in accordance with the notion

of size introduced in Sectidn 2, we lgf= 0 if t is a single empty leaf, and = —1 if t = 0. Moreover

we letT = Un=o Tn be the set of all tries. Left and right subtrees of a tigee denoted, t,. Of course,

t, then denotes the trie, which is built from the keys with the first bit 0 dropped. It is easily seen that the
setsTy are countably infinite foN > 2. Note that a trie of sizk typically has more thak — 1 internal

nodes. The additional internal nodes are caused by one-way branchings, i.e., are those internal nodes with
one child an empty leaf.

The Bernoulli models. We will assume that € Ty is constructed from an i.i.d. sequence of keys
(k(i))1<i<n Where each kelt(i) = (ka(i), ka(i),...) constitutes an i.i.d. sequence of bits with

P(ki(l)=0)=p and IPki(l)=1)=1-p=:q

The casep = % resp.p # % is called symmetric resp. asymmetric Bernoulli model. We deal with the
probability spaceTn, In,Fn,Py), where 7y is the set of all subsets @iy, andPy is defined with the
help of the splitting probabilities

N _
prci= Pt =k[ 1 =) = ()l %

i.e., given|t|, the random variablg,| follows the binomial distributiom(|t|, p).
There is exactly one trie of size 0 and one of size 1, Bu&) = 1 for |t| < 1, and for|t| > 2 we have

Py (t) = Py, jt, | Pl (te) Py, (t ). Obviously
Pu(ltel VIt | <N)=1=Py(ftef At <N) andPy(fte| V[t| <N)=1—p"—g" >0

hold for N > ng, thus all requirements made on a probabilistic model in se¢tion 2 are fulfilled by the
Bernoulli models.
The definition of the filtratioFn = { #n,i,1 > 0} can now be slightly simplified:

Ino={0,Tn} and
Fi=o{t1<j<it for i>1.

Additive valuations of tries. A valuation on the family of trieJ is any functionX : T — R. We shall
concentrate on the particular class of additive valuatignghich can for someg > 2 be described by

R(Y), 1) < o,
R +L(t)+ L), =0, t= /.

ty tr

Lt = (21)

whereR is a deterministic valuation, which is constant on eaciigefor N > ng andN € {0, 1}, so that
we may define; = R(t) for |t| > ng and|t| € {0,1}. HoweverR may for 2< N < no depend ot € Ty,
in which case we denotg, := I[E [R(t)|t € Tn] (later on we will impose integrability conditions &®jTn,
in particular expectations will always be finite).
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For example, the numbat(t) of internal nodes of a tri¢ is a valuation of this form withng = 2
andR(t) = 1yy-1;, as well as the number of internal external nodes figk 3, R(t) = 1y—2;) and the
external path lengtimg = 2, R(t) = 1~ 1,[t|). Counting certain exotic subtrees of a trie also possible,
e.g. counting subtrees of size 6 with identical subtrees can be achieveayttV(R(t) = 1y —61,—t,})-

DemandingR(t) = 0 for |t| € {0,1} would not be a serious restriction, sineg & 2, R(t) = Ayy—1))
leads to the siz&(t) = |t|, which is constant on eachy, and (o = 2, R(t) = 1jyc(0,1}}) leads toL (1),
which is 1 plus the number of internal nodeg.of hus for any additive valuatiol defined by [21) (with
ro =d, r; = c+d) there is another additive valuatiah defined by [21) in terms of a valuatid® (with
ro =ri = 0) and satisfyind.’(t) = L(t) — c|t| —d, cf. also [ZB).

We now repeat some notation from sect[pn 2: Restricting the valuaRarsd L to the setsTy, we
obtain sequences of random variab|B§ )n>0 and(Ln)n>o. The sequence of random variablés )n>0
can now be defined by the following system of equalities in distribution:

LNE{RN’ _ N<n (22)
Rv+Ln +Ln-w, N >no,

whereN’ is a random variable with the binomial distributi®{N, p), L 2 Ek for k > 0, moreover
Ly, Ly_n are independent, conditional o, and Ry = ry is deterministic forN > ng. Assuming
E R,%, < oo for 2 < N < ng ensures that first and second momentkpfare finite. We recalty = [ERy
and moreover denotéy := [ELy andvy := VarLy. Equations[[22) can be used to obtain recurrence
relations for the first and second moments. gf

Denoting sequences by bold face lower case letters, these are

(I—Mp—Mg)l=r, (I-Mp—Mglv=s, (23)

wherel is the infinite identity matrix, the matri , is defined by

0, for N < ng
" _ 24
Mo {(E)pka—p)NK forN > o, -

and the sequencsis defined by

(25)

VarRy, N < ng
S0 Pk (G + Nk — TR Pk (U +£N—K))27 N > no.

It is easily seen thatis a sequence of nonnegative terms, and it was shownlin [32, Theorem §Eliat
only if Ris of the special form

R(t) = cltj+d, for |t < no, (26)
_da for |t| 2 n07

for somec, d € R. In this case (t) = c|t| +d and VarLy = 0. Moreover, [32, Theorem 1] tells us that
VarLy = Q(N), if Ris not of the form [26).
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Theorem 1. Let Ly be the random variable corresponding to the additive valuation L, definég)yn
the spacdy equipped with the Bernoulli model. Assume that R is not of the@@nLet N be a random
variable with binomial distribution BN, p). Let moreover’ := (Mp+Mg)r, i.e. iy = [E (rn +ry-n),
andr” := (Mp+Mg)%r.
If either of

) A% :o(ﬁ), forp=1,

i) Ary =o0(1), for 'lﬂ—g €Q,

_ 1 Inp
i)y Arjy = O(W) , for g ZQ,
and for some a> 1 both

iv) IE|Ry|% < o for 2 < N < np,

V) [E |ry +ryone — 1122 = 0(N?) as N— o,
are satisfied, then Ly—ELy 2
_—

v/VarLy
Corollary 1. If p= % thenAry =0 (N*%) implies conditions i) and v) of Theoreﬁn 1.
If I"P ¢ Q, then either of i = o(v/N) andAry = o(1) implies conditions ii) and v) of Theor% 1.

A(0,1), asN— oo. 27)

Inq
If m—g ¢ Q, then either of § = o(, / %) andAry =0 (ﬁ) implies conditions iii) and v) of Theo-
remCL.

Remark3. Taking conditioniv) of Theoren ]l for granted, some sequenctst lead to[[27) are

N = (1NN,

ry =NO% 4 (—1)NN"001  and

rn = N f(NP), wheref : R — R is a bounded function with bounded derivative and
o,>0anda+p< 1

This can be easily checked applying Coroll@y 1. There are of course sequences that directly call for
Theoren{[L, for example “lacunary” sequences suctnas N°-749]'l{meN}, which satisfies conditiom)
of Theorent]l witha = 1.001. A simple observation is the following:
If for ng, p fixed two sequences r satisfy the conditions of Theorelh 1, so does any linear combination
ar + br’, which is not of the form[(26).

Remark4. Asymptotic normality of the number of internal nodes in a binary trie under the Bernoulli
model (o = 2, rn = Iyn>2)) was first proved by Jacquet and Regnier [14, 15], as well as convergence of
moments of any order. Employing contraction properties of suitably chosen probability metrics, Rachev
and Rischendorf([26] and Feldman, Rachev anias&hendorfj4] proved asymptotic normality bf

for the sequencey = 1 under very general probabilistic models, including the Bernoulli models, and
remark that their analysis could, under certain conditions, be extended to sequerces,/N), cf. [26,
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p. 787]. In the case of the Bernoulli models, these conditions boil down to demanding that the sequence
(VarLn)n>o is regularly varying of order 1, i.e.

VarLy = NG(N), whereG(tN)/G(N) — 1forallt > 0asN — co.

Moreover there has to le> 0 such that < G < % i.e.Gis bounded away from O arw, cf. [@, p. 172].
Corollary[1 deals with sequenceg = o(v/N). Unfortunately, in Theorerf] 1 and Corollafly 1 we had
to make a distinction according to Wheth'lﬁ'ﬁJ eQor m—g ¢ Q, because this distinction is essential in
Proposition2, which we use in the proof of TheorEm 1. So the questiog, = o(v/N) can be used
in Corollary|:1r also in the cas'ﬁiq’ ¢ QQ remains aropen problem, since it also cannot be decided using

the sufficient condition fromC[26] 4]: One can check thag = 2, ry = (—1)N,/ %ﬂ{mza}) results in

G(N) = O(InInN), which is not bounded. On the other hand, we will provide an example (Example 2 in
Sectior] i) showing thay = O(v/N) (and alsa\ry, = O(1) instead of conditions) andiii) of Theoren{L)
does not imply[(27).

Proof of Theoreni]1We refer to Lemm@] 1 and have thus to verify gland (Li). The sequences and
v(@ are defined by the recurrence relations

(I-Mp—Mgw=0,  (I-Mp—Mgv® =52, (28)
with
N N 2
ON = Tinzngp D PNk | Ve UN—k— ) Pk (Vi +VN—k) (29)
K=0 K=0
and
@ ._ JIEIRu—rn%, N <no
Y <N N 2a (30)
Sieo PNK| Gk + Ik — TR0 Puk (be +On—k)| T, N> no.

We now collect some results concerning the solutions of equations of[fype (23 &nd (28) in the following
two propositions. One of the proofs will be given in the appendix. The reader interested in obtaining
asymptotic expansions of the sequentandyv is referred to[6/-18,-34].

Proposition 1. Let us consider the following recurrence relation with matritég defined in(24) and
a,b>0,0< p<g< 1(notnecessarily pq=1)

(I—aMp—bMg)y =X, (31)

wherex := (X)k>0 iS a given sequence of real numbers. betlenote the unique real zero ofsj =
1—ap’— bg® and assume that < ng. We now list some facts concerning the solutoa (yn)n>o Of
(B1), some facts concerning the effect of transforming a sequgtgeM , and computing differences,
some elementary facts about Poisson generating functions and their interplay with the mdtgica:sd
a simple tool for depoissonization:

(P1.1) The map that takes to y is linear. Moreover(l —aMp — qu)Q}( > 0 for N,k > 0, therefore
Xk > 0 for k> 0 implies y > 0 for k > 0. '
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(P1.2) We can representas
y=x+Y,

wherey’ is the solution of
(I—aMp—bMg)y =X = (aMp+bMq)x.

Moreover § = ... = xgofl = 0. (Using this decomposition one can take advantage of the smooth-
ness, thay’ inherits fromx’, cf. (P1.6)and (P1.7))

(P1.3) If xx = O(k?~%) for somee € R, then If % = o(k?%%) for somee <0, then

O(N® if 0]
(ND, — ire>0 o(NeInN), if £=0,
YN =4 O(N®InN), if e=0, YN = o (NO-) if £<0
O(N~%) if £<0. ’ '

(P1.4) If x, > Ofor all k > 0 and X, # 0 for some k > 0, then y = Q(N%).

a
(P15) |ka:k(1 forkaOZ]-, theny\|: Nl InN T +ZN7WhereZJ:O(Na). |ka:®(ka),
then yy = ©(NInN). ap*In +baIn

(P1.6) The differencedy of a sequencg (recall Ayx = yk+1 — Y«) and the differences of the sequence
My are connected VidM py = pM Ay +z, where g = 0 for N > ng. Thusx, y from (B1) satisfy

(I —apMp—boMq)Ay = Ax+2z

with some other sequeneestill fulfilling zy = 0for N > ng. IfXp=... =Xn,—1 =0, theng =0
holds for N> 0.

(P1.7) Let a sequencg satisfy y = O(k® f (k)) for someB € R and slowly varying f (i.e. &N)/f(N) —
1forallt >0and N— ). Let m be a nonnegative integer. Then the sequendefined by
z=A"Mpy satisfies

7 = O(NP~2 £(N)).

(P1.8) Let a sequency satisfyAyy = o(kP) for somef € R and let \(t) := zkzoyk%e‘t be the Poisson
generating function of. Then

Y = Y(N) +0(NP*2).
Ifyo=...=Yn,—1=0,z=Mypy and 4t) is the Poisson generating functionmfthen %t) = y(pt).

Proof. The O-part of (P1.3), (P1.4) and (P1.5) are provedin [32, Lemma 1], (P1.6) and (P1.7) (without the
slowly varying function) are proved iniB2, Lemma 2]. Thgart of (P1.3) and (P1.7) can be proved by
adapting the proofs of[82]. The assertions made in (P1.8) partly follow ffam [32, eq. (2.13) and (2.15)].
The remaining assertions are either completely obvious or rely on very simple properties of binomial
coefficients. O



378 Werner Schachinger
Proposition 2. Let0 < p < q=1-p, letx be a given sequence ayd= (I — pM, — qu)*lx. Then
Axy =0 (ﬁ) together with any of the following conditions on the sequerisesufficient for
Y|Np| —Y|Ng =0(1) (32)
i) xy =0(1) and ',?]—g €Q,

i) xx =0(1) and %, =0 (ﬁ) where the sequenoéis defined by’ = (pM p 4+ gMg)x.

These conditions are sharp in the sense thatxO(1) in case i), resp. = O (ﬁ) in case ii), does
not lead to the conclusiof82).

The proof of Theoren] 1 will be completed in several steps: In Lerfjifjaahd Lemmd]d) we will
show that (N@) and (Li,) are implied by certain growth conditions on the sequersasds'®, namely

sn = 0o(N) andsf\,a) = o(N?). Lemma[]!l then shows thay; = o(N) andsf\,a) = o(N?) are implied by the
conditions of Theorerdl 1. d

Lemma 2. We denote’ = (M, +Mg)s. Any of the following conditions is sufficient fito,):
i) sn = O(N) and g, = ©(N),
ii) sy =0(N) and g, > 0for some k> 0.

Proof. Suppose, condition) is satisfied. Then, according to (P1.2), we represent the sequwence
(VN)N>0 asv = s+V/, whereV' is the solution of

(I-Mp—MgV =¢.
Using (P1.5), we conclude thet = ©(NInN) and therefore
VN = SN+ Wy = O(NInN). (33)
By (P1.7) we havés, = O(k%), by (P1.2) and (P1.6)V' is the solution of
(I —pMp—gMg)AV' = AS.,
Therefore, by (P1.3), we has/, = O(v/N). We use this estimate for a Taylor expansiorvphround

k=[Np],
Vi = S+ V|np + O(VNIk—Np),

which yields
N ~
kZo <k> PAa (Ve k) = Sy Vg +V{ng + O(N)  and
onN=) (k> pegN K [swstk—qu +O(VNk—=Np/+N)| = O(N?). (34)
k=0
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Asymptotic estimates of the forf(N, k) = O(g(N, k)) will appear frequently in this proof and the proofs
of the two following lemmas and are always to be understood to hol ferco, uniformly in 0< k < N.

In (B4) and before we used the cases: 1 andm = 2 of the following well known estimate for the central
moments of the binomial distribution

N N B m
5 () e Sk Npim = o) (35)
K=0
Knowingo from (33), we can solve the left equation pf](28) with the help of (P1.3) and obtain
WN = O(Nz).

This, together with[[33), proves the first part of the lemma. Suppose now that congiiesatisfied.
Using (P1.4), we can deduce
W = Q(N). (36)

As before, we introducé, V', @, andw and obtairsy = o(N), furthermore, by (P1.7) and (P1.3),
As), :o(x/ﬁ), AVy :o(\/ﬁ).
The Taylor expansion of aroundk = [N p|
Vi = St Vippy +0 (VNk=Npl)
now leads tay = o (N2). We use (P1.3) and arrive at
wn =0(N?).
This, together with[{36), completes the proofipf O

Lemma 3. Any of the following conditions, together Witﬁ)s< oo for 0 < N < ng, is sufficient for(Li):

i) s& = O(N?), sy = O(N) and &, = O(N),

ii) s§\|a> =0(N?) and g, > 0 for some k > 0.
Proof. In cases) andii) we havevy = O(NInN) (resp.vy = Q(N)), cf. (33) and [36). Using (P1.3) we
obtainv® = O(N@) (resp.vi&) = o(N@)). O

Lemma 4. Let the sequence satisfy either of the conditions i), ii) or iii) of Theoreh 1, as well as for
some a> 1 conditions iv) and v) of Theorefh 1.

Then § = o(N), &2 = o(N@) and §2) < e for 0 < N < .

Proof. First of all, conditioniv) of Theorenﬂl impliesf\,a) <o forN>0.
Furthermore we observe thaty = o(1) implies A%rf} = o(N‘%), since by (P1.6) we hav&’ry, =
A(pM p+gMg)Ary for N > no, and can then apply (P1.7).
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We have to go one step beyond the decomposition proposed in (P1.2):
L=r+r"+¢".
The sequencé’ defined by this equation solves
(I1-Mp—Mge' =r"
and therefore satisfies by (P18)/y, = o(N‘%). We can thus expand as follows

1
b= T+ T+ e = Tk 1 gy +0([K =N ) + £y o + D¢ (K= [Np]) +0(N 2(k—=Np)?),

and denoting
N

N
b=l Ink— (K) Pa" T (b + ), @37
K=0

we obtain

bk = e+ Pk — Py + (B gy — A /L’qu)(k—Np)Jro(N‘%(k— Np)2+N%)

We will use(a+b+c)™ = 0(@"+b™+c™) witha=rx+ry_k—ry, b= o(N‘%(k—Np)2+N%) and

c= (M’[N — MIM )(k—Np), which results in

Pl
(a) _ N K kalb |2a _ O(Na) + O (Na|A€II _A " |2a>
N=2 () Pa o = np —Bng )

Note thatsy = sfql). We are finished ip = % since therc = 0. Otherwise any condition of Propositiﬂn 2,
that is satisfied byAr’, will also be satisfied byAr”, since both sequences are connectedAria=
(PM p+aMg)Ar’. By Propositior[]Z we thus ha\td’[N o] _M/[qu = 0(1), which completes the proof.[J]

Proof of Corollary[1. Applying (P1.6) and (P1.7) several times, we obtain the following implications:
A’ry =0 (l/\/ﬁ) = A’rf=0 (1/\/N) :
rnv = o(vN)orAry = o(1) = Arj = o(1),
rn= o(\/N/InN)
or Ary= o(\/l/InN)

This settles the conditions, ii) andiii). Moreover we obtain in a similar fashion as in the proof of
Lemma#

éArf\,:o(\/m).

rn = 0(VN) = r+ Iy — Iy = o(VN),
Ary =0(1) = re+rn—k—ry =0o(lk—=Np[),  and

Ny :o(N’%) = I+ Nk —TN :o(N’%(k—Np)z—kN%)

in the casep = 1, and obtain condition) of Theoreni[L by just applying(B5). O
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Remark5b. It is tempting to ask if versions of Theorefn 1 hold true also for classes of binaryTfges
with probability models different from the Bernoulli models for tries. One certainly would have to replace
Mp+Mgq by P, given in (I8), in the definitions af andr”. We are very much in favor of a positive
answer in the following two cases,

pnk = (V1) PY(1— p)N-1K, corresponding to the Bernoulli model fdigital search trees,

N) p*(1-pN-

k
Pnk = (k L T(o<k<ny. corresponding to the Bernoulli model fBatricia tries,

1-pN—(1-p

in particular we think that Propositiofis 1 afjd 2 should survive with only marginal modifications, but have
not worked this out.

The next theorem complements Theofigm 1:

Theorem 2. Let Ly be the random variable corresponding to the additive valuation L, definédl)yn
the spacély equipped with the Bernoulli model. Assume that R satisfies for same @ndition iv) of
Theorenf]l. Either of

) p#3andy =N,
i) p=2andn = N%JJ{NEZ}

implies
Ln—ELn o
e
v/VarLy

Proof. In casei) we obtainAry = 1yy>13, thus by (P1.5) we have

A((0,1), asN— w.

InN

N = m —‘—6N7 WherE((l — pM p—qu)6)N = O(Nil)
p q

Propositior{ R now tells us thaty ) — ng = 0(1), from which we derive

bs= PN N o(k— Npl),  with by defined in (37)
’ pIn5+qIna ’
In caseii) we obtain
i i i i 2 i3 . .
Ay ~ (3) N and Ay~ V2 5 "Nz7"  forintegerd > 0,
N~ (3) N \/571(2) gers =
which results in
3 N\? N s| NJ?
bnk=——+——|(k—-%) —=|+O|N2k——| +1].
Nk 2(v/2-1) [( 2) 4 < 2 )

Thus in both case$ andii) we obtainsy = ©(N) andgﬂf1> = O(N?), so by LemmﬂZ) resp. Lemmﬂ:‘b')
conditions (N@) resp. (Li) are satisfied. O
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Remark6. There are other sequencessuch agy = (—1)Nv/N, that are not covered by Theordin 1,
but satisfy Lemmad]2) and Lemmd]d) and thus lead to[{27). Moreover fop, p fixed, a sequence
satisfying condition$) of LemmagR anfi 3, and a sequenaatisfying conditiondi) of Lemmag ang| 3,
any linear combinatioar + br with a # 0 again satisfies conditiomsof LemmadqP and 3. In particular,

Ln is asymptotically normal ifip =2 andry = N+0 (, / %)

Remark7. The sequencegiven ini) corresponds to the external path length of a binary trie. Asymptotic
normality of% in the casep = 1 already follows from Corollarﬂl. Jacquet and Regniier [15] proved
asymptotic normality of the external path length in a binary trie under the Bernoulli models. Jacquet and
Szpankowskil[16] have proved asymptotic normality of a related valuation, namely the internal path length
of a digital search tree. Considering sequenges- N®1\-;, the sequence given inii) fills the gap
corresponding tor = % between CoroIIar[]l and Example 1 presented in the next section. This will show
that forp = % and the above scale of sequences, conditiong)(Blad (Li) are strong enough to separate

the good from the evil.

Theorem 3. Let Ly be the random variable corresponding to the additive valuation L, define@¥jan
terms of Rt) = [t|/*1y >0y on the spacdy equipped with the Bernoulli model. Then

Ln—ELn o
—_—
v/VarbLy

holds for anyu, if p # 3, and only fora < 3, if p= 3.

A(0,1), asN-— co.

Proof. The claim follows from Corollary]1, Theorefh 2 and Examples 1 and 3 in Sefgtion 4. O

4 Counterexamples

As we have not given any necessary conditions for asymptotic normality in terms of the sequince

is particularly interesting if the sufficient conditions given in Theofém 1 are sharp in some sense. Now
Examples 1 and 2 deal with sequenceatisfyingA?rj; = O (N*%“) ,respA%rl, =0 (N*% , for which

there is no asymptotic normality, thus demonstrating that the most obvious weakening of capdifion
Theorent]L is no longer sufficient for asymptotic normality. As all the sufficient conditions of Th¢prem 1
have been derived with the help of Lemfia 1, this also shows that there is in some sense not much room left
for sequencesimplying asymptotic normality, but not being recognized by Leniima 1, though perhaps by
direct verification of the Lindeberg conditions (No) and (Li). Example 1, dealing with sequapeebl®

in the casep = %, o> % moreover constitutes one step of the proof of Them 3. In Example 3 we
appeal to a “nonclassical” central limit theorem for martingale difference arrays to establish asymptotic
normality in the case of the sequenge= N%, whenp # %, a > 1, which is the final step in the proof of
TheoreniB. Although Lemma 1 can not be applied in this case, there is again a formulation of sufficient
conditions for asymptotic normality that is very much in the spirit of Lenfima 1, i.e. yet another sequence
appears that satisfies the type of equation also satisfiéd by
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Example 1. The following example shows that we cannot replace condi}iam Theorerr[]l byp = %

andAer\’, =0 (N*%”) for somee > 0. We fixnp = 2 anda > % and start with the following sequence
of expectations

In = NN,
from which we can readily compute the corresponding sequéniie o, just using [Z3),

a
rv=(1-2"")N% 2(2) 27N+ O (N2,
which defines via[{22) an additive valuatibisatisfying IELy = ¢y. Obviously we havé?ry; = O(N®~2),
which is a condition weaker than conditigrin Theorenf]L, and, as we will see, to weak to imply asymp-
totic normality of Lt‘/},ﬁ“. Since all the r.v.&Ry are deterministic in our case, the rhy has moments of
all orders. Withby i defined in [3[7), we find

bk = (:) 279 [8(k—5)?N* 2= 2N + O (N* 2+ N*(k—§)*),
moreover
N /N 2
SN = ( ) bN k — <2> 2—2GN2G—2_|_ O(NZG—3) ; ASN — O(NZC(—3) )
which yields

23 20 a 2
VN = m (2) NZG_2+ O (NInN+N2a_3> 3 AVN == O(Nzu_3) .

The easiest way to obtain a recurrence relation for the sequigneelE (Ly — EN)3 of third moments is
to rewrite (22) as

D _
Ln —On =Ly — O+ Ly — e + bN,N/a

noting that\’ follows a binomial distributiorB(N, %), Lk 2 Ly fork >0, andLpy — £ andIfN,N/ — NN
are independent, givel'. Computing expectations of third powers now yields

N /N
dy =2 ( )2Ndk+yN+6N,
2\«

where

7
W= () 2 Noyyw =3 () 27 Nb i (Vi+ Wk +Sn — W) = O(N¥2),
kZ) k Z)

5 < (N N 32730N30—3+O(N3(174)
N - zo Kk Nk = ) .

and
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We derive

2630 a3 3.3 a1
= s <2> N340 (N*2).

Therefore
(1 o 23—2(‘1) g

) O

Ln — gN) 3-2a -1

E CquO(N INN+N 2), where cq =2v/2
< VN

3

Moreover, denotingyy := ("':‘/}N‘]’N) , we can similarly show thatiE [Yy|3)n=1 is @ bounded sequence.

The sequencéYy)n>1 is therefore uniformly integrable. So any random variableo which (Yy)n>1
could converge in distribution, must satisfyME= ¢4 # 0 and can therefore not be the third power of a
normally distributed random variable.

Remark8. If we start withry = (1—21-%)N?, the leading terms iy, vy, dn, YN anddy do not change,
so that we don’t have asymptotic normality also in this case.

Example 2. The following example shows that if = 3 5, hone of
rN:o(N%), Arly=0(1) and A?r "—o(N-%> (38)

is sufficient for [27). (See also the subsequent remark on how to extend the construction m;éa%ézs
Here we will stick to the notation of the previous example. Wenfix= 2 and start again with a sequence

of expectations
In=Tgnsgy § T
N> }i;

(N- )

where f(M(N) := /me , and (m ).>1 is a sequence satisfying; > 3 andm;; > n¢ fori > 1,
such that the intervalgm — rno 2%, (my +mP6)2K];-1 7 are disjoint. The conditions afmy )1 (which
are not the weakest in this respect,) will imply

vn = O(N). (39)
On the other hand we will show that .
limsup|dy|N™2 > 0. (40)
N—o0

With the help of the intervalgly, := [m— m®® m+m°®], where4, C [ng, e[ for m > 3, we can represent
£ more conveniently as follows

eN_ZlJlﬂm (N) 4 e QN2

from which it is easy to dedud®/y = ( 1*2”) and, using[(23)A"ry = O (N%) Thus the sequence
r indeed satisfiegy = O (N%) JAry=0(1) andAzrf\’l =0 (N*%). For the computation afy anddy we



Asymptotic normality of recursive algorithms 385

require asymptotics of second and third central momentg"®f(k) + f (™) (N — k), wherek ~ B(N, 3).
The main tool here is the estimate

(N—2m)2

N\, _n . (cm? \/ oA AN +O(i), for N € Zom,
z (k)z e - —Q(TT]O‘Z) m

kEFm e , for N € 4o,

valid for M = ©(m) andm — o, which is obtained by standard asymptotic techniques. We derive

SN = .Zl:“ﬂzmi (N)g<m)(N) + O(\/N)a

e e e R )

and

_ (N—2m;)?
Asn=0|1+ Z]l,qm(N)\/ﬁe om |
i>

Note that the sequenessatisfiess) = ... = sp,—1 = 0, therefore the equations
(I—-2™m %)v: s and
(I-M %)Av =As (the latter is derived from the former using (P1.6))

have the solutions
V=5S+ z 2"™M 2-nS, Av = As+ Z M -nAsS,

n>1 n>1
which is easily verified, just noting th@ aMp)n k = (Map)n k for k> ng. We can thus deduce
Avy = O(y/m +InN) for N <my g +nPg,
andm; > rr\2 implies in particular
1
AVN:O(N71>,forN€UJ4m. (41)
i>1
Moreover we have
N
W=t D 2 2“(k)2“k<1—2">“g<m><k>+ O(N),
n>1i> keﬂz,ni

where the termO(N) comes from the ternd(y/N) present insy, cf. (P1.3). Observing thaf™) (k) <
Ck(k— 1) for someC > 0, we conclude that the sum of the terms wit8 " < 4 will contribute another
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O(N). The sum of the remaining terms, which also contrib@é), is the most demanding and requires
the following estimates, some of them are simply Chernoff bounds. Note that

6m
0(1), for Np € Zom,
s (N>pk(1 p)N_ke_G%ﬁ e '2)7m for Npe [2,4m] \ Zom,
B moo= N _
kTom \ K 0 WNP emNp>’ for Npe (4,7,
o efﬁp), for Npe]4m, N].

Note that by our assumption ¢m;)i>1 there is for eaciN at most one paitn,i) such thaN2™" € 2.
Leaving aside the details we finally deriye](39) and can now turn to third mordgnté/e employ [411)

and obtaingy = O (N%). Moreover
Oy = Zlmﬂzm (NYR™)(N) -+ O(N),
is '
where, denotindgt = N — 2m,
h(M™ (N) = m2 (e‘%k% +3e 1 _2/Be Fn —2/6e +4\/§e‘%§) .
Finally, for N € Aoy, we obtain
dy =8y + O (miazml + N3> — hm)(N) + O(N3).
-1

Thus
limsup|dy|N~2 > lim |dam |(21)~ 2 = 8(2v/3— 2— v/2) = 0.3991> 0.
|—00

N—oo
But, by the same reasoning as in the previous example, asymptotic normaﬁ%ﬁéﬁ would require
. 3
limn_o |C|N|N_2 =0.

RemarlO. A similar construction, building upon modified sequeng@asi>1, is possible for anp € ]0, 1[.
We will stress the part of establishin@39), but skip the proofdf (40), which can be easily adapted from

the casep = 1.
If m—g € Q, we havep =r™ g =r"for some O< r < 1 and relatively primen,n € N. Hence
k+¢
V= Z ( —I’(_ )Mrmk+nl:s,
k.7=0
and

k+¢ ] 1 r—N
mk+Zé:N k ) 1—tMm—t"  mrmnrn’
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since(1—t™—t")~1 has its dominant singularity &t=r. We conclude/ =5+ 0 (k=1 *Mxs), and
(B9) will be satisfied if we demand that the intervilisy — mP€)rk, (m +mP®)rk)i~ 1 ez are disjoint.

In the casql— ¢ Q, fast enough growth dfm)i>1 is enough to guaranteg{39), i.e. we do not need any
sort of “d|SJomt intervals” condition. Proceeding as in Example 2, we obtain

s =Y Loy, (NG™(N) + O(VN),

k>1

where the sequencey)k>1 is defined by

Noi—1=| Ny =

2n) 159"

andg™(N) is a function similar tog™ (N), with several ripples of heigh(n) and widthO(,/n) near
N = 2n, which obeys

N
14, (N)G™ (N)| < Cn? <n> 2N =y forn>3andsome€ > 0.

The contribution o™ to v can now be estimated b ;-0 (/)M oy ™. We have
2
M\, —Cn3 N s a N—n< / &i —Na/n .
(May"™)n Cn2<n) (2) (1 2) <C'n . e for some C’¢,0

and will now apply Mellin transform techniques (cfl [5]) to derive asymptotics of the two sums

S -— Cn? N k+4 ﬁ " 1—ﬁ e and
N - n k;zo k 2 2
N 2
%NIZC’nZ (k+£>(Nd<q> e*quz.
' ko k n

3/2+i= C'T (s4-2)N~S
SLN / T —s_ ~sUs
21 3/2-i0 1—pS—(
from which we deriveS; y = O(N), asN — o, andS) \, = O(N?), asN — 0. Thus there is a constant
C"” >0, such thaSLN < C"N for 0 < N < o, and we can moreover conclude

We obtain

SN < SN =N y/n <NC'N/n=C"N.

Furthermore

2tie  cpizs 1 N sy -1 C NG
SN = 2TI]/2 ico 1—p—5—q—sn|!:|n( * ) 2(pIng +qing)n—1

k
for n> 3 asN — o, where the function implied by the symboldepends om. Thus there ar€” > 0
and@(n) > 2n such thatS, N < C/’/% for N > @(n). These results are obtained by shifting the line of

+0o(N),
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integration to the right (resp. left) and collecting residues at the simplespole 1 (resp.s = —2) of the
integrands and the other polesﬁ#, which are all simple, have real part strictly greater thdlh

and form a uniformly discrete set (cfl [3, Lemma 8]) contained in a vertical strip. The new contour of
integration can be chosen as a rectifiable curve, which is contained in thecsgs8: 1, and on which
ﬁ is bounded. Denoting= o +it, it is easily seen, thadt,n(s) := £ [N, (1+ E)*l satisfies
for N > n+ 1, with someC, > 0,

uniformely ino € [—1,1] andt € R.

_ 1
|Knn(s)] < CnN an—+t2

It is well known that L
IF(o+it)| ~ vV2mt|°2e ™/2 as|t| — co.

Thus both the sums of residues and the new contour integrals are absolutely convergent.
We have thus derived @ Sin < C"N1non<gm) +C/"%]1{Nch(n)} and can conclude

W< ) Syn=0(N),

k>1

if the sequencém )i>1 is chosen such thaty > 6 (which guarantees;,n, > 3) and
N1 ANgip2 > @Noi—1) V @(Na;)

Note that the property lifLe limsupy_ . % = 0, which we have derived fcﬂ% ¢ Q, does not hold if

Inp
me@.

Example 3. Here we are going to demonstrate that in some cases where LEmma 1 can not be applied
since (Li) is not satisfied, a “nonclassical” version of the central limit theorem for martingale difference
arrays can be used to establish asymptotic normality. Still in the setting of Théprem 1, mge=fig,
O<p< % a>1andry = (1— p* —g*)N%, and will prove% e A(0,1), asN — . We readily
obtain

In=N"+0(NINN+N*"1),

and from according estimates of differences @fe deduce fom> 1:
A™0y = o™N* ™+ O (NF™InN + NA—2-m) | (42)

Herex! = x(x—1)--- (x—n+ 1) denotes falling factorial powers. We can obtain an approximatiotifor
aroundk = pN (and a similar one arourid= gN) valid for 0< k < N, by taking some terms of its Newton
series plus an estimate for the remainder term

2 . k— [ pNJ)E
b= _%Alqp[\” (Il"ilpj) + O(N073||(— leB) .
& !

Writing the terms(k — | pN|)! as polynomials ink — N p), we obtain forby x, as defined in[(37), the
following representation

bk = (B pny — Bl gny) (K—=Np) +cn ((k—Np)?> —Npg) + O(N“*3(|k— pN|3+N%)) :



Asymptotic normality of recursive algorithms 389
wherecy does not depend dnand satisfiesy = O(N“*Z). We thus derive
SN = (B4 pn) — Dligny ) PAN+ O(NZ2). (43)
From (42) and[{43) we deduce
N = GZ(pafl_qqfl)quNZcxfl_F 0 (N20(72_~_ N InN) and Asy = O(N®-2),
moreover

az(p";l—q“ 1)?pa, 201
_pﬂ—l q20( 1

Avy =O(N*-2),  and
wy =O(N*~3).

VN =

+0(N*24N%InN),

We have thus derivediy = o(v§), which is condition (Ng) from Lemma[[L, which was seen to imply
(No). On the other hand (Li) is not satisfied since the first term of the series in (L[E)EQ’H{KN.WE}]

does not converge to 0 for small enowgh 0: This follows from IE[EF, ;] = N — 1—p** 1 — g1 >0,
asN — oo,

However there is a “nonclassical” central limit theorem for martingale difference arraysicf. [33, p. 553])
which provides another pair of sufficient conditions for asymptotic normality“gf"* = 52, &ni. One

of these conditions is (No) which has already been checked. The other one, which we) calistated
in terms of regular distribution functiorgyi(X) := IP (§ni < X|Inji—1):

'g/sz X ‘FN,i (x) — @ (x/M) ’ dx5 0, asN — o, for eache > 0, N)

where® is the standard normal distribution function, afgi(x) — ® (x/ IE | ﬁ,iw:N,i*l]) has to be
understood as identically 0 on the $é [€3 Nilni-1] =0} € TN,. 1. Asin Lemmaﬂl, we want to get rid

of € at the cost of obtaining a stronger condition. UsfRdly~¢, < g2 |x|§ and (IF), and substituting

&=x () , we find the following condition, which implieg\}:
St

) e

Denoting byk a random variable with the binomial distributi®{N, p), we are going to show

IP( lt(>l<€‘|t ) (a)‘daio, asN — o,

|P<i‘/NS’N_1§x>IP<\/Nipg >+O<\/N(11+|x|3))' (44)

Moreover by nonuniform Berry-Esseen type inequalities (ci. [33, p. 376]) we also have

’IP (%gx) —®(x)

:O(m)’
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/\x\ P <— <x) O(x) dx:O(%).

and conclude

1
SmceT 0] (sNz ) we find, enlarging the range of summation, yet another condition that implies
(N):
VN4 ﬁ 1,0, inL! asN — . (N)
i:[t) >0
Exactly as in the proof of Lemnﬁl we deduce at=IE 3. ) |>Os“3 satisfies the recurrence
5 1 1
(1-Mp—Mg)y=s* where we denoted:= 1 3331 and & := ()ns0-

From (P1.3) we can now dedugg = O(y + NInN), thusyy = o(vN%), which proves {), thus (\) is
satisfied and'Nﬁ‘N is indeed asymptotically normal.

It remains to prove[{44). Note that wik~ B(N, p) andYy = Yn (k) = kw\l’\l*p’c)] we have

bk
Zny =2Zn(k) = —= = on(W),
N =2Zn(K) Ny on(Yn)
wheregn(y) =y+ O (% The random variablgy (k) is strictly decreasing ik for 0 < k < L%J , thus

onc: (LS D W(0)] = [Zn(15]),2Zn(0)] is invertible, with

1+x2
1
X) =X+ O , 45
a9 =x+0 (1) )
moreover there is > 0 such that

o091 = ex+0 (k). (46)

Note that each ofy(0), Zn(0), —Yn([ 3 ]) and—2zn(| 5 ]) is of order®(v/N). Thus, for some€ > 0, we
have
P(Zy<x)=IP(\w<x)  for|x| >CVN.

Moreover we obtain
P(Zy<x)=1 and IP(Yy<x)>IP(Yy<Zn(0)=1-e2N for Zy(0) <x<CVN,
P(Zy<x)=0 and IP(Yy<x)<IP(Yy< ZN(LgJ)) —e 2N for -CVN <x< zN(ng).
For the remaining valuezy (|} |) < x < Zn(0) we have

P(Zy<x)=P(Zn <x k< |§))+P(2Zn <xk>[5]),
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where we estimate the second ternfdR < x,k > |
term

Nz
| E—
SN~—
IA
ﬁ
—
=
v
—
Nz
| I—
S~—
Il
®
R
Z
o))
=]
o
@
=
=
=
D
~—+
>
oD
—
=
(%]
24

P(Zn <xk< [§]) =P (W < @y(x)

The setdy is defined bya, = |xA @yt(x) , xV @y (x)] and we have to take the signif x < g*(x) and
the sign— otherwise. We further estimate
P (Yn < X,k > N) —e N

)

N
P (Y € Aok < 5) =P (W € ) — e 2N and

14X 20
IP(Yy € 4y) = O e—”/2>,
oweag=o(

by (@3), (46) and the local limit theorem for the Bernoulli scheme, . [33, p.56]. Sihee O(N) is
valid for the above error estimates, these can all be relaxed to thedo{r (1+\x|3)) presentin[(44).

Remarkl0. This method of proving asymptotic normality B?\/;TN[N by verifying conditions (No) and/X)

also works for other sufficiently smooth sequences$ polynomial growth, satisfyind?ry = Q (N‘1+€)
for somee > 0. Exponentially growing sequencediowever again constitute examples leading to non
normal limiting distributions. Take & p < 3 andry = 2N. Then/y ~ 2N andvy ~ (14 3q)", moreover

In—ty D - o Loy :
% — 0. A closer look reveals that all the limit laws that we can obtalnkﬁ%—’“ by choosing

appropriate normalizing sequendes )n>o0, (bn)n>o are degenerate.

5 Conclusion

In this paper we proposed the use of martingale difference arrays as a method to detect asymptotic normal-
ity of the costs of certain recursive algorithms. The main tool, Lemma 1, restates well known sufficient
conditions for asymptotic normality (of Lyapunov type) in terms of asymptotic relations between three
sequences. Asymptotics of those sequences can usually be obtained by the same toolkit that is used to
derive asymptotics of expected costs. The method is likely to be applicable in cases where one expects
asymptotically normal costs and where an analysis of expected costs has already been performed. We
have applied the method to additive valuations defined on binary tries equipped with the Bernoulli mod-
els. There an interesting problem surfaced.

Open problem Let a sequence of random variablés )n>o satisfyLo = L1 = 0, and forN > 2
Ly Z L+ LNk +n,

wherek ~ B(N, p), Lk 2 Ly for k > 0, andLy, Ln_k are independent, conditional énand(ry)n>2 Is a
sequence of real numbers.
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Is it true thatNZEL 2 2((0, 1) holds, ifry = 0 (VN) and 25 ¢ Q2

From Corollary 1 and Example 2 we know tr@# = A((0,1) is implied by both sets of conditions
{ry=0(VN), In"l‘pp € Q}and{ry = o(\/ mN) , ,n'?pp ¢ Q}, but not byry = 0 (VN).

For future work we plan to give further applications of the proposed method, which call for generalizations
such as those indicated in Remark 2.

6 Appendix
Proof of Propositiorf]2.According to (P1.2) we have=x+ (I — pMp — qu)‘lx’. ObviouslyX|np| —
X|ngl = 0(1), so we are left with showind{B2) for sequencesatisfyingxo = ... = Xn,—1 = 0. (Any of

conditionsi) or i), that is satisfied by, is also satisfied by'.)

Introducing the Poisson generating functidgh) = zkzoxk%e*t, which is an entire function, and simi-
larly y(t), which satisfies (and is actually the unique entire solutions offIcf. [3, Lemma 2]) the functional
equation

y(t) — py(pt) — ay(qt) = x(t), (47)
we have to prove
y(pt) —y(qt) = o(1) ast — . (48)
The proof is then completed by depoissonizing this equation with the help of (P1.8). Just note that by the

assumptiol\xy = o(f) we have the chain of implications

(P16

P1.3 1
(1= pMp— Mgy =x 22 (1 - M, — PMg)ay = ax B2 ayy :O(W> _

It thus remains to prové {#8). Note thdt) = O(t?) ast — 0. The unique entire solution df{47) is thus
given by the absolutely convergent seiygs = 3 />0 (k”) pka’ x(pkg't). We derive

y(pt) —y(qt) = ; vieX(pat), (49)
k+0>1

wherevi, = (70N ptgf — (K pRgt = (L) P! pqqkkfé and distinguish two cases:

i) Xy =o0(1) and'lgg eQ:

For some (< r < 1 and relatively primen,n € N we havep=r™, q=r". The rational funcuo%

hasm— 1 poles, and all these poles have absolute value strictly greater than 1, which leads f@rsd@me
andd > 1 to the following estimate

m_ tn
- ‘[tN] L L YU

Vi, ¢ <
& 1— rmgm _ pngn

mkt-nf=N
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Sincex(t) = 0(1) ast — o we can fore > 0 find N; € N andt, > 0 such thatd ™ < ¢ and|x(r"et)| < ¢
fort >t.. We obtain

- 1+sup-o[X(t)])

_ < Niy(rNt) | < >

¥(pO)—y(@)| < § Cd M| < C——=]

for t > t¢, which completes the proof of the first case. The following example showsqthat O(1)
does not imply[[32): For the sequence- (I — pMp —gMq)y, whereyn = InN 1), we obtainxy =
ping-+aing+0(N") andynp —Yjng =INp—Ing+ O (N™1), thus in hypothesi§, xy = o(1) can
not lge weakened.

i) X :o(mfm) andP ¢ Q:

Note that now we haveq’ = ptq’ only if (k,¢) = (ky,¢1). Speaking in terms of harmonic sums (cf.

[8]), in the previous case several terms [in] (49) contributed to the same frequency, and there have been
heavy cancellations in the corresponding amplitudes. Such cancellations do not occur in the present case.
Fors> 0 we definds:={(k,¢) € N2: k4¢>1, ps< pq’ < s}. Ifmoreovers< 1, there existss € N (in

general not unique) such thdtpns|, [gns]) € |s. The asymptoticss ~ W/ﬁmw holds, ass — 0.

We now definék’ ;== k— | pns] and?’ := ¢ — [qns], and obtain by applying Stirling’s formula

K+0\ ¢ ( Ns ) Lprs] [ars] ( (qK—pf’V)( (Ik’|+|€’ Ik’|3+|€’|3>)
= exp| ———— | (1+0 + ,
( k )pq lpng) )P P 2pqns Ns nZ

for (k,¢) € ls, where{pns} = pns— | pns| denotes the fractional part pis. Stirling’s formula also tells

1
n pns] glans| — S 2 e dk=pl _ gk—pl—{pn} o it is qui
us (| ) plPsiglans — o <n5 ) We have o2 = “Lerr 7’ moreover it is quite an elementary

Jq“—pﬁ’)Z) ok —p¢'— {prs}| _ o
(nglsexp( 2pans pa(ns+k +0/) (1),

task to show

for we can compare the sum with an integral, agd- k' 4- ¢ = k4-£ > Iny/,(1/s) > Cns for someC > 0,
when(k,¢) € Is. Thus we have
1
vl =0 (). (50)

(kels Ing

|
MOoreover SUR<s< -1 % =:C' < oo, uniformly int > 0, such thatx(p“q‘t)| < @(p“q‘t). We can, for
t > 1andt:= [Iny/,t], proceed as follows:

There is a functiomp: R, — R, satisfyingg(t) = O(t), ast — 0, and@(t) =0 (ﬁ) ast — o, and

t) —y(qt)| < Kg't)| < C’ |lo(p™t)| = O (p(pmt)>
ly(pt) Y(Q)Ifk*ZlIVk/IIX(Pq )| < mgo(kj%pmlvk,zl\q’(p )l (m;\/m—ﬂ o

oy 212 )L
_O<mZO\/m7+1m>+o<m§O T+1+m>_0(1)’
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since the finite sum tends #

dx B
] Ttast — oo, This completes the proof of the second case.

We still have to give an example demonstratmg that the condwior O ( does not imply[[32)

i)
in the case - Inq P # Q. The construction we will give works foﬂ—ID which can not be approximated very

well by rational numbers. It suffices to assume that '23 is an irrational algebraic number, in which
case by Liouville’s theorem there és> 0 andp > 2 such that

m c
o—— — 52
‘ n’>nll (52)

holds for positive integerm, n. For increasing sequences of positive numli@s-1 and (U;)i>1 to be
suitably chosen, but related Wik = Tiz/a, we define

X = 20 , with x( z gij[m,k,z],

(k.z)eJi

whereJ; = {(k,) 1 k,£ >0, Tipq’ > Ui}, & = sign(vk), Mk, = [Tip*g’] and

m_ [ Mk
%= Inm(m)2 ’

Note thatq™ attains its largest valug/ 7= (2™ 2-2m

\/W atk € {2m—1,2m} and is very small fok ¢
k— 2m) /\\k 2m|

o tkeam?
A= [2m— P8 2m+ mPS], due to the estimatg” = e Q< moom ) Thust I~ 0 (\/ﬁ) and

) . The Poisson generating functiefi! (t) = e Zk>o U = /e t/22"

S|m|IarIyAx[m] =0 ( ¢|<1|Tk

has a similar hump near= 2m, with asymptotics<™ (t) = L —e~ o (l+ o) (%nls» Condi-

varinm
tion (52) ensures that if; is large, the humps assembledxﬁH( ) (resp. inx() do not overlap (i.e. the
“supports” (Am, ) k.¢e3 Of the humps are disjoint), as we will see by estimating the distance between
adjacent humps from below:
Let (k,0), (K, ¢') € J with ptg’ < pXq’’. Then

2(Tipa’ | 2T o || = 2T [p 1 - p e e > 2Ind Tt k- K+ (¢~ ¢)a] +C

—H

2/3 C 123 ( InT

>2Ini 5 Ti ((\/Z’)“+CZZC|n5Ti <3Inl +C,
q

where—2 < C < 2. On the other hand, the largest interval am¢Ag, , ,) k)< has length Z°°. Now

XD (t) is a sum oflJ| = O(In?T;) termsx(™ k< (t), each exponentially small forZ An, ,, which results in
e QW) fort € [O,Ui],
X (t) = { e V2T, fort € [4Tj, |,

S (ke Lag , (Oscx™ed(t) + e Y fort e]U;,4T].
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AssumingT; > T2, andT; large enough, humps o (t) andx)(t) will not overlap fori # j, which
allows for the representatlon

=3 3 Lan,, (D) x™wd) (1) + e 2. (53)
Ay
There is a similar representatlon fofrom which we can immediately deduce that indegd= O ( W)

We now inductively define the sequen®)>1: Having determined; for 1 < j < i we chooseT; as

follows. We lety) (t) andy(<!) (t) be the unique entire solutions of the equations
—py(pt) —ay (at) =xV 1), Y () - py ) (pt) —ay = (at) = § xV(t)
=1

Sincezij‘:llxﬁ\f) = e‘Q<N°'1) and thus satisfies conditioin of this proposition, we can refer tg°({51) and
deduce that there exists> T2 ; such that

’y(<i)(pt) 7y(<i)(qt)‘ <27 fort > U

and ' _
’y(')(t)’ <27 fort <4T_.
The latter condition can be satisfied, since for 0 and someC > 0 we have, by Stirling’s formula,
. . Ui . _ .
x () <xt(t):=C (gull) , which impliesy® (t) < (1— pt+Yi — g*Y) *x0) (). With x(t) constructed
this way, and employind{#9)(50) and](53) we derive

Vice] —Q(UOY) | Sl /1/3 dx
2Tip) — y(2Tiq) = e J+2t = -
y(2Tip) —y(2Ti) (k%@i 2rin(Tipkar’) Vi i

Depoissonizing, we obtain limsyp |Y|np| — Y|Ng | = IMsun=1 Y| 21 p] — Y| |27 jq)| > O, which shows
that indeed[(32) does not hold in this example. O
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