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A DOL word on an alphabeX = {0,1,...,q— 1} is called symmetric if it is a fixed poinw = ¢(w) of a morphism
¢ :X* — ¥ defined byd (i) =t; +ita+1i...tm+i for some wordaty...tm (equal todp(0)) and everyi € %; herea
meansa modd.

We prove a result conjectured by J. Shallit: if all the symbolé (@) are distinct (i.e., itj # tj for i # j), then the
symmetric DOL wordw is overlap-free, i.e., contains no factor of the foaaxafor anyx € Z* anda € %.
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1 Introduction

In his classical 1912 paper15] (see al5o [3]), A. Thue gave the first example of an overlap-free infinite
word, i. e., of a word which contains no subword of the faraxafor any symbok and wordx. Thue’s
example is known now as thiéhue-Morse word

wrm = 01101001100101101001011001101001

It was rediscovered several times, can be constructed in many alternative ways and occurs in various fields
of mathematics (see the survéy [1]).

The set of all overlap-free words was studied e. g. by E. D. Fife [8] who described all binary overlap-
free infinite words and P.é&bold [T3] who proved that the Thue-Morse word is essentially the only binary
overlap-free word which is a fixed point of a morphism. Nowadays the theory of overlap-free words is a
part of a more general theory of pattern avoidante [5].

J.-P. Allouche and J. Shallifl[2] asked if the initial Thue’s construction of an overlap-free word could
be generalized and found a whole family of overlap-free infinite words built by a similar principle. This
paper contains a further generalization of that result; its main theorem was conjectured by JI[Shallit [14].

Let us give all the necessary definitions and state the main theorem. Consider a finite alphabet
2q={0,1,...,q—1}. For an integer, leti denote the residue @fmodulog. A morphism¢ : - 2gis
calledsymmetridf for all i € %4 the equality holds

o) =t Fita+i...tm+1,
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wheretits. ..t is an arbitrary word (equal td(0)). Clearly, ifty = 0, thend has a fixed point, i. e., a
(right) infinite wordw = w(¢) satisfying
w=(w).

Without loss of generality we assume thastarts with 0.
A symmetric morphism igrowingif |¢(0)| > 2. We shall call a fixed point of a growing symmetric
morphism asymmetric DOL wordFor example, the Thue-Morse wong ), is a fixed point of a symmetric

morphisméu:
{ ¢Tm(0) =01,
dTm(1) =10

Symmetric DOL words include also other useful examples, such as the Dejeariword [7], éneiKemord
[1] and others (see Section 10.5 inl[12], where in particular the term “symmetric” is introduced). Note
that the class of symmetric DOL words is included in a wider class of uniform marked DOL words whose
properties were studied e. g. in[10].
Note that an infinite wordv = wiws ... Wy, ..., wherew; € %, is the fixed point of the symmetric mor-
phism¢ if and only if
Vk>0Vie{l,...,m} Wimii = Wip1 + 8. Q)

Indeed, this equality means thatm.i is equal to theth symbol ofd (Wi1).
For everym > 1, letomq : 2 — 2 be the symmetric morphism defined by, q(0) =012...m—1.
Note thatdptm = ¢22. Letwng be the fixed point obn, g starting with 0; then théh symbol ofwy, g for

eachi can also be defined ag (i), wheresy(i) is the sum of the digits in the baserepresentation af
J.-P. Allouche and J. Shallit proved the following generalization of Thue’s result:

Theorem 1 ([2]) The word wq is overlap-free if and only if i g.

J. Shallit conjectured also that symmetric DOL words of a much wider class are overlap-free. We turn
this conjecture into

Theorem 2 If ¢ : 25 — Zj is a growing symmetric morphism, and if all symbols occurring {0) are
distinct, then the fixed point w w(¢) is overlap-free.

The remaining part of the paper is devoted to the proof of this result.

2 Proof of Theorem 2

Let us start with introducing some more notions and citing a result by J. Berstel and L. Bdasson [4] which
we shall need later.

A partial word s a word on the alphab&tJ {o}, where the symbai ¢ ¥ is called thenol€]. Each hole
means an unknown symbol &af A (partial) wordu = u; ... Un, Whereu; are symbols, is calleflocally)
p-periodicif u; = uip foralli € {1,...,n— p} such thau; # ¢ andujp # .

The following result is a generalization of the classical Fine and Wilf’s theorem [9, 6]:

Theorem 3 ([4]) Let u be a partial word of length n which is p-periodic and g-periodic. If u contains
only one hole, and if & p+ g, then u isgycd(p, q)-periodic.

Now let us start the proof of Theorefn 2 and first consider the easiest case:

+ This definition slightly differs from the one given il [4].
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Lemma 1 If the symmetric morphism is defined byp(0) = 0c 2c... (m— 1)c for some integer ¢ 0,
and if all the symbols af (0) are distinct, then the fixed point w éfis overlap-free.

Proof. Let SC Z be the set of symbols occurringwandd be its cardinality. Denot&’ = {0,...,q — 1}
and definén: (£')* — S* as the symbol-to symbol morphism transforming each syibd’ to h(i) = ci.
Since the cardinalities andZ’ coincide, and since each symbol®¢an be represented eisfor some
i, his a one-to-one mapping. But it can be easily checkeddthat hdp,y. Sincewmy = ¢m g (Wmng),
we haveh(Wmy) = h(dmg (Wmg)) = d(h(Wing)), SOh(Wny) is the fixed point of; it starts with 0
sinceh(0) = 0. We see thalh(wn,y) = w, that is,w is obtained fromw,,y by renaming symbols. It is
overlap-free due to Theorein 1. a

A blockis an image of symbol under a morphism. Batn) denote the class of all symmetric morphisms
on X of block lengthmwith all the symbols in a block distinct. We assume also that the image of 0 always
starts with 0, so that all the morphisms${im) admit fixed points. Clearly, the claSm) is non-empty
onlyif m<aq.

Our goal is to prove that, for any fixed, all the fixed points of morphisms &m) are overlap-free.
Suppose the opposite and consider the minimal counter-example, i. e., a mopphiStm) and its fixed
pointw containing an overlap= axaxaof minimal length (so that overlaps occurring in other fixed points
of morphisms ofS(m) are not shorter). Hera € ¥ andx € =*; we denote the lengtfax by |, and thus
have|v| = 21 + 1. Let us fix an occurrence afto w and its position with respect to blocks ¢f we
consider as a word obtained from(s), wheresis a factor ofw, by erasingx — 1 symbols from the left
andm-— 3 symbols from the right, where &£ a, < m. So,v starts with the symbol numberedof a
block and ends with the symbol humbef&d

Claim 1 The inequality > m holds.

Proof. Suppose that < m. The 1st,(l + 1)th, and(2l + 1)th symbols ofv are equal and thus must lie
in three different blocks. Soj; contains a complete block. But this block mustlbgeriodic sincev is
|-periodic; hence it must contain two equal symbols sineem. A contradiction. |

Claim 2 The block length m does not divide I.

Proof. Suppose the opposite: let mk Then the length of the “inverse imagebf vis equal to R+ 1.
Sincev is an overlap, itgmi+ 1)th symbol is equal to thém(i + k) + 1)th one for anyi € {0,...,k};
they are symbols numbered of respectively thei + 1)th and the(i + k+ 1)th blocks of¢(s). Since
the morphismg is symmetric, each block is uniquely determined bydth symbol, so(i + 1)th and
(i4+k+ 1)th symbols o are equal. Thusis an overlap inw shorter tharv, a contradiction. |

For every wordu = UjUs...Uny1 € ™1, whereuy,...un 1 € 2, let us define the word(u) € 3" as
obtained frormu by subtraction of consecutive symbols:

r(u)=uz—Ug Uz —Uz...Unt1 — Un.

Clearly,u can be reconstructed from its first symlogland the word (u) =r1...r,, wherery,...,r, € Z:

U=UUi+riug+ri+ro...up+ri+...+rn. (2)

Let us consider the wondv) = r(axaxd. Its length is equal tol2and it isl-periodic as well as. Since
¢ is symmetric, the word(¢(i)) does not depend on the symbal%; we denote (¢(i)) =b=Db;...by_1,
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whereby,...,bn_1 € Z. Sincev starts with the symbol number of a block and ends with the symbol
numberpB, we have
r(v) =bg...bm-1c1bcb. .. beyby ... bg_q,

where|s| =n+1 andc; ... cy are symbols oE depending on pairs of consecutive blockg(s); if a =m,
thenr (v) just starts withcg, and if = 1, r(v) just ends withc,,. Letn’ be the last number such thgf is
situated in the first occurrence iofaxa) in r(v). Sincer (v) is |-periodic, for alli € {1,...,n"} the symbol
G is equal to the symbol of(v) situated at distandefrom it. Due to Clain{R] # 0 (modm), and thus alll
these symbols are equalltp, wherel =1’ (modm). So, the word (axa) (equal to the prefix of length
of r(v)) is m-periodic:

r(axa) = by....bm_1(by/b)" *byby... by 1,

wherey—a =1 (modm),ye {1,...,m}.
Let us consider the prefix ofv) of lengthm+1. It exists due to Claini] 1 and is equal to

r(axa)by...bm-1Cy 1b1...by_1.
Subsituting the unknown symbal , ; by a holec, we obtain a partial word
ba ... bm_1(byb)™ oby.. by 1,

which isl-periodic as well as(v). But at the same time, it is+periodic; thus, due to Theoref 3 it|B
periodic, whergp=gcd(l,m). Consequentlyp =r(¢(0)) is alsop-periodic:b= (b; ... bp)m“lbl ...bp-1,
wherem’ = m/p. Let us return tap(0) and denotey; =0, gk =b1+by+... + b1 forke {2,...,p},
andc=Dby + by + ...+ bp; due to [R), we see that(0) is of the form

$(0)=01...9p01+C...gp+C...01+ (M —1)c...gp+ (M —1)c. ?3)

Hereg: = 0 since¢ has a fixed point, andf = m/p. The words of the forng; +ic...gp +ic, where
i €{0,...,m —1}, will be calledsubblocks Note that for allk € {1,...,p}, a subblock is uniquely
determined by it&th symbol, and thatv consists of consecutive subblocks.
Letw; denote théth symbol of the fixed poiniv of ¢, i. e., letw=w; ... w,..., wherew; € X. Consider
the arithmetical subsequence
w = WiWp1Wopt1.. . Whpt1- .-

Claim 3 The word Wis the fixed point of a morphisti € S(m).
Proof. Let us define the symmetric morphisgphby
¢'(0)=gig1 FC...01+ (M —1)cpGr+C...g2+ (M —1)C...gpGp + C...gp+ (M — L)C.

Sinced’(0) is obtained fromb(0) by permuting symbols, and all the symbolsfgD) are distinct, so are
the symbols ofy’(0). Sinceg; = 0, andd’ is symmetric by definitiond’ € S(m). So we must prove only
thatw is its fixed point, i. e., that

Vk>0Vie{1,...,m} W, is equal to théth symbol ofp’ (W, 1), 4)
wherew, is thekth symbol ofw’ =wjw,...wj....
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Clearly, each € {1,...,m} can be uniquely representedias jm’ + 9, wherej € {0,...,p— 1} and
de{1,...,m}. Since by definition o' for all v we havew|, = wp, 1)1, for anyk > 0

V\/km+i = Wkmt-jmv 48 — Wp(km+jm/+571)+1 = W(pk+j)m+p(671)+1-

By Equality (1), Wpksjjm+ps-1)+1 iS equal to the(p(d— 1) + 1)th symbol of¢(wpk.ji1), that is, to
(0—1)c+Wpksj+1 (recall thatgy = 0). In its turn, wpkyj+1 is the (j + 1)th symbol of the subblock
starting withwpk,1 = W, ;. Itis equal tow, ; +gj1, and thusw, ... =W, + (08— 1)c+gj1. By
the definition of¢’, it is equal to the symbol numbergudy -+ = i of ¢’(w,, ;). We have proved4) and
Claim[3. O

Claim 4 The word Wcontains an overlap of lengt’ + 1, where { =1/p.

Proof. Let our occurrence of the overlapto w start with thekth symbol of a subblock, i. e., let
a =k (modp), wherek € {1,...,p}. It means that = Wjp kWjpik+1---W(ji2)prk fOr somej >
0; sincev is an overlapw(j v)p+1 = W(j1v+i1)pr2 for all v e {1,....I'}. But we have alsavjp .k =
W(j+1"p+ks @nd since a subblock is uniquely determined bykitssymbol,wjp+1 = W(j1)p1- SO, the
wWord Wjp+1W(j  1)p+1-- - W(jt21)pr1 IS I’-periodic, and it is the needed overlapwh O

As it follows from Claims[B andl]4, we have found a fixed point of a morphisi®(of) containing an
overlap of length’ =1 /p. Butif p > 1, this contradicts to the minimality of our counter-example. On the
other hand, ifp = 1, then it follows from [B) that

$(0)=0c2c...(m—1)c.
But a fixed point of such a morphism cannot be a counter-example according to l&gmma 1. A contradiction.
TheoreniR is proved. O
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