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We propose martingale central limit theorems as an appropriate tool to prove asymptotic normality of the costs of
certain recursive algorithms which are subjected to random input data. The recursive algorithms that we have in mind

are such that if input data of sizeN produce random costsLN, thenLN
D= Ln + L̄N−n + RN for N ≥ n0 ≥ 2, wheren

follows a certain distributionPN on the integers{0, . . . ,N} andLk
D= L̄k for k≥ 0. Ln, LN−n andRN are independent,

conditional onn, andRN are random variables, which may also depend onn, corresponding to the cost of splitting
the input data of sizeN (into subsets of sizen andN−n) and combining the results of the recursive calls to yield
the overall result. We construct a martingale difference array with rows converging toZN := LN−IE LN√

VarLN
. Under certain

compatibility assumptions on the sequence(PN)N≥0 we show that a pair of sufficient conditions (of Lyapunov type)

for ZN
D→N (0,1) can be restated as a pair of conditions regarding asymptotic relations between three sequences. All

these sequences satisfy the same type of linear equation, that is also the defining equation for the sequence(IE LN)N≥0.
In the case that thePN are binomial distributions with the same parameterp, and for deterministicRN, we demonstrate
the power of this approach. We derive very general sufficient conditions in terms of the sequence(RN)N≥0 (and for
the scaleRN = Nα a characterization of thoseα) leading to asymptotic normality ofZN.

Keywords: recursive algorithms, trie, martingales, asymptotic normality, central limit theorem

1 Introduction
There are several methods in the literature to detect asymptotic normality of appropriately normalized
costs of recursive algorithms. Among the most prominent approaches are the use of bivariate moment
generating functions (cf. [2, 14, 15, 16, 22], sometimes assisted by singularity analysis of generating
functions [7] and depoissonization devices [17]), urn models (cf. [20, 23, 24]), approximation by Brow-
nian excursions (cf. [11]), and the contraction method (cf. [26, 28, 29, 30]). Occasionally the martingale
limit theorem has been used to prove the existence of a limiting distribution (cf. [27, 28]). However, we
do not know of any applications of central limit theorems for martingale difference arrays in the analysis
of recursive algorithms. The aim of this paper is thus to demonstrate that the latter are valuable tools that
can supplement the other methods.
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When we study recursive algorithms which are subjected to random input data, martingales arise in
a very natural manner when we make predictions of costs on the basis of the information available by
keeping track of the recursive calls performed so far. The following example should make this clear:
Assume that some recursive algorithm, when applied to random input data of sizeN, produces random
costsLN, which satisfyL0 = L1 = 0, almost surely, and forN≥ 2

LN
D= LN0 + L̄N1 + rN, (1)

whereN0 follows a certain distributionPN on the integers{0, . . . ,N}, N1 = N−N0, Lk
D= L̄k for k≥ 0, and

LN0, L̄N1 are independent, conditional onN0. Finally rN is a constant, corresponding to the cost of splitting
the input data of sizeN (into subsets of sizeN0 andN1) and combining the results of the recursive calls to
yield the overall result. The best guess that we can make aboutLN, knowing justN, is XN,0 = `N := IE LN.
If we also know the value ofN0, we can improve our guess:

XN,1 = XN,0 + `N0 + `N1 + rN− `N.

If the algorithm splits the data subset of sizeN0 first (into subsets of sizesN00 andN01), the next we get
to know will be the value ofN00. This will lead to another improvement of our guess ofLN:

XN,2 = XN,1 + `N00 + `N01 + rN0− `N0.

Under certain integrability conditions onLN, the sequence(XN,i)i≥0 constructed this way will be a mar-
tingale with respect to a certain filtration obtained by accumulating information about subset sizes. In the
lucky case that knowing all subset sizes almost surely determinesLN, we haveXN,i → LN almost surely
and inL2, which opens the door for applying classical central limit theorems for martingale difference
arrays. Under certain assumptions on the sequence(PN)N≥0 (which still allow for the standard probabilis-
tic models of algorithms associated with binary search trees, digital search trees, tries, ...) we will derive
easy-to-use conditions (at the cost of having a narrower range of applicability than the classical Lindeberg
conditions) implying asymptotic normality of costsLN. The setting which will be our favorite playground
for demonstrating applications of these conditions is roughly the following:

If in (1) we fix IP(N0 = k) =
(N

k

)
pk(1− p)N−k for 0≤ k≤ N and some fixed 0< p< 1, we obtain a

recursion that shows up again and again in the study of additive valuations of the (binary) trie data structure
(cf. [9, 19, 21]) under the Bernoulli model. The number of internal nodes (rN = 1) and the external path
length (rN = N) of a trie are perhaps the most important examples. Jacquet and Regnier [14, 15] proved
asymptotic normality of both the number of internal nodes and of the external path length in a binary trie
under the Bernoulli model, and in the case of the number of internal nodes also proved convergence of
moments of any order. There is related work by Jacquet and Szpankowski [16], who proved asymptotic
normality of the internal path length of a digital search tree under the Bernoulli model. These results are
achieved using clever bounds for bivariate moment generating functions combined with a poissonization-
depoissonization step. Employing contraction properties of suitably chosen probability metrics, Rachev
and R̈uschendorf [26] and Feldman, Rachev and Rüschendorf [4] proved asymptotic normality ofLN for
the sequencerN = 1 under very general probabilistic models, including the Bernoulli models. There is a
remark in [26] saying that under certain conditions sequencesrN = o(

√
N) would generate asymptotically

normalLN.
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Thus the following question naturally arises: Which sequences(rN)N≥2 generate additive valuations
on the set of tries equipped with the Bernoulli model that behave asymptotically normal? We will give
answers that in particular cover the casesrN = 1 andrN = N and to a large extent clarify the role played
by the sequencesrN = o(

√
N).

The paper is organized as follows: In Section 2 we set up a correspondence between algorithms that
split tasks into at most two “subtasks”, and labeled binary trees. Furthermore we describe the class
of probabilistic input models we are going to allow. Essentially we will demand that the costs for the
two subtasks and the split-and-combine cost are independent, given the “sizes” of the subtasks, and that
the distribution of the cost of a certain task is the same, regardless if it is the task the algorithm starts
with, or if it occurs as a subtask in some deeper level of recursion. CostsLN of algorithms can then be
regarded as “random additive valuations”, generated by corresponding split-and-combine valuationsRN,
on probability spaces consisting of labeled binary trees of fixed “size”N. If we demand that trees of fixed
“size” are almost surely finite (which reflects the wish that the algorithm, when applied to random input,
will almost surely stop in finite time), it turns out that moments of the costs are finite, if only the same
moments of the corresponding split-and-combine valuation are finite. Next we will construct martingales
converging to the costsLN and will also derive linear recurrence relations for expectations and variances
of LN. The same type of linear recurrence relations occurs again twice in Lemma 1, which states sufficient
conditions for asymptotic normality of normalized costs (whereN tends to∞) in terms of the solutions of
the latter linear recurrence relations and the sequence(VarLN)N≥0.

In Section 3 we are going to apply Lemma 1 to find answers to the question: Which are the sequences

(rN)N≥2, such thatLN, as defined by (1) under the Bernoulli model, satisfiesLN−IE LN√
VarLN

D→ N (0,1) ? Our

answers will be in terms of growth conditions for the sequence(rN)N≥2 and for sequences which are
obtained by smoothing the sequences of first and second differences of(rN)N≥2. The verification of the
conditions of Lemma 1 requires a careful study of the type of linear recurrence equation that defines the
sequence(IE LN)N≥0, which is the content of two propositions. (For better readability of the paper the
proof of one of these is deferred to the appendix.) For the class of sequencesrN = Nα we can even obtain
a complete characterization: There is asymptotic normality for anyα, if p 6= 1

2, and only forα ≤ 3
2, if

p= 1
2. Only a part of that characterization will be achieved by applying Lemma 1. It is in the nature of that

lemma that it can deal only with sequences(rN)N≥2 that do not grow too fast, as it exploits negligibility
in the limit of the martingale differences.

Examples 1 and 3, given in Section 4, are the missing links in the characterization of the sequences
rN = Nα. In Example 1 we demonstrate that there is no normal limiting distribution in the casesp =
1
2, α> 3

2, and in Example 3 we appeal to a “nonclassical” central limit theorem for martingale difference
arrays to establish asymptotic normality for the casesp 6= 1

2, α > 1. In Example 2 we will show that
the sufficient conditions derived in Section 3 are sharp in some sense, by supplying for the casep = 1

2
a sequence(rN)N≥2, which does not lead to a normal limiting distribution, but satisfiesrN = O(

√
N)

and thus falls very short of satisfying one of our sufficient conditions for asymptotic normality, namely
ln p
lnq ∈Q, rN = o(

√
N).

We denote convergence (resp. equality) in distribution by
D→ (resp.

D=), andN (0,1) denotes a standard
normal random variable. We puta∨b = max(a,b) anda∧b = min(a,b) for real numbersa andb. The
indicator function of a setA is denoted 1IA, and for a Boolean expressionB we let 1I{B} be 1 if B is true
and 0 otherwise. The difference operator,∆, is defined by∆xk = xk+1−xk for sequences(xk)k≥0. We will
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use the standard asymptotic notationsO, o,Ω andΘ.

2 Preliminaries and a key lemma
We assume that we are given a class of problemsA , and that to eachA∈ A is associated a nonnegative
integer|A|, the size ofA. Examples of such classes would be the set of all finite sequences (which we want
to sort) that are permutations of initial segments of the natural numbers, where the size of a sequence is the
number of its terms, or the set of all finite binary trees (the path lengths of which we want to determine),
where the size of a tree is the number of nodes it consists of.

We will consider algorithms which are recursive in the sense that a problemA ∈ A of sizeN is split
into two primary subproblemsA′, A′′ ∈A of smaller or equal sizes, which are subjected to the same given
algorithm. This splitting continues recursively, until subproblem sizes fall below some leveln0. These
small subproblems are attacked directly (nonrecursively) by the algorithm. Splitting and combining causes
costs, that depend on the problem to be split (perhaps only via the size of that problem), but can also have
a stochastic component. Another source of randomness comes into play, if we subject the algorithm to
a probabilistic input model: Each of the setsAN := {A ∈ A : |A| = N}, assumed to be countable, for
simplicity, is supplied with a probability measure, according to which elements ofAN can be chosen at
random. The cost of our algorithm, when applied to input fromAN, thus becomes a random variable.
Properly normalized, these random variables might have a limit in distribution, whenN→ ∞.

We will utilize the following representation of the cascade of subproblems just described in terms of
labeled binary trees: To each problemA we construct a finite binary treet = t(A), with nodes labeled by
the setN∪{−1} and the labeling not required to be one-to-one. The size|A| of the problemA is the
label of the root of the treet(A), whose left and right subtreest(A′) andt(A′′) correspond toA’s primary
subproblemsA′ and A′′. We proceed recursively, until we reach subproblem sizes less thann0. This
happens after finitely many steps, if we assume|B′|∨ |B′′| ≤ |B|, for any subproblemB of A with |B| ≥ n0,
whereB′, B′′ denote the primary subproblems ofB, and that|B′|∨|B′′|= |B|may occur only finitely many
times. Each of the countably many problems of sizen, for 0≤ n< n0, can be represented by a unique
finite labeled binary tree, whose root is labeledn and whose remaining nodes we label for definiteness by
−1.

We defineTN := {t(A) : A∈ AN} for N ≥ 0, andT−1 to be the set containing the empty tree and the
finite binary trees with all nodes labeled by−1. Moreover we let the size|t| of t ∈

⋃
N≥−1TN be−1 if

t is empty, and the label of the root oft otherwise, i.e. |t| = N :⇔ t ∈ TN. Let {v1,v2,v3, . . .} be some
enumeration of the vertex setV of the infinite complete binary treet∞, such thatv1 is the root oft∞, and
v j is a successor ofvi only if i < j. For any finite binary treet we denote the vertex set oft by V (t), and
we letιt : V (t)→V be the embedding oft in t∞, that satisfiesιt(root(t)) = v1, andu is the left (right) son
of v in t iff ιt(u) is the left (right) son ofιt(v) in t∞. For t ∈

⋃
N≥−1TN we denote byt(i) the subtree oft

which has its root inι−1
t (vi). Note that eithert(i) is empty, ort(i) ∈ T|t(i)|. Left and right subtrees oft (resp.

t(i)) are denotedt` andtr (resp.t(i)` andt(i)r ,) and sometimes we depict that ast =
o
/\
t` tr

. The costL of the

algorithm, when applied to problemA, can now be given in terms of anadditive valuation of the treet(A):

Additive valuations. A (deterministic) valuation on a family of treesT is any functionX : T→R, and a
random valuation is any functionX : T→ L0

Q(Ω,G), whereL0
Q(Ω,G) denotes the set of random variables

on a probability space(Ω,G ,Q). We shall concentrate on the particular class ofadditive valuations L,



Asymptotic normality of recursive algorithms 367

defined on
⋃

N≥0TN, which can for somen0≥ 2 be described by

L(t) =


R(t), |t|< n0,

R(t)+L(t`)+L(tr), |t| ≥ n0, t =
o
/\
t` tr

,
(2)

whereR is some simpler valuation on
⋃

N≥0TN. In the language of recursive algorithms,R accounts both
for the costs of treating small subproblemsB of size|B| < n0 and for the costs of the split and combine
steps. We say thatR generates L. We assume that, for|t| ≥ n0, R(t) depends ont ∈ Tn only via |t|, |t`|
and|tr |, i.e.R(t) = R(|t|, |t`|, |tr |). However, for|t| ≥ 0 we allowR(t) to be a random variable, that is, we
consider random additive valuationsL(t) = L(t,ω), generated byR(t) = R(t,ω), with ω ∈ Ω for a given
probability space(Ω,G ,Q), where we assume thatR(t), L(tl ) andL(tr) are independent. To be precise,
this calls for existence of countably many mutually independent random variablesR(i)(t), wherei ∈ N,
t ∈

⋃
N≥0TN and for fixedt the R(i)(t) are i.i.d., so we can takeΩ = [0,1], G the σ-field of Lebesque

measurable sets in[0,1], andQ the Lebesque measure. This allows for representingL as follows,

L(t) = ∑
i: |t(i)|≥0

R(i)(t(i)). (3)

For example, a (deterministic) additive valuationL is generated byR(t) = 1I{|t|≥n0}, and hereL(t(A))
counts the split and combine steps, that our recursive algorithm needs when applied to problemA.

The probabilistic model for TN. We will work with the probability space(TN,FN,PN), where the set
TN is countable, so we simply defineFN to be the set of all subsets ofTN. Givent∈TN, N≥ n0, we assume
thatt` andtr are independent, conditional on{|t`|, |tr |}, and moreover thatPN(t` = t∗

∣∣|t`|= |t∗|) = P|t∗|(t∗)
andPN(tr = t∗

∣∣|tr | = |t∗|) = P|t∗|(t∗). The latter says that the distribution of some subtreet∗ of t depends
only on its size|t∗| and not on the position of its root in the treet. Thus, given the probability measures
Pn for n< n0, and forN≥ n0 thesplitting probabilities

pN,k′,k′′ := IP(|t`|= k′, |tr |= k′′
∣∣∣|t|= N),

we have forN≥ n0 the following recursive definition of the probability measuresPN,

PN(t) = pN,|t`|,|tr |P|t`|(t`)P|tr |(tr).

Our assumptions on the splitting probabilities, that guarantee almost sure finiteness oft ∈ TN, are that for
N≥ n0 we have

PN(|t`|∨ |tr | ≤ N) = 1 = PN(|t`|∧ |tr |< N),

PN(|t`|∨ |tr |< N) = ∑
0≤k′∨k′′<N

pN,k′,k′′ =: πN > 0. (4)

We denote byXN = XN(t,ω) the random variable on the filtered probability space(TN×Ω,FN×G ,FN,PN×
Q), obtained by restricting a random additive valuationX to TN. In particular we will have to deal with the
sequences of random variables(RN)N≥0 and(LN)N≥0. The definition of the filtrationsFN will be given
shortly.



368 Werner Schachinger

According to (2) we call the sequence of random variables(RN)N≥0 the generating sequence of the
valuation L. The sequence of random variables(LN)N≥0 can now be defined by the following system of
equalities in distribution:

LN
D=

{
RN, N< n0

RN +LN′ + L̄N′′ , N≥ n0,
(5)

whereN′, N′′ are random variables with joint distributionPN(N′ = k′,N′′ = k′′) = pN,k′,k′′ satisfying (4),

Lk
D= L̄k for k≥ 0, andRN, LN′ , L̄N′′ are independent, conditional on{N′,N′′}.

Moments of additive valuations. Equations (5) can be used to obtain recurrence relations for the mo-
ments ofLN. It is easy to see that IE|LN|m< ∞ for N≥ 0 is implied by IE|RN|m< ∞ for N≥ 0:

Assume thatm≥ 1 (the case 0< m< 1 can be treated similarly). IfπN = 1 it is easy to deduce from
(5) that

IE |LN|m≤

IE |RN|m, N< n0

3m−1

(
IE |RN|m+2 max

0≤k<N
IE |Lk|m

)
, N≥ n0,

and this furnishes a proof by induction onN for IE |LN|m < ∞ for N ≥ 0. In the caseπN < 1 we define

I(t) := {i : |t(i)|= |t|}, I`(t) := {i ∈ I(t) : |t(i)` |< |t|} andIr(t) := {i ∈ I(t) : |t(i)r |< |t|}, and obtain

L(t) = ∑
i∈I(t)

R(i)(t(i))+ ∑
i∈I`(t)

L(t(i)` )+ ∑
i∈Ir (t)

L(t(i)r ). (6)

Now K := |I(t)|−1 is geometrically distributed with parameterπN, and|I`(t)∪ Ir(t)|= |I(t)|+ 1. More-
over, in the first sum of (6) all but one of the termsR(i)(t(i)) have the conditional distribution ofRN given
N′∨N′′ = N, and the remaining term has the conditional distribution ofRN givenN′∨N′′ < N. Since

IE
[
|RN|m

∣∣∣N′∨N′′ = N
]
≤ IE |RN|m

1−πN
,

IE
[
|RN|m

∣∣∣N′∨N′′ < N
]
≤ IE |RN|m

πN
and

1
1−πN

∨ 1
πN

<
1

πN−π2
N

,

finiteness of IE|LN|m follows again by induction onN from

IE |LN|m≤

IE |RN|m, N< n0

2m−1IE (K +2)m

(
1

πN−π2
N

IE |RN|m+ max
0≤k<N

IE |Lk|m
)
, N≥ n0.

The filtrations FN. The filtrationFN = {FN,i , i ≥ 0} is defined byFN,0 = { /0,TN×Ω}, and fori ≥ 1 by

FN,i = σ{|t( j)
` |, |t

( j)
r |,R( j)(t( j));1≤ j ≤ i},

where we defineR( j)(t( j))≡ 0 for |t( j)|=−1. Note that|t( j)
` |, |t

( j)
r | andR( j)(t( j)) are measurable functions

on (TN×Ω,FN×G) for j ≥ 1.
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A martingale with terminal value LN− IE LN. We assume IER2
N <∞ for N≥ 0, thusrN := IE RN, `N :=

IE LN andvN := VarLN are all finite. We want to representLN− `N as the terminal value of some mar-
tingale. This is possible since the random variableLN− `N is absolutely integrable (and has even finite
second moment, due to our assumption onR.) One (and a very easy) way to do this is to take the sequence
of conditional expectations with respect to the elements of a filtration. So let us consider the sequence
(XN,i)i≥0, which is a martingale with respect to the filtrationFN, defined by

XN, j =
j

∑
i=0

λN,i , (7)

where the random variablesλN,i = λN,i(t) (dependencies onω are always suppressed) are given byλN,0 =
`N and fori ≥ 1 by

λN,i = IE [LN|FN,i ]− IE [LN|FN,i−1]

=


0, if |t(i)|=−1

R(i)(t(i))− `|t(i)|, if 0 ≤ |t(i)|< n0

R(i)(t(i))+ `
|t(i)` |

+ `
|t(i)r |
− `|t(i)|, if |t(i)| ≥ n0.

(8)

SinceLN is measurable with respect toσ(
⋃

i≥0 FN,i) and since IEL2
N <∞, we haveXN, j → LN, PN×Q-a.s.

and inL2(TN×Ω,FN×G ,PN×Q), as j → ∞, by P. Ĺevy’s theorem (cf. [35, pp. 111, 134]).
We are now going to derive recurrence relations for expectations and variances ofLN. Fixing i = 1 and

N≥ n0, (8) is simply
λN,1 = RN + `N′ + `N′′ − `N,

whereN′, N′′ are random variables with joint distributionPN(N′ = k′,N′′ = k′′) = pN,k′,k′′ . Of course
IE [λN,1|FN,0] = 0, and this yields the following recurrence for the sequence(`N)N≥0

`N =

{
rN, N< n0

rN + ∑k′,k′′ pN,k′,k′′(`k′ + `k′′), N≥ n0.
(9)

(The conditionπN > 0 for N ≥ n0 ensures that (9) can be uniquely solved for(`N)N≥0.) A similar recur-
rence is obtained for the sequence(vN)N≥0: We define

sN := IE [λ2
N,1|FN,0] =

{
VarRN, N< n0

IE (RN + `N′ + `N′′ − `N)2 , N≥ n0.
(10)

By squaring the equations

LN− `N
D=

{
λN,1, N< n0

λN,1 +LN′ − `N′ + L̄N′′ − `N′′ , N≥ n0

and carefully exploiting independence when computing expectations, we obtain

vN = sN +1I{N≥n0} ∑
k′,k′′

pN,k′,k′′(vk′ +vk′′). (11)
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Sufficient conditions for asymptotic normality of LN−`N√
vN

. AssumingvN > 0 for all sufficiently large

N, we can define a martingale difference array{ξN,i , FN,i}i≥0,N≥0 by

ξN,i :=
λN,i√

vN
. (12)

Now LN−`N√
vN

= ∑∞
i=1 ξN,i , PN×Q-a.s., thus by a basic central limit theorem for martingale difference arrays

(cf. [33, p. 543, Theorem 4])LN−`N√
vN

D→N (0,1) will follow from the “conditional normalizing condition”

∞

∑
i=1

IE [ξ2
N,i |FN,i−1] P→ 1, asN→ ∞, (No)

and the “conditional Lindeberg condition”

∞

∑
i=1

IE [ξ2
N,i1I{|ξN,i |>ε}

∣∣FN,i−1] P→ 0, asN→ ∞, for eachε> 0. (Li)

In order to obtain bounds on the convergence rate in the central limit theorem we might rather want to
verify some stronger Lyapunov type conditions instead. In (No), convergence in probability is implied by
convergence inLa, for somea> 0, and (Li) is implied by convergence to 0 inL1 of ∑∞

i=1 IE [ξ2a
N,i

∣∣FN,i−1],
for somea> 1, (because ofx21I{|x|>ε} ≤ ε2−2a|x|2a,) yielding conditions (Noa) and (Lia). The following
lemma builds upon these observations, i.e. the conditions (No2) and (Lia) will be expressed as asymptotic
relations between three sequences, which all satisfy the same type of linear equation that is also the
defining equation for the sequence(`N)N≥0.

Lemma 1. Let (LN)N≥0 be the sequence of random variables defined by equation(5) in terms of the
sequence of random variables(RN)N≥0, which we assume to satisfyIE |RN|2a < ∞ for N ≥ 0 and some

a> 1. Let moreover vN > 0 for all sufficiently large N. We define sequences(σN)N≥0, (s
(a)
N )N≥0 and

recursively define sequences(wN)N≥0, (v
(a)
N )N≥0 by

σN = 1I{N≥n0} ∑
k′,k′′

pN,k′,k′′ (sN +vk′ +vk′′ −vN)2 , (13)

wN = σN +1I{N≥n0} ∑
k′,k′′

pN,k′,k′′(wk′ +wk′′), (14)

s(a)
N = IE |λN,1|2a, (15)

v(a)
N = s(a)

N +1I{N≥n0} ∑
k′,k′′

pN,k′,k′′(v
(a)
k′ +v(a)

k′′ ). (16)

ThenLN−`N√
vN

D→N (0,1) is implied by

wN = o(v2
N), as N→ ∞, (No2)

v(a)
N = o(va

N), as N→ ∞. (Lia)
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Proof. Our first observation is that

V(t) :=
∞

∑
i=1

IE [λ2
|t|,i |F|t|,i−1] = ∑

i: |t(i)|≥0

s|t(i)| =

{
s|t|, |t|< n0,

s|t|+V(t`)+V(tr), |t| ≥ n0,

is a (deterministic) valuation of the additive type (2), generated bys|t|, with IEVN = VarLN. The second

equality is verified noting that the random variable|t(i)|, defined onTN, generates aσ-algebraσ(|t(i)|)⊆
FN,i−1 and that, definingλ−1,1≡ 0, we havePN×Q-a.s.

IP(λN,i ≤ x|FN,i−1) = IP(λN,i ≤ x| |t(i)|) = IP(λ|t(i)|,1≤ x| |t(i)|) = F|t(i)|(x), (17)

whereFN(x) := IP(λN,1≤ x) for N≥−1. For the third equality we note that the multisetM(t) := {|t(i)| ≥
0 : i ≥ 1} can be decomposed asM(t) = {|t|}∪M(t`)∪M(tr). MoreoverVN is the terminal value of the
predictable quadratic variation process of the martingale(XN,i)i≥0, thus IEVN = VarLN indeed holds, cf.
[33].

Similarly we construct another additive valuationW(t), generated by some deterministic valuation
σ|t|, such thatwN := IEWN = VarVN. The definition (13) of the sequence(σN)N≥0 is obtained by just
mimicking (10), and (14) is the system of equations analogous to (11) that determines the sequence

(wN)N≥0. Now (No2) is just another way of writing IE
(

VN−vN
vN

)2
→ 0, which implies (No). Furthermore

V(a)
N :=

∞

∑
i=1

IE [|λN,i |2a|FN,i−1]

again corresponds to an additive valuationV(a)(t) of type (2), which is generated by the deterministic

valuations(a)
|t| := IE |λ|t|,1|2a. The system of equations (16) thus determines the sequence(v(a)

N )N≥0, where

v(a)
N := IEV(a)

N . Again (Lia) is just another way to write IE
V

(a)
N
va
N
→ 0, which implies (Li).

Remark1. The nice thing about this lemma is that it provides sufficient conditions for asymptotic nor-
mality that are entirely expressed in terms of solutions of a certain system of linear equations that already
showed up in (9) and (11). Putting bold lowercase letters for sequences and denoting byI = (IN,k)N,k≥0

the infinite identity matrix and byP = (PN,k)N,k≥0 the infinite matrix satisfying

PN,k =

{
0, N< n0 or k> N

∑0≤k′≤N(pN,k,k′ + pN,k′,k), else,
(18)

these systems can be written as

(I −P)`̀̀ = r , (I −P)v = s, (I −P)w = σσσ, (I −P)v(a) = s(a). (19)

Often only asymptotic equivalents of the sequencesr , `̀̀, s and v will be needed to obtain asymptotic
equivalents of the sequencesσσσ ands(a). Knowing asymptotic equivalents of the right hand sides in (19)
will often be enough to obtain asymptotics of the corresponding solutions. Master Theorems are around
that deal with such questions, cf. [31].
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The use of (No2) and (Li2) has another advantage: We get bounds on convergence rates for free! By
results of Heyde and Brown [13] and Haeusler [12] there is a constantC2 such that

sup
x∈R

∣∣∣PN

(
LN−`N√

vN
≤ x
)
−Φ(x)

∣∣∣≤C2

(
v(2)

N +wN

v2
N

)1
5
. (20)

Also large deviations results in terms of
v
(2)
N +wN

v2
N

can be obtained, cf. Grama [10].

Of course we could have formulated Lemma 1 using conditions (Nob) and (Lia) for someb> 0 and

a> 1. Now (Nob) would be:w(b)
N = o(vb

N), asN→ ∞, wherew(b)
N is defined in terms of

σ(b)
|t| := IE

[
|V(t)−v|t||b−|V(t`)−v|t`||

b−|V(tr)−v|tr ||
b
]
,

which is a nice expression in the “well known” sequencess andv only whenb = 2. Verifying (Lib) and
the “unpleasant” (Nob) for someb 6= 2, b> 1 would however be rewarded with a version of (20), with

right hand sideCb

(
(v(b)

N +w(b)
N )
/

vb
N

)1/(1+2b)
, cf. [13, 12].

Note that (Lia) imposes additional integrability conditions on the random variablesRN in the sense that

s(a)
N < ∞ (and thusv(a)

N < ∞) for N ≥ 0 only if IE |RN|2a < ∞ for N ≥ 0. On the other hand, concerning
(No2), wN < ∞ as long asvN < ∞ for N≥ 0.

Remark2. Generalizations of this approach to additive valuations onm-ary trees form> 2, and even to
the case where there is no upper bound for the degrees (i.e., no upper bound for the number of primary
subproblems) seem to be straight forward. Extensions to multivariate limiting distributions and asymmet-
ric valuations of the formL(t) = R(t)+1I{|t|≥n0} (aL(t`)+bL(tr)), where the case(a,b) = (1,0) is perhaps
the most interesting, also seem to be within reach. Moreover one can think of allowing a wider class of
probabilistic models by resigning the condition that the distribution of a subtreet∗ of some treet depends
only on its size|t∗| and not on the position of its root in the treet, which would necessitate introducing a
whole family of valuations, indexed by the nodes of the infinite binary tree.

3 Deterministic additive valuations of the trie data structure
We are now going to demonstrate the strength of Lemma 1 by proving asymptotic normality of a large
class of additive valuations of the trie data structure. This class includes some of the most important
characteristics of the trie data structure, such as the number of its nodes, its external path length, or the
number of its external internal nodes, which give clues on the space requirements and the time complexity
of associated update operations. We now give concise descriptions of tries and the probabilistic models
we are going to use.

Binary tries. The trie (cf. [9, 19, 21]) is designed to store data which have keys that are given as se-
quences over a finite alphabetΣ. Here we confine ourselves to the binary trie, i.e. the caseΣ = {0,1}.
Now let a setS= {k(i) ∈ Σ∞ : 1≤ i ≤ N} of keys be given. The trie built from these keys is a binary
tree, whose internal nodes serve as branching nodes. Each leaf (external node) either stores one key or
is empty. If we label in this tree each edge to the left (resp. right) 0 (resp. 1), we obtain an encoding of
the leaves by taking the 0-1-sequence along the path starting from the root. A keyki is stored in the leaf
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encoded byki ’s minimal unique prefix among theN keys inS. Note that the order of the keys is irrelevant
in this construction, and that different setsS, S′ may lead to the same triet. The set of all triest built from
N distinct keys is denotedTN, and|t|= N is said to be the “size” oft. To be in accordance with the notion
of size introduced in Section 2, we let|t| = 0 if t is a single empty leaf, and|t| = −1 if t = /0. Moreover
we letT =

⋃
N≥0TN be the set of all tries. Left and right subtrees of a triet are denotedt`, tr . Of course,

t` then denotes the trie, which is built from the keys with the first bit 0 dropped. It is easily seen that the
setsTN are countably infinite forN ≥ 2. Note that a trie of sizek typically has more thank−1 internal
nodes. The additional internal nodes are caused by one-way branchings, i.e., are those internal nodes with
one child an empty leaf.

The Bernoulli models. We will assume thatt ∈ TN is constructed from an i.i.d. sequence of keys
(k(i))1≤i≤N where each keyk(i) = (k1(i),k2(i), . . .) constitutes an i.i.d. sequence of bits with

IP(k1(1) = 0) = p and IP(k1(1) = 1) = 1− p =: q.

The casep = 1
2 resp.p 6= 1

2 is called symmetric resp. asymmetric Bernoulli model. We deal with the
probability space(TN,FN,FN,PN), whereFN is the set of all subsets ofTN, andPN is defined with the
help of the splitting probabilities

pN,k := IP(|t`|= k
∣∣∣ |t|= N) =

(
N
k

)
pkqN−k,

i.e., given|t|, the random variable|t`| follows the binomial distributionB(|t|, p).
There is exactly one trie of size 0 and one of size 1, thusP|t|(t) = 1 for |t| ≤ 1, and for|t| ≥ 2 we have

P|t|(t) = p|t|,|t`|P|t`|(t`)P|tr |(tr). Obviously

PN(|t`|∨ |tr | ≤ N) = 1 = PN(|t`|∧ |tr |< N) andPN(|t`|∨ |tr |< N) = 1− pN−qN > 0

hold for N ≥ n0, thus all requirements made on a probabilistic model in section 2 are fulfilled by the
Bernoulli models.

The definition of the filtrationFN = {FN,i , i ≥ 0} can now be slightly simplified:

FN,0 = { /0,TN} and

FN,i = σ{|t( j)
` |;1≤ j ≤ i} for i ≥ 1.

Additive valuations of tries. A valuation on the family of triesT is any functionX : T→ R. We shall
concentrate on the particular class of additive valuationsL, which can for somen0≥ 2 be described by

L(t) =


R(t), |t|< n0,

R(t)+L(t`)+L(tr), |t| ≥ n0, t =
o
/\
t` tr

,
(21)

whereR is a deterministic valuation, which is constant on each setTN for N≥ n0 andN ∈ {0,1}, so that
we may definer|t| = R(t) for |t| ≥ n0 and|t| ∈ {0,1}. HoweverR may for 2≤ N < n0 depend ont ∈ TN,
in which case we denoterN := IE [R(t)|t ∈ TN] (later on we will impose integrability conditions onR|TN,
in particular expectations will always be finite).
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For example, the numberL(t) of internal nodes of a triet is a valuation of this form withn0 = 2
andR(t) = 1I{|t|>1}, as well as the number of internal external nodes [8] (n0 = 3, R(t) = 1I{|t|=2}) and the
external path length (n0 = 2, R(t) = 1I{|t|>1}|t|). Counting certain exotic subtrees of a triet is also possible,
e.g. counting subtrees of size 6 with identical subtrees can be achieved with (n0 = 7, R(t) = 1I{|t|=6,t`=tr}).

DemandingR(t) = 0 for |t| ∈ {0,1} would not be a serious restriction, since (n0 = 2, R(t) = 1I{|t|=1})
leads to the sizeL(t) = |t|, which is constant on eachTN, and (n0 = 2, R(t) = 1I{|t|∈{0,1}}) leads toL(t),
which is 1 plus the number of internal nodes oft. Thus for any additive valuationL defined by (21) (with
r0 = d, r1 = c+ d) there is another additive valuationL′ defined by (21) in terms of a valuationR′ (with
r ′0 = r ′1 = 0) and satisfyingL′(t) = L(t)−c|t|−d, cf. also (26).

We now repeat some notation from section 2: Restricting the valuationsR andL to the setsTN, we
obtain sequences of random variables(RN)N≥0 and(LN)N≥0. The sequence of random variables(LN)N≥0

can now be defined by the following system of equalities in distribution:

LN
D=

{
RN, N< n0

RN +LN′ + L̄N−N′ , N≥ n0,
(22)

whereN′ is a random variable with the binomial distributionB(N, p), Lk
D= L̄k for k ≥ 0, moreover

LN′ , L̄N−N′ are independent, conditional onN′, and RN = rN is deterministic forN ≥ n0. Assuming
IE R2

N < ∞ for 2≤ N < n0 ensures that first and second moments ofLN are finite. We recallrN = IE RN

and moreover denotèN := IE LN andvN := VarLN. Equations (22) can be used to obtain recurrence
relations for the first and second moments ofLN:

Denoting sequences by bold face lower case letters, these are

(I −M p−Mq)`̀̀ = r , (I −M p−Mq)v = s, (23)

whereI is the infinite identity matrix, the matrixM p is defined by

(M p)N,k :=

{
0, for N< n0(N

k

)
pk(1− p)N−k, for N≥ n0,

(24)

and the sequences is defined by

sN :=

{
VarRN, N< n0

∑N
k=0 pN,k

(
`k + `N−k−∑N

κ=0 pN,κ(`κ + `N−κ)
)2
, N≥ n0.

(25)

It is easily seen thats is a sequence of nonnegative terms, and it was shown in [32, Theorem 1] thats≡ 0
only if R is of the special form

R(t) =

{
c|t|+d, for |t|< n0,

−d, for |t| ≥ n0,
(26)

for somec, d ∈ R. In this caseL(t) = c|t|+ d and VarLN ≡ 0. Moreover, [32, Theorem 1] tells us that
VarLN = Ω(N), if R is not of the form (26).
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Theorem 1. Let LN be the random variable corresponding to the additive valuation L, defined by(21)on
the spaceTN equipped with the Bernoulli model. Assume that R is not of the form(26). Let N′ be a random
variable with binomial distribution B(N, p). Let moreoverr ′ := (M p + Mq)r , i.e. r′N = IE (rN′ + rN−N′),
andr ′′ := (M p +Mq)2r .
If either of

i) ∆2r ′′N = o
(

1√
N

)
, for p = 1

2,

ii) ∆r ′N = o(1), for ln p
lnq ∈Q,

iii) ∆r ′N = o
(

1√
lnN

)
, for ln p

lnq 6∈Q,

and for some a> 1 both

iv) IE |RN|2a < ∞ for 2≤ N< n0,

v) IE |rN′ + rN−N′ − r ′N|2a = o(Na) as N→ ∞,

are satisfied, then LN− IE LN√
VarLN

D→N (0,1), as N→ ∞. (27)

Corollary 1. If p = 1
2, then∆2rN = o

(
N−

1
2

)
implies conditions i) and v) of Theorem 1.

If ln p
lnq ∈Q, then either of rN = o(

√
N) and∆rN = o(1) implies conditions ii) and v) of Theorem 1.

If ln p
lnq 6∈Q, then either of rN = o

(√
N

lnN

)
and∆rN = o

(
1√
lnN

)
implies conditions iii) and v) of Theo-

rem 1.

Remark3. Taking conditioniv) of Theorem 1 for granted, some sequencesr that lead to (27) are

rN = (−1)NN0.49,

rN = N0.99+(−1)NN−0.01 and

rN = Nα f (Nβ), where f : R→ R is a bounded function with bounded derivative and

α,β> 0 andα + β< 1.

This can be easily checked applying Corollary 1. There are of course sequences that directly call for
Theorem 1, for example “lacunary” sequences such asrN = N0.7491I{

√
N∈N}, which satisfies conditionv)

of Theorem 1 witha = 1.001. A simple observation is the following:
If for n0, p fixed two sequencesr , r̄ satisfy the conditions of Theorem 1, so does any linear combination

ar +br ′, which is not of the form (26).

Remark4. Asymptotic normality of the number of internal nodes in a binary trie under the Bernoulli
model (n0 = 2, rN = 1I{N≥2}) was first proved by Jacquet and Regnier [14, 15], as well as convergence of
moments of any order. Employing contraction properties of suitably chosen probability metrics, Rachev
and R̈uschendorf [26] and Feldman, Rachev and Rüschendorf [4] proved asymptotic normality ofLN

for the sequencerN = 1 under very general probabilistic models, including the Bernoulli models, and
remark that their analysis could, under certain conditions, be extended to sequencesrN = o(

√
N), cf. [26,
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p. 787]. In the case of the Bernoulli models, these conditions boil down to demanding that the sequence
(VarLN)N≥0 is regularly varying of order 1, i.e.

VarLN = NG(N), whereG(tN)/G(N)→ 1 for all t > 0 asN→ ∞.

Moreover there has to bec> 0 such thatc<G< 1
c , i.e.G is bounded away from 0 and∞, cf. [4, p. 172].

Corollary 1 deals with sequencesrN = o(
√

N). Unfortunately, in Theorem 1 and Corollary 1 we had
to make a distinction according to whetherln p

lnq ∈ Q or ln p
lnq 6∈ Q, because this distinction is essential in

Proposition 2, which we use in the proof of Theorem 1. So the question, ifrN = o(
√

N) can be used
in Corollary 1 also in the caseln p

lnq 6∈ Q remains anopen problem, since it also cannot be decided using

the sufficient condition from [26, 4]: One can check that(n0 = 2, rN = (−1)N
√

N
lnN 1I{N≥3}) results in

G(N) = Θ(ln lnN), which is not bounded. On the other hand, we will provide an example (Example 2 in
Section 4) showing thatrN = O(

√
N) (and also∆r ′N = O(1) instead of conditionsii) andiii) of Theorem 1)

does not imply (27).

Proof of Theorem 1.We refer to Lemma 1 and have thus to verify (No2) and (Lia). The sequencesw and
v(a) are defined by the recurrence relations

(I −M p−Mq)w = σσσ, (I −M p−Mq)v(a) = s(a), (28)

with

σN := 1I{N≥n0}

N

∑
k=0

pN,k

(
vk +vN−k−

N

∑
κ=0

pN,κ(vκ +vN−κ)

)2

(29)

and

s(a)
N :=

{
IE |RN− rN|2a, N< n0

∑N
k=0 pN,k

∣∣`k + `N−k−∑N
κ=0 pN,κ(`κ + `N−κ)

∣∣2a
, N≥ n0.

(30)

We now collect some results concerning the solutions of equations of type (23) and (28) in the following
two propositions. One of the proofs will be given in the appendix. The reader interested in obtaining
asymptotic expansions of the sequences`̀̀ andv is referred to [6, 18, 34].

Proposition 1. Let us consider the following recurrence relation with matricesM p defined in(24) and
a,b> 0,0< p≤ q< 1 (not necessarily p+q = 1)

(I −aM p−bMq)y = x, (31)

wherex := (xk)k≥0 is a given sequence of real numbers. Letα denote the unique real zero of f(s) =
1−aps−bqs and assume thatα < n0. We now list some facts concerning the solutiony = (yN)N≥0 of
(31), some facts concerning the effect of transforming a sequencey by M p and computing differences,
some elementary facts about Poisson generating functions and their interplay with the matricesM p, and
a simple tool for depoissonization:

(P1.1) The map that takesx to y is linear. Moreover(I − aM p− bMq)−1
N,k ≥ 0 for N,k ≥ 0, therefore

xk ≥ 0 for k≥ 0 implies yk ≥ 0 for k≥ 0.
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(P1.2) We can representy as
y = x+y′,

wherey′ is the solution of

(I −aM p−bMq)y′ = x′ := (aM p +bMq)x.

Moreover x′0 = . . . = x′n0−1 = 0. (Using this decomposition one can take advantage of the smooth-
ness, thaty′ inherits fromx′, cf. (P1.6)and (P1.7).)

(P1.3) If xk = O(kα−ε) for someε ∈ R, then If xk = o(kα−ε) for someε≤ 0, then

yN =


O (Nα) , if ε> 0,

O(Nα lnN), if ε = 0,

O (Nα−ε) , if ε< 0.

yN =

{
o(Nα lnN), if ε = 0,

o(Nα−ε) , if ε< 0.

(P1.4) If xk ≥ 0 for all k ≥ 0 and xk0 6= 0 for some k0≥ 0, then yN = Ω(Nα).

(P1.5) If xk = kα for k≥ k0 ≥ 1, then yN =
Nα lnN

apα ln 1
p +bqα ln 1

p

+ zN, where zN = O(Nα). If xk = Θ(kα),
then yN = Θ(Nα lnN).

(P1.6) The differences∆y of a sequencey (recall ∆yk = yk+1− yk) and the differences of the sequence
M py are connected via∆M py = pM p∆y+z, where zN = 0 for N≥ n0. Thusx, y from (31)satisfy

(I −apM p−bqMq)∆y = ∆x+z

with some other sequencez still fulfilling zN = 0 for N ≥ n0. If x0 = . . . = xn0−1 = 0, then zN = 0
holds for N≥ 0.

(P1.7) Let a sequencey satisfy yk = O(kβ f (k)) for someβ∈R and slowly varying f (i. e. f(tN)/ f (N)→
1 for all t > 0 and N→ ∞). Let m be a nonnegative integer. Then the sequencez defined by
z = ∆mM py satisfies

zN = O(Nβ−m
2 f (N)).

(P1.8) Let a sequencey satisfy∆yk = o(kβ) for someβ ∈ R and let y(t) := ∑k≥0yk
tk
k! e
−t be the Poisson

generating function ofy. Then

yN = y(N)+o(Nβ+ 1
2 ).

If y0 = . . .= yn0−1 = 0, z = M py and z(t) is the Poisson generating function ofz, then z(t) = y(pt).

Proof. TheO-part of (P1.3), (P1.4) and (P1.5) are proved in [32, Lemma 1], (P1.6) and (P1.7) (without the
slowly varying function) are proved in [32, Lemma 2]. Theo-part of (P1.3) and (P1.7) can be proved by
adapting the proofs of [32]. The assertions made in (P1.8) partly follow from [32, eq. (2.13) and (2.15)].
The remaining assertions are either completely obvious or rely on very simple properties of binomial
coefficients.
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Proposition 2. Let 0< p< q = 1− p, let x be a given sequence andy = (I − pM p−qMq)−1x. Then

∆xN = o
(

1√
N

)
, together with any of the following conditions on the sequencex is sufficient for

ybNpc−ybNqc = o(1) : (32)

i) xN = o(1) and ln p
lnq ∈Q,

ii) xN = o(1) and x′N = o
(

1√
lnN

)
, where the sequencex′ is defined byx′ = (pM p +qMq)x.

These conditions are sharp in the sense that xN = O(1) in case i), resp. x′N = O
(

1√
lnN

)
in case ii), does

not lead to the conclusion(32).

The proof of Theorem 1 will be completed in several steps: In Lemma 2ii) and Lemma 3ii) we will
show that (No2) and (Lia) are implied by certain growth conditions on the sequencess ands(a), namely

sN = o(N) ands(a)
N = o(Na). Lemma 4 then shows thatsN = o(N) ands(a)

N = o(Na) are implied by the
conditions of Theorem 1.

Lemma 2. We denotes′ = (M p +Mq)s. Any of the following conditions is sufficient for(No2):

i) sN = O(N) and s′N = Θ(N),

ii) sN = o(N) and sk0 > 0 for some k0≥ 0.

Proof. Suppose, conditioni) is satisfied. Then, according to (P1.2), we represent the sequencev =
(vN)N≥0 asv = s+v′, wherev′ is the solution of

(I −M p−Mq)v′ = s′.

Using (P1.5), we conclude thatv′N = Θ(N lnN) and therefore

vN = sN +v′N = Θ(N lnN). (33)

By (P1.7) we have∆s′k = O(k
1
2 ), by (P1.2) and (P1.6)∆v′ is the solution of

(I − pM p−qMq)∆v′ = ∆s′.

Therefore, by (P1.3), we have∆v′N = O(
√

N). We use this estimate for a Taylor expansion ofv′k around
k = bNpc,

vk = sk +v′bNpc+ O(
√

N|k−Np|),

which yields

N

∑
k=0

(
N
k

)
pkqN−k(vk +vN−k) = s′N +v′bNpc+v′bNqc+ O(N) and

σN =
N

∑
k=0

(
N
k

)
pkqN−k

[
sk +sN−k−s′N + O(

√
N|k−Np|+N)

]2
= O(N2). (34)
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Asymptotic estimates of the formf (N,k) = O(g(N,k)) will appear frequently in this proof and the proofs
of the two following lemmas and are always to be understood to hold forN→∞, uniformly in 0≤ k≤N.
In (34) and before we used the casesm= 1 andm= 2 of the following well known estimate for the central
moments of the binomial distribution

N

∑
k=0

(
N
k

)
pkqN−k|k−Np|m = O(N

m
2 ). (35)

Knowingσσσ from (34), we can solve the left equation of (28) with the help of (P1.3) and obtain

wN = O(N2).

This, together with (33), proves the first part of the lemma. Suppose now that conditionii) is satisfied.
Using (P1.4), we can deduce

vN = Ω(N). (36)

As before, we introduces′, v′, σσσ, andw and obtains′N = o(N), furthermore, by (P1.7) and (P1.3),

∆s′N = o
(√

N
)
, ∆v′N = o

(√
N
)
.

The Taylor expansion ofvk aroundk = bNpc

vk = sk +v′bNpc+o
(√

N|k−Np|
)

now leads toσN = o
(
N2
)
. We use (P1.3) and arrive at

wN = o
(
N2) .

This, together with (36), completes the proof ofii) .

Lemma 3. Any of the following conditions, together with s(a)
N < ∞ for 0≤ N< n0, is sufficient for(Lia):

i) s(a)
N = O(Na), sN = O(N) and s′N = Θ(N),

ii) s(a)
N = o(Na) and sk0 > 0 for some k0 > 0.

Proof. In casesi) andii) we havevN = Θ(N lnN) (resp.vN = Ω(N)), cf. (33) and (36). Using (P1.3) we

obtainv(a)
N = O(Na) (resp.v(a)

N = o(Na)).

Lemma 4. Let the sequencer satisfy either of the conditions i), ii) or iii) of Theorem 1, as well as for
some a> 1 conditions iv) and v) of Theorem 1.

Then sN = o(N), s(a)
N = o(Na) and s(a)

N < ∞ for 0≤ N< n0.

Proof. First of all, conditioniv) of Theorem 1 impliess(a)
N < ∞ for N≥ 0.

Furthermore we observe that∆r ′N = o(1) implies ∆2r ′′N = o(N−
1
2 ), since by (P1.6) we have∆2r ′′N =

∆(pM p +qMq)∆r ′N for N≥ n0, and can then apply (P1.7).
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We have to go one step beyond the decomposition proposed in (P1.2):

`̀̀ = r + r ′+ `̀̀′′.

The sequencè̀̀′′ defined by this equation solves

(I −M p−Mq)`̀̀′′ = r ′′

and therefore satisfies by (P1.3)∆2`′′N = o(N−
1
2 ). We can thus expand as follows

`k = rk + r ′k + `′′k = rk + r ′bNpc+o(|k−Np|)+ `′′bNpc+ ∆`′′bNpc(k−bNpc)+o(N−
1
2 (k−Np)2),

and denoting

bN,k := `k + `N−k−
N

∑
κ=0

(
N
κ

)
pκqN−κ(`κ + `N−κ), (37)

we obtain

bN,k = rk + rN−k− r ′N +(∆`′′bNpc−∆`′′bNqc)(k−Np)+o
(

N−
1
2 (k−Np)2 +N

1
2

)
We will use(a+ b+ c)m = O(am+ bm+ cm) with a = rk + rN−k− r ′N, b = o

(
N−

1
2 (k−Np)2 +N

1
2

)
and

c = (∆`′′bNpc−∆`′′bNqc)(k−Np), which results in

s(a)
N = ∑

(
N
k

)
pkqN−k|bN,k|2a = o(Na)+ O

(
Na|∆`′′bNpc−∆`′′bNqc|

2a
)
,

Note thatsN = s(1)
N . We are finished ifp = 1

2, since thenc = 0. Otherwise any condition of Proposition 2,
that is satisfied by∆r ′, will also be satisfied by∆r ′′, since both sequences are connected via∆r ′′ =
(pM p+qMq)∆r ′. By Proposition 2 we thus have∆`′′bNpc−∆`′′bNqc = o(1), which completes the proof.

Proof of Corollary 1. Applying (P1.6) and (P1.7) several times, we obtain the following implications:

∆2rN = o
(

1/
√

N
)
⇒ ∆2r ′′N = o

(
1/
√

N
)
,

rN = o(
√

N)or ∆rN = o(1)⇒ ∆r ′N = o(1),

rN = o
(√

N/ lnN
)

or ∆rN = o
(√

1/ lnN
) ⇒ ∆r ′N = o

(√
1/ lnN

)
.

This settles the conditionsi), ii) and iii) . Moreover we obtain in a similar fashion as in the proof of
Lemma 4

rN = o(
√

N)⇒ rk + rN−k− r ′N = o(
√

N),
∆rN = o(1)⇒ rk + rN−k− r ′N = o(|k−Np|), and

∆2rN = o
(

N−
1
2

)
⇒ rk + rN−k− r ′N = o

(
N−

1
2 (k−Np)2 +N

1
2

)
in the casep = 1

2, and obtain conditionv) of Theorem 1 by just applying (35).
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Remark5. It is tempting to ask if versions of Theorem 1 hold true also for classes of binary treesTN

with probability models different from the Bernoulli models for tries. One certainly would have to replace
M p + Mq by P, given in (18), in the definitions ofr ′ and r ′′. We are very much in favor of a positive
answer in the following two cases,

pN,k =
(N−1

k

)
pk(1− p)N−1−k, corresponding to the Bernoulli model fordigital search trees,

pN,k =
(N

k

) pk(1−p)N−k

1−pN−(1−p)N 1I{0<k<N}, corresponding to the Bernoulli model forPatricia tries,

in particular we think that Propositions 1 and 2 should survive with only marginal modifications, but have
not worked this out.

The next theorem complements Theorem 1:

Theorem 2. Let LN be the random variable corresponding to the additive valuation L, defined by(21)on
the spaceTN equipped with the Bernoulli model. Assume that R satisfies for some a> 1 condition iv) of
Theorem 1. Either of

i) p 6= 1
2 and rN = N1I{N≥2},

ii) p = 1
2 and rN = N

3
2 1I{N≥2}

implies
LN− IE LN√

VarLN

D→N (0,1), as N→ ∞.

Proof. In casei) we obtain∆rN = 1I{N≥1}, thus by (P1.5) we have

∆`N =
lnN

pln 1
p +qln 1

q

+ δN, where((I − pM p−qMq)δδδ)N = O(N−1).

Proposition 2 now tells us thatδbNpc−δbNqc = o(1), from which we derive

bN,k =
ln p− lnq

pln 1
p +qln 1

q

(k−Np)+o(|k−Np|), with bN,k defined in (37).

In caseii) we obtain

∆irN ∼
(

3
2

)i
N

3
2−i and ∆i`N ∼

√
2√

2−1

(
3
2

)i
N

3
2−i for integersi ≥ 0,

which results in

bN,k =
3

2(
√

2−1)

[(
k− N

2

)2

− N
4

]
+ O

(
N−

3
2

∣∣∣∣k− N
2

∣∣∣∣3 +1

)
.

Thus in both casesi) andii) we obtainsN = Θ(N) ands(a)
N = Θ(Na), so by Lemma 2i) resp. Lemma 3i)

conditions (No2) resp. (Lia) are satisfied.
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Remark6. There are other sequencesr , such asrN = (−1)N
√

N, that are not covered by Theorem 1,
but satisfy Lemma 2i) and Lemma 3i) and thus lead to (27). Moreover forn0, p fixed, a sequencer
satisfying conditionsi) of Lemmas 2 and 3, and a sequencer̄ satisfying conditionsii) of Lemmas 2 and 3,
any linear combinationar + br̄ with a 6= 0 again satisfies conditionsi) of Lemmas 2 and 3. In particular,

LN is asymptotically normal ifn0 = 2 andrN = N +o
(√

N
lnN

)
.

Remark7. The sequencer given ini) corresponds to the external path length of a binary trie. Asymptotic
normality of LN−IE LN√

VarLN
in the casep= 1

2 already follows from Corollary 1. Jacquet and Regnier [15] proved
asymptotic normality of the external path length in a binary trie under the Bernoulli models. Jacquet and
Szpankowski [16] have proved asymptotic normality of a related valuation, namely the internal path length
of a digital search tree. Considering sequencesrN = Nα1I{N≥2}, the sequencer given in ii) fills the gap
corresponding toα = 3

2 between Corollary 1 and Example 1 presented in the next section. This will show
that for p = 1

2 and the above scale of sequences, conditions (No2) and (Li2) are strong enough to separate
the good from the evil.

Theorem 3. Let LN be the random variable corresponding to the additive valuation L, defined via(21) in
terms of R(t) = |t|α1I{|t|≥2} on the spaceTN equipped with the Bernoulli model. Then

LN− IE LN√
VarLN

D→N (0,1), as N→ ∞.

holds for anyα, if p 6= 1
2, and only forα≤ 3

2, if p = 1
2.

Proof. The claim follows from Corollary 1, Theorem 2 and Examples 1 and 3 in Section 4.

4 Counterexamples
As we have not given any necessary conditions for asymptotic normality in terms of the sequencer , it
is particularly interesting if the sufficient conditions given in Theorem 1 are sharp in some sense. Now

Examples 1 and 2 deal with sequencesr satisfying∆2r ′′N = O
(

N−
1
2+ε
)

, resp.∆2r ′′N = O
(

N−
1
2

)
, for which

there is no asymptotic normality, thus demonstrating that the most obvious weakening of conditioni) of
Theorem 1 is no longer sufficient for asymptotic normality. As all the sufficient conditions of Theorem 1
have been derived with the help of Lemma 1, this also shows that there is in some sense not much room left
for sequencesr implying asymptotic normality, but not being recognized by Lemma 1, though perhaps by
direct verification of the Lindeberg conditions (No) and (Li). Example 1, dealing with sequencesrN = Nα

in the casep = 1
2, α > 3

2, moreover constitutes one step of the proof of Theorem 3. In Example 3 we
appeal to a “nonclassical” central limit theorem for martingale difference arrays to establish asymptotic
normality in the case of the sequencerN = Nα, whenp 6= 1

2, α> 1, which is the final step in the proof of
Theorem 3. Although Lemma 1 can not be applied in this case, there is again a formulation of sufficient
conditions for asymptotic normality that is very much in the spirit of Lemma 1, i.e. yet another sequence
appears that satisfies the type of equation also satisfied by`̀̀.
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Example 1. The following example shows that we cannot replace conditioni) in Theorem 1 byp = 1
2

and∆2r ′′N = O
(

N−
1
2+ε
)

for someε > 0. We fixn0 = 2 andα > 3
2 and start with the following sequence

of expectations
`N = Nα1I{N≥2},

from which we can readily compute the corresponding sequence(rk)k≥0, just using (23),

rN = (1−21−α)Nα−2

(
α
2

)
2−αNα−1 + O

(
Nα−2) ,

which defines via (22) an additive valuationL satisfying IELN = `N. Obviously we have∆2r ′′N = O(Nα−2),
which is a condition weaker than conditioni) in Theorem 1, and, as we will see, to weak to imply asymp-
totic normality of LN−`N√

vN
. Since all the r.v.sRN are deterministic in our case, the r.v.LN has moments of

all orders. WithbN,k defined in (37), we find

bN,k =
(

α
2

)
2−α [8(k− N

2 )2Nα−2−2Nα−1]+ O
(
Nα−2 +Nα−4(k− N

2 )4) ,
moreover

sN =
N

∑
k=0

(
N
k

)
2−Nb2

N,k = 8

(
α
2

)2

2−2αN2α−2 + O
(
N2α−3) , ∆sN = O

(
N2α−3) ,

which yields

vN =
23−2α

1−23−2α

(
α
2

)2

N2α−2 + O
(
N lnN +N2α−3) , ∆vN = O

(
N2α−3) .

The easiest way to obtain a recurrence relation for the sequencedN := IE (LN− `N)3 of third moments is
to rewrite (22) as

LN− `N
D= LN′ − `N′ + L̄N−N′ − `N−N′ +bN,N′ ,

noting thatN′ follows a binomial distributionB(N, 1
2), Lk

D= L̄k for k≥ 0, andLN′−`N′ andL̄N−N′−`N−N′

are independent, givenN′. Computing expectations of third powers now yields

dN = 2
N

∑
k=0

(
N
k

)
2−Ndk + γN + δN,

where

γN := 6
N

∑
k=0

(
N
k

)
2−NbN,kvk = 3

N

∑
k=0

(
N
k

)
2−NbN,k(vk +vN−k +sN−vN) = O(N3α− 7

2 ),

and

δN :=
N

∑
k=0

(
N
k

)
2−Nb3

N,k = 64

(
α
2

)3

2−3αN3α−3 + O
(
N3α−4) .
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We derive

dN =
26−3α

1−24−3α

(
α
2

)3

N3α−3 + O
(

N3α− 7
2

)
.

Therefore

IE

(
LN− `N√

vN

)3

= cα + O
(

N3−2α lnN +N−
1
2

)
, where cα = 2

√
2

(1−23−2α)
3
2

(1−24−3α)
> 0.

Moreover, denotingYN :=
(

LN−`N√
vN

)3
, we can similarly show that(IE |YN|

4
3 )N≥1 is a bounded sequence.

The sequence(YN)N≥1 is therefore uniformly integrable. So any random variableY, to which (YN)N≥1

could converge in distribution, must satisfy IEY = cα 6= 0 and can therefore not be the third power of a
normally distributed random variable.

Remark8. If we start withrN = (1−21−α)Nα, the leading terms insN, vN, dN, γN andδN do not change,
so that we don’t have asymptotic normality also in this case.

Example 2. The following example shows that ifp = 1
2, none of

rN = O
(

N
1
2

)
, ∆r ′N = O (1) and ∆2r ′′N = O

(
N−

1
2

)
(38)

is sufficient for (27). (See also the subsequent remark on how to extend the construction to casesp 6= 1
2.)

Here we will stick to the notation of the previous example. We fixn0 = 2 and start again with a sequence
of expectations

`N = 1I{N≥2}∑
i≥1

f (mi)(N),

where f (m)(N) :=
√

me−
(N−m)2

m , and(mi)i≥1 is a sequence satisfyingm1 ≥ 3 andmi+1 ≥ m2
i for i ≥ 1,

such that the intervals[(mi−m0.6
i )2k,(mi +m0.6

i )2k]i≥1,k∈Z are disjoint. The conditions on(mi)i≥1 (which
are not the weakest in this respect,) will imply

vN = O(N). (39)

On the other hand we will show that
limsup

N→∞
|dN|N−

3
2 > 0. (40)

With the help of the intervalsAm := [m−m0.6,m+m0.6], whereAm⊂ [n0,∞[ for m≥ 3, we can represent
`̀̀ more conveniently as follows

`N = ∑
i≥1

1IAmi
(N) f (mi)(N)+e−Ω(N0.2),

from which it is easy to deduce∆n`N = O
(

N
1−n

2

)
and, using (23),∆nrN = O

(
N

1−n
2

)
. Thus the sequence

r indeed satisfiesrN = O
(

N
1
2

)
, ∆r ′N = O (1) and∆2r ′′N = O

(
N−

1
2

)
. For the computation ofsN andδN we
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require asymptotics of second and third central moments off (mi)(k) + f (mi)(N− k), wherek∼ B(N, 1
2).

The main tool here is the estimate

∑
k∈Am

(
N
k

)
2−Ne−

(k−m)2
M =


√

2M
N+2M e−

(N−2m)2
2N+4M + O

(
1√
m

)
, for N ∈ A2m,

e−Ω(m0.2), for N 6∈ A2m,

valid for M = Θ(m) andm→ ∞, which is obtained by standard asymptotic techniques. We derive

sN = ∑
i≥1

1IA2mi
(N)g(mi)(N)+ O(

√
N),

where

g(m)(N) =
2m√

3

(
exp

(
− (N−2m)2

6m

)
+exp

(
− (N−2m)2

2m

)
−
√

3exp

(
− (N−2m)2

4m

))
and

∆sN = O

(
1+ ∑

i≥1
1IA2mi

(N)
√

mie
− (N−2mi )

2

6mi

)
.

Note that the sequences satisfiess0 = . . .= sn0−1 = 0, therefore the equations

(I −2M 1
2
)v = s and

(I −M 1
2
)∆v = ∆s (the latter is derived from the former using (P1.6))

have the solutions
v = s+ ∑

n≥1
2nM2−ns, ∆v = ∆s+ ∑

n≥1
M2−n∆s,

which is easily verified, just noting that(MaMb)N,k = (Mab)N,k for k≥ n0. We can thus deduce

∆vN = O (
√

mi + lnN) for N≤mi+1 +m0.6
i+1,

andmi+1≥m2
i implies in particular

∆vN = O
(

N
1
4

)
, for N ∈

⋃
i≥1

Ami . (41)

Moreover we have

vN = sN + ∑
n≥1

∑
i≥1

∑
k∈A2mi

2n
(

N
k

)
2−nk(1−2−n)N−kg(mi)(k)+ O(N),

where the termO(N) comes from the termO(
√

N) present insN, cf. (P1.3). Observing thatg(mi)(k) ≤
Ck(k−1) for someC> 0, we conclude that the sum of the terms withN2−n < 4 will contribute another
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O(N). The sum of the remaining terms, which also contributesO(N), is the most demanding and requires
the following estimates, some of them are simply Chernoff bounds. Note that

g(m)(k) = O
(

mexp

(
− (k−2m)2

6m

))
.

∑
k∈A2m

(
N
k

)
pk(1− p)N−ke−

(k−2m)2
6m =


O(1), for Np∈ A2m,

e−Ω(m0.2), for Np∈ [m
2 ,4m]\A2m,

O
((

Np
m

)m
em−Np

)
, for Np∈ [4, m

2 [ ,

O
(

e−
Np
8

)
, for Np∈ ]4m,N].

Note that by our assumption on(mi)i≥1 there is for eachN at most one pair(n, i) such thatN2−n ∈ A2mi .
Leaving aside the details we finally derive (39) and can now turn to third momentsdN. We employ (41)

and obtainγN = O
(

N
5
4

)
. Moreover

δN = ∑
i≥1

1IA2mi
(N)h(mi)(N)+ O(N),

where, denotingk = N−2m,

h(m)(N) = m
3
2

(
e−

3k2
16m +3e−

11k2
16m −2

√
6e−

7k2
24m −2

√
6e−

5k2
8m +4

√
2e−

3k2
8m

)
.

Finally, for N ∈ A2mi we obtain

dN = δN + O
(

mi

mi−1
δ2mi−1 +N

5
4

)
= h(mi)(N)+ O(N

5
4 ).

Thus
limsup

N→∞
|dN|N−

3
2 ≥ lim

i→∞
|d2mi |(2mi)−

3
2 = 8(2

√
3−2−

√
2) = 0.3991> 0.

But, by the same reasoning as in the previous example, asymptotic normality ofLN−`N√
vN

would require

limN→∞ |dN|N−
3
2 = 0.

Remark9. A similar construction, building upon modified sequences(mi)i≥1, is possible for anyp∈ ]0,1[.
We will stress the part of establishing (39), but skip the proof of (40), which can be easily adapted from
the casep = 1

2.

If ln p
lnq ∈Q, we havep = rm, q = rn for some 0< r < 1 and relatively primem,n∈ N. Hence

v = ∑
k,`≥0

(
k+ `

k

)
M rmk+n` s,

and

∑
mk+n`=N

(
k+ `

k

)
=
[
tN] 1

1− tm− tn ∼
r−N

mrm+nrn ,
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since(1− tm− tn)−1 has its dominant singularity att = r. We concludev = s+ O
(
∑k≥1 r−kM rks

)
, and

(39) will be satisfied if we demand that the intervals[(mi−m0.6
i )rk,(mi +m0.6

i )rk]i≥1,k∈Z are disjoint.
In the caseln p

lnq 6∈Q, fast enough growth of(mi)i≥1 is enough to guarantee (39), i.e. we do not need any
sort of “disjoint intervals” condition. Proceeding as in Example 2, we obtain

sN = ∑
k≥1

1IA2nk
(N)ḡ(nk)(N)+ O(

√
N),

where the sequence(nk)k≥1 is defined by

n2i−1 = bmi

2p
c, n2i = bmi

2q
c

and ḡ(n)(N) is a function similar tog(n)(N), with several ripples of heightO(n) and widthO(
√

n) near
N = 2n, which obeys

|1IA2n(N)ḡ(n)(N)| ≤Cn
3
2

(
N
n

)
2−N =: y(n)

N for n≥ 3 and someC> 0.

The contribution of ¯g(n) to v can now be estimated by∑k,`≥0
(k+`

k

)
M pkq`y

(n). We have

(May(n))N = Cn
3
2

(
N
n

)(a
2

)n(
1− a

2

)N−n
≤C′n

(
Na
n

)2

e−Na/n for some C’¿0

and will now apply Mellin transform techniques (cf. [5]) to derive asymptotics of the two sums

Sn,N := Cn
3
2

(
N
n

)
∑

k,`≥0

(
k+ `

k

)(
pkq`

2

)n(
1− pkq`

2

)N−n

and

S′n,N := C′n ∑
k,`≥0

(
k+ `

k

)(
Npkq`

n

)2

e−
Npkq`

n .

We obtain

S′1,N =
1

2πi

∫ −3/2+i∞

−3/2−i∞

C′Γ(s+2)N−s

1− p−s−q−s ds,

from which we deriveS′1,N = O(N), asN→ ∞, andS′1,N = O(N2), asN→ 0. Thus there is a constant
C′′ > 0, such thatS′1,N ≤C′′N for 0≤ N< ∞, and we can moreover conclude

Sn,N ≤ S′n,N = nS′1,N/n≤ nC′′N/n = C′′N.

Furthermore

Sn,N =
1

2πi

∫ −2+i∞

−2−i∞

Cn
3
2 2s

1− p−s−q−s

1
n

N

∏
k=n

(
1+

s
k

)−1
ds=

C

2(pln 1
p +qln 1

q)

√
nN

n−1
+o(N),

for n≥ 3 asN→ ∞, where the function implied by the symbolo depends onn. Thus there areC′′′ > 0
andφ(n) > 2n such thatSn,N ≤C′′′ N√

n for N ≥ φ(n). These results are obtained by shifting the line of
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integration to the right (resp. left) and collecting residues at the simple poles=−1 (resp.s=−2) of the
integrands and the other poles of 1

1−p−s−q−s , which are all simple, have real part strictly greater than−1,
and form a uniformly discrete set (cf. [3, Lemma 8]) contained in a vertical strip. The new contour of
integration can be chosen as a rectifiable curve, which is contained in the set 0< ℜs< 1, and on which

1
1−p−s−q−s is bounded. Denotings= σ + it , it is easily seen, thatKn,N(s) := 1

n ∏N
k=n

(
1+ s

k

)−1
satisfies

|Kn,N(s)| ≤CnN−σ 1
n2 + t2 for N≥ n+1, with someCn > 0,

uniformely inσ ∈ [−1,1] andt ∈ R.

It is well known that
|Γ(σ + it )| ∼

√
2π|t|σ−

1
2 e−π|t|/2, as|t| → ∞.

Thus both the sums of residues and the new contour integrals are absolutely convergent.
We have thus derived 0≤ Sn,N ≤C′′N1I{n≤N<φ(n)}+C′′′ N√

n1I{N≥φ(n)} and can conclude

vN ≤ ∑
k≥1

Snk,N = O(N),

if the sequence(mi)i≥1 is chosen such thatm1≥ 6 (which guaranteesn1,n2≥ 3) and

n2i+1∧n2i+2≥ φ(n2i−1)∨φ(n2i)

Note that the property limn→∞ limsupN→∞
Sn,N
N = 0, which we have derived forln p

lnq 6∈ Q, does not hold if
ln p
lnq ∈Q.

Example 3. Here we are going to demonstrate that in some cases where Lemma 1 can not be applied
since (Li) is not satisfied, a “nonclassical” version of the central limit theorem for martingale difference
arrays can be used to establish asymptotic normality. Still in the setting of Theorem 1, we fixn0 = 2,

0< p< 1
2, α > 1 andrN = (1− pα−qα)Nα, and will proveLN−`N√

vN

D→ N (0,1), asN→ ∞. We readily
obtain

`N = Nα + O
(
N lnN +Nα−1) ,

and from according estimates of differences ofr we deduce form≥ 1:

∆m`N = αmNα−m+ O
(
N1−m lnN +Nα−1−m) . (42)

Herexn = x(x−1) · · ·(x−n+1) denotes falling factorial powers. We can obtain an approximation for`k
aroundk = pN (and a similar one aroundk = qN) valid for 0≤ k≤N, by taking some terms of its Newton
series plus an estimate for the remainder term

`k =
2

∑
i=0

∆i`bpNc
(k−bpNc)i

i!
+ O

(
Nα−3|k− pN|3

)
.

Writing the terms(k−bpNc)i as polynomials in(k−Np), we obtain forbN,k, as defined in (37), the
following representation

bN,k =
(
∆`bpNc−∆`bqNc

)
(k−Np)+cN

(
(k−Np)2−Npq

)
+ O

(
Nα−3(|k− pN|3 +N

3
2 )
)
,
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wherecN does not depend onk and satisfiescN = O(Nα−2). We thus derive

sN =
(
∆`bpNc−∆`bqNc

)2
pqN+ O(N2α−2). (43)

From (42) and (43) we deduce

sN = α2(pα−1−qα−1)2pqN2α−1 + O
(
N2α−2 +Nα lnN

)
and ∆sN = O(N2α−2),

moreover

vN =
α2(pα−1−qα−1)2pq
1− p2α−1−q2α−1 N2α−1 + O

(
N2α−2 +Nα lnN

)
,

∆vN =O(N2α−2), and

wN =O(N4α−3).

We have thus derivedwN = o(v2
N), which is condition (No2) from Lemma 1, which was seen to imply

(No). On the other hand (Li) is not satisfied since the first term of the series in (Li), IE[ξ2
N,11I{|ξN,1|>ε}]

does not converge to 0 for small enoughε> 0: This follows from IE[ξ2
N,1] = sN

vN
→ 1− p2α−1−q2α−1> 0,

asN→ ∞.
However there is a “nonclassical” central limit theorem for martingale difference arrays (cf. [33, p. 553])

which provides another pair of sufficient conditions for asymptotic normality ofLN−`N√
vN

= ∑∞
i=1 ξN,i . One

of these conditions is (No) which has already been checked. The other one, which we call (Λ), is stated
in terms of regular distribution functionsFN,i(x) := IP (ξN,i ≤ x|FN,i−1):

∞

∑
i=1

∫
|x|>ε
|x|
∣∣∣FN,i(x)−Φ

(
x
/√

IE [ξ2
N,i |FN,i−1]

)∣∣∣dx
P→ 0, asN→ ∞, for eachε> 0, (Λ)

whereΦ is the standard normal distribution function, andFN,i(x)−Φ
(

x
/√

IE [ξ2
N,i |FN,i−1]

)
has to be

understood as identically 0 on the set{IE [ξ2
N,i |FN,i−1] = 0} ∈ FN,i−1. As in Lemma 1, we want to get rid

of ε at the cost of obtaining a stronger condition. Using|x|1I{|x|>ε} ≤ ε−
1
2 |x| 32 and (17), and substituting

ξ = x
√ vN

s|t(i)|
, we find the following condition, which implies (Λ):

∑
i:s|t(i)|>0

(s|t(i)|
vN

) 5
4
∫
R

|ξ|
3
2

∣∣∣∣∣IP
(

λ|t(i)|,1√
s|t(i)|

≤ ξ
∣∣∣∣|t(i)|

)
−Φ(ξ)

∣∣∣∣∣dξ P→ 0, asN→ ∞.

Denoting byk a random variable with the binomial distributionB(N, p), we are going to show

IP

(
λN,1√

sN
≤ x

)
= IP

(
k−Np√

Npq
≤ x

)
+ O

(
1√

N(1+ |x|3)

)
. (44)

Moreover by nonuniform Berry-Esseen type inequalities (cf. [33, p. 376]) we also have∣∣∣∣IP (k−Np√
Npq

≤ x

)
−Φ(x)

∣∣∣∣= O
(

1√
N(1+ |x|3)

)
,
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and conclude ∫
R

|x|
3
2

∣∣∣∣IP ( λN,1√
sN
≤ x

)
−Φ(x)

∣∣∣∣dx= O
(

1√
N

)
.

Since 1√
N

= O
(

s
− 1

2
1

2α−1
N

)
we find, enlarging the range of summation, yet another condition that implies

(Λ):

vN
− 5

4 ∑
i:|t(i)|≥0

s
5
4−

1
2

1
2α−1

|t(i)|
→ 0, in L1, asN→ ∞. (Λ′)

Exactly as in the proof of Lemma 1 we deduce thaty|t| := IE ∑i:|t(i)|≥0sa
|t(i)|

satisfies the recurrence

(I −M p−Mq)y = sa, where we denoteda :=
5
4
− 1

2
1

2α−1
and sa := (sa

N)N≥0.

From (P1.3) we can now deduceyN = O(sa
N + N lnN), thusyN = o(vN

5
4 ), which proves (Λ′), thus (Λ) is

satisfied andLN−`N√
vN

is indeed asymptotically normal.

It remains to prove (44). Note that withk∼ B(N, p) andYN = YN(k) = k−Np√
Npq we have

λN,1√
sN

D= ZN = ZN(k) :=
bN,k√

sN
= φN(YN),

whereφN(y) = y+O
(

1+y2
√

N

)
. The random variableZN(k) is strictly decreasing ink for 0≤ k≤ bN

2 c, thus

φN : [YN(bN
2 c),YN(0)] 7→ [ZN(bN

2 c),ZN(0)] is invertible, with

φ−1
N (x) = x+ O

(
1+x2
√

N

)
, (45)

moreover there isc> 0 such that
|φ−1

N (x)| ≥ c|x|+ O
(

1√
N

)
. (46)

Note that each ofYN(0), ZN(0),−YN(bN
2 c) and−ZN(bN

2 c) is of orderΘ(
√

N). Thus, for someC> 0, we
have

IP(ZN ≤ x) = IP(YN ≤ x) for |x|>C
√

N.

Moreover we obtain

IP(ZN ≤ x) = 1 and IP(YN ≤ x)≥ IP(YN ≤ ZN(0)) = 1−e−Ω(N) for ZN(0)≤x≤C
√

N,

IP(ZN ≤ x) = 0 and IP(YN ≤ x)≤ IP(YN ≤ ZN(bN
2
c)) = e−Ω(N) for −C

√
N≤x≤ ZN(bN

2
c).

For the remaining valuesZN(bN
2 c)< x< ZN(0) we have

IP(ZN ≤ x) = IP(ZN ≤ x,k< bN
2 c)+ IP(ZN ≤ x,k≥ bN

2 c),
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where we estimate the second term IP(ZN ≤ x,k≥ bN
2 c) ≤ IP(k≥ bN

2 c) = e−Ω(N) and rewrite the first
term

IP(ZN ≤ x,k< bN
2 c) = IP(YN ≤ φ−1

N (x),k< bN
2 c)

= IP(YN ≤ x,k< bN
2 c)± IP(YN ∈ Ax,k< bN

2 c)
= IP(YN ≤ x)− IP(YN ≤ x,k≥ bN

2 c)± IP(YN ∈ Ax,k< bN
2 c).

The setAx is defined byAx =
]
x∧φ−1

N (x) , x∨φ−1
N (x)

]
and we have to take the sign+ if x≤ φ−1

N (x) and
the sign− otherwise. We further estimate

IP(YN ≤ x,k≥ N
2

) = e−Ω(N),

IP(YN ∈ Ax,k<
N
2

) = IP(YN ∈ Ax)−e−Ω(N) and

IP(YN ∈ Ax) = O
(

1+x2
√

N
e−c2x2/2

)
,

by (45), (46) and the local limit theorem for the Bernoulli scheme, cf. [33, p. 56]. Sincex2 = O(N) is

valid for the above error estimates, these can all be relaxed to the formO
(

1√
N(1+|x|3)

)
present in (44).

Remark10. This method of proving asymptotic normality ofLN−`N√
vN

by verifying conditions (No) and (Λ)

also works for other sufficiently smooth sequencesr of polynomial growth, satisfying∆2rN = Ω
(
N−1+ε)

for someε > 0. Exponentially growing sequencesr however again constitute examples leading to non
normal limiting distributions. Take 0< p< 1

2 andrN = 2N. Then`N ∼ 2N andvN ∼ (1+3q)N, moreover
LN−`N√

vN

D→ 0. A closer look reveals that all the limit laws that we can obtain forLN−bN
aN

by choosing

appropriate normalizing sequences(aN)N≥0,(bN)N≥0 are degenerate.

5 Conclusion
In this paper we proposed the use of martingale difference arrays as a method to detect asymptotic normal-
ity of the costs of certain recursive algorithms. The main tool, Lemma 1, restates well known sufficient
conditions for asymptotic normality (of Lyapunov type) in terms of asymptotic relations between three
sequences. Asymptotics of those sequences can usually be obtained by the same toolkit that is used to
derive asymptotics of expected costs. The method is likely to be applicable in cases where one expects
asymptotically normal costs and where an analysis of expected costs has already been performed. We
have applied the method to additive valuations defined on binary tries equipped with the Bernoulli mod-
els. There an interesting problem surfaced.

Open problem Let a sequence of random variables(LN)N≥0 satisfyL0 = L1 = 0, and forN≥ 2

LN
D= Lk + L̄N−k + rN,

wherek∼ B(N, p), Lk
D= L̄k for k≥ 0, andLk, L̄N−k are independent, conditional onk, and(rN)N≥2 is a

sequence of real numbers.



392 Werner Schachinger

Is it true thatLN−IE LN√
VarLN

D→N (0,1) holds, if rN = o
(√

N
)

and ln p
ln(1−p) 6∈Q?

From Corollary 1 and Example 2 we know thatLN−IE LN√
VarLN

D→N (0,1) is implied by both sets of conditions

{rN = o
(√

N
)
, ln p

ln(1−p) ∈Q} and{rN = o
(√

N
lnN

)
, ln p

ln(1−p) 6∈Q}, but not byrN = O
(√

N
)
.

For future work we plan to give further applications of the proposed method, which call for generalizations
such as those indicated in Remark 2.

6 Appendix
Proof of Proposition 2.According to (P1.2) we havey = x + (I − pM p−qMq)−1x′. ObviouslyxbNpc−
xbNqc = o(1), so we are left with showing (32) for sequencesx satisfyingx0 = . . . = xn0−1 = 0. (Any of
conditionsi) or ii) , that is satisfied byx, is also satisfied byx′.)

Introducing the Poisson generating functionx(t) = ∑k≥0xk
tk
k! e
−t , which is an entire function, and simi-

larly y(t), which satisfies (and is actually the unique entire solutions of, cf. [3, Lemma 2]) the functional
equation

y(t)− py(pt)−qy(qt) = x(t), (47)

we have to prove
y(pt)−y(qt) = o(1) ast→ ∞. (48)

The proof is then completed by depoissonizing this equation with the help of (P1.8). Just note that by the

assumption∆xN = o
(

1√
N

)
we have the chain of implications

(I − pM p−qMq)y = x
(P1.6)
=⇒ (I − p2M p−q2Mq)∆y = ∆x

(P1.3)
=⇒ ∆yN = o

(
1√
N

)
.

It thus remains to prove (48). Note thatx(t) = O(t2) ast → 0. The unique entire solution of (47) is thus
given by the absolutely convergent seriesy(t) = ∑k,`≥0

(k+`
k

)
pkq` x(pkq`t). We derive

y(pt)−y(qt) = ∑
k+`≥1

νk,` x(pkq`t), (49)

whereνk,` =
(k+`−1

`

)
pk−1q`−

(k+`−1
k

)
pkq`−1 =

(k+`
k

)
pkq` qk−p`

pq(k+`) , and distinguish two cases:

i) xN = o(1) and ln p
lnq ∈Q:

For some 0< r < 1 and relatively primem,n∈Nwe havep= rm, q= rn. The rational function tm−tn
1−rmtm−rntn

hasm−1 poles, and all these poles have absolute value strictly greater than 1, which leads for someC> 0
andd> 1 to the following estimate∣∣∣∣∣ ∑

mk+n`=N

νk,`

∣∣∣∣∣=
∣∣∣∣[tN] tm− tn

1− rmtm− rntn

∣∣∣∣≤Cd−N.
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Sincex(t) = o(1) ast → ∞ we can forε > 0 find Nε ∈ N andtε > 0 such thatd−Nε ≤ ε and|x(rNεt)| ≤ ε
for t ≥ tε. We obtain

|y(pt)−y(qt)| ≤ ∑
N≥1

Cd−N|x(rNt)| ≤C
1+supt≥0 |x(t)|)

d−1
ε

for t ≥ tε, which completes the proof of the first case. The following example shows thatxN = O(1)
does not imply (32): For the sequencex = (I − pM p−qMq)y, whereyN = lnN1I{N≥2}, we obtainxN =
pln 1

p + qln 1
q + O

(
N−1

)
andybNpc−ybNqc = ln p− lnq+ O

(
N−1

)
, thus in hypothesisi), xN = o(1) can

not be weakened.

ii) xN = o
(

1√
lnN

)
and ln p

lnq 6∈Q:

Note that now we havepkq` = pk1q`1 only if (k, `) = (k1, `1). Speaking in terms of harmonic sums (cf.
[5]), in the previous case several terms in (49) contributed to the same frequency, and there have been
heavy cancellations in the corresponding amplitudes. Such cancellations do not occur in the present case.
Fors> 0 we defineIs := {(k, `)∈N2 : k+`≥ 1, ps< pkq` ≤ s}. If moreovers≤ 1, there existsns∈N (in

general not unique) such that(bpnsc,dqnse) ∈ Is. The asymptoticsns∼ ln(1/s)
pln(1/p)+qln(1/q) holds, ass→ 0.

We now definek′ := k−bpnsc and`′ := `−dqnse, and obtain by applying Stirling’s formula(
k+ `

k

)
pkq` =

(
ns

bpnsc

)
pbpnscqdqnseexp

(
− (qk′− p`′)2

2pqns

)(
1+ O

(
|k′|+ |`′|

ns
+
|k′|3 + |`′|3

n2
s

))
,

for (k, `) ∈ Is, where{pns}= pns−bpnsc denotes the fractional part ofpns. Stirling’s formula also tells

us
( ns
bpnsc

)
pbpnscqdqnse = O

(
n
− 1

2
s

)
. We have qk−p`

pq(k+`) = qk′−p`′−{pnt}
pq(ns+k′+`′) , moreover it is quite an elementary

task to show

∑
(k,`)∈Is

exp

(
− (qk′− p`′)2

2pqns

)
|qk′− p`′−{pns}|

pq(ns+k′+ `′)
= Θ(1),

for we can compare the sum with an integral, andns+k′+ `′ = k+ `≥ ln1/p(1/s)>Cns for someC> 0,
when(k, `) ∈ Is. Thus we have

∑
(k,`)∈Is

|νk,`|= Θ
(

1√
ln 1

s

)
. (50)

There is a functionφ : R+→ R+, satisfyingφ(t) = O(t), ast→ 0, andφ(t) = o
(

1√
ln t

)
, ast→ ∞, and

moreover suppt≤s≤p−1t
φ(s)
φ(t) =: C′ < ∞, uniformly in t > 0, such that|x(pkq`t)| ≤ φ(pkq`t). We can, for

t > 1 andτ := bln1/p tc, proceed as follows:

|y(pt)−y(qt)| ≤ ∑
k+`≥1

|νk,`||x(pkq`t)| ≤C′ ∑
m≥0

∑
(k,`)∈Ipm

|νk,`||φ(pmt)|= O

(
∑

m≥0

φ(pmt)√
m+1

)

= o

(
τ

∑
m=0

1√
m+1

1√
τ +1−m

)
+ O

(
∑

m≥0

pm
√

τ +1+m

)
= o(1),

(51)
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since the finite sum tends to
∫ 1

0
dx√

x(1−x)
= π ast→ ∞. This completes the proof of the second case.

We still have to give an example demonstrating that the conditionxN = O
(

1√
lnN

)
does not imply (32)

in the caseln p
lnq 6∈ Q. The construction we will give works forln p

lnq which can not be approximated very

well by rational numbers. It suffices to assume thatα := lnq
ln p is an irrational algebraic number, in which

case by Liouville’s theorem there isc> 0 andµ≥ 2 such that∣∣∣α− m
n

∣∣∣> c
nµ (52)

holds for positive integersm,n. For increasing sequences of positive numbers(Ti)i≥1 and(Ui)i≥1 to be

suitably chosen, but related viaUi = T2/3
i , we define

x = ∑
i≥0

x(i), with x(i) = ∑
(k,`)∈Ji

εk,`x[mi,k,`],

whereJi = {(k, `) : k, `≥ 0, Ti pkq` >Ui}, εk,` = sign(νk,`), mi,k,` = bTi pkq`c and

x[m]
k =

√
m

lnm

(
k
m

)
2−k.

Note thatx[m]
k attains its largest value

√ m
lnm

(2m
m

)
2−2m∼ 1√

π lnm
atk∈{2m−1,2m} and is very small fork 6∈

Am :=
[
2m−m0.6,2m+m0.6

]
, due to the estimatex[m]

k = e
−Ω
(

(k−2m)2
m ∧ |k−2m|√

m

)
. Thusx[m]

k = O
(

1√
lnk

)
, and

similarly ∆x[m]
k = O

(
1√

k lnk

)
. The Poisson generating functionx[m](t) = e−t ∑k≥0

tk
k! x

[m]
k =

√ m
lnme−t/2 (t/2)m

m!

has a similar hump neart = 2m, with asymptoticsx[m](t) = 1√
2π lnm

e−
(t−2m)2

8m

(
1+ O

(
(t−2m)3

m2

))
. Condi-

tion (52) ensures that ifTi is large, the humps assembled inx(i)(t) (resp. inx(i)) do not overlap (i.e. the
“supports”(Ami,k,`)(k,`)∈Ji

of the humps are disjoint), as we will see by estimating the distance between
adjacent humps from below:

Let (k, `),(k′, `′) ∈ Ji with pkq` < pk′q`
′
. Then∣∣∣2bTi p

kq`c−2bTi p
k′q`

′c
∣∣∣=2Ti

∣∣∣pk+`α− pk′+`′α
∣∣∣+C≥ 2ln 1

p Ti p
k+`α ∣∣k−k′+(`− `′)α

∣∣+C

≥2ln 1
p T2/3

i
c

(`∨ `′)µ +C≥ 2cln 1
p T2/3

i

(
lnTi

3ln 1
q

)−µ

+C,

where−2<C< 2. On the other hand, the largest interval among(Ami,k,`)(k,`)∈Ji
has length 2T0.6

i . Now

x(i)(t) is a sum of|Ji |= O(ln2Ti) termsx[mi,k,`](t), each exponentially small fort 6∈Ami,k,` , which results in

x(i)(t) =


e−Ω(

√
2Ui−t), for t ∈ [0,Ui ],

e−Ω(
√

t−2Ti), for t ∈ [4Ti ,∞[,

∑(k,`)∈Ji
1IAmi,k,`

(t)εk,`x[mi,k,`](t)+e−Ω(t0.1), for t ∈ ]Ui ,4Ti [ .
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AssumingTi ≥ T2
i−1 andT1 large enough, humps ofx(i)(t) andx( j)(t) will not overlap for i 6= j, which

allows for the representation

x(t) = ∑
i≥1

∑
(k,`)∈Ji

1IAmi,k,`
(t)εk,`x

[mi,k,`](t)+e−Ω(t0.1). (53)

There is a similar representation forx from which we can immediately deduce that indeedxN = O
(

1√
lnN

)
and∆xN = O

(
1√

N lnN

)
.

We now inductively define the sequence(Ti)i≥1: Having determinedTj for 1≤ j < i we chooseTi as
follows. We lety(i)(t) andy(<i)(t) be the unique entire solutions of the equations

y(i)(t)− py(i)(pt)−qy(i)(qt) = x(i)(t), y(<i)(t)− py(<i)(pt)−qy(<i)(qt) =
i−1

∑
j=1

x( j)(t).

Since∑i−1
j=1x( j)

N = e−Ω(N0.1), and thus satisfies conditionii) of this proposition, we can refer to (51) and

deduce that there existsTi ≥ T2
i−1 such that∣∣∣y(<i)(pt)−y(<i)(qt)

∣∣∣≤ 2−i , for t ≥Ui

and ∣∣∣y(i)(t)
∣∣∣≤ 2−i , for t ≤ 4Ti−1.

The latter condition can be satisfied, since fort ≥ 0 and someC > 0 we have, by Stirling’s formula,

x(i)(t)≤ x̄(i)(t) := C
(

e
2

t
Ui

)Ui
, which impliesy(i)(t)≤

(
1− p1+Ui −q1+Ui

)−1
x̄(i)(t). With x(t) constructed

this way, and employing (49), (50) and (53) we derive

y(2Ti p)−y(2Tiq) = ∑
(k,`)∈Ji

|νk,`|√
2π ln(Ti pkq`)

+e−Ω(U0.1
i ) +21−i = Θ

(∫ 1/3

0

dx√
x(1−x)

)
= Θ(1).

Depoissonizing, we obtain limsupN≥1 |ybNpc−ybNqc| ≥ limsupi≥1 |ybb2Ticpc−ybb2Ticqc|> 0, which shows
that indeed (32) does not hold in this example.
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[4] P. Feldman, S. T. Rachev, L. Rüschendorf,Limit theorems for recursive algorithms, J. Comput. Appl.
Math.56 (1994), 169-182.

[5] P. Flajolet, X. Gourdon, P. Dumas,Mellin Transforms and Asymptotics: Harmonic sums, Theor.
Comput. Sci.144(1995), 3-58.

[6] P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, R. Tichy,Mellin Transforms and Asymptotics:
Digital sums, Theor. Comput. Sci.123(1994), 291-314.

[7] P. Flajolet, A. M. Odlyzko,Singularity analysis of generating functions, SIAM J. Discrete Math.3
(1990), 216-240.

[8] P. Flajolet, R. Sedgewick,Digital Search Trees Revisited, SIAM J. Comput.15 (1986), 748-767.

[9] E. Fredkin,Trie memory, CACM 3 (1960), 490-500.

[10] I. G. Grama,On moderate deviations for martingales, Ann. Probab.25 (1997), 152-183.

[11] W. Gutjahr, G. Ch. Pflug,The asymptotic contour process of a binary tree is a Brownian excursion,
Stochastic Processes Appl.41 (1992), 69-89.

[12] E. Haeusler,On the rate of convergence in the central limit theorem for martingales with discrete
and continuous time, Ann. Probab.16 (1988), 275-299.

[13] C. C. Heyde, B. M. Brown,On the departure from normality of a certain class of martingales, Ann.
Math. Statist.41 (1970), 2161-2165.
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