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We show that it is impossible to compute (or even to approximate) the topological entropy of a
continuous piecewise affine function in dimension four. The same result holds for saturated linear
functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine
function is always a computable real number, and conversely whether every non-negative computable
real number can be obtained as the topological entropy of a piecewise affine function. It seems that
these two questions are also open for cellular automata.
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1 Introduction
There is an active line of research in which dynamical systems are studied from an effective
point of view. Here one main goal is to clarify the boundary between decidable and unde-
cidable properties of dynamical systems. Cellular automata and iterated piecewise-affine
maps are two classes of systems for which this endeavour has been particularly successful.
The present paper is devoted to iterated piecewise-affine continuous maps. We show that
it is undecidable whether the topological entropy of such a function defined on the four-
dimensional cube[−1,1]4 is equal to zero (precise definitions are given in section 2). A
similar result was obtained several years ago for one-dimensional cellular automata [2] by
a reduction from the nilpotency problem, which was proved undecidable in [3]. We also
use a reduction from the nilpotency problem, albeit of piecewise-affine maps instead of
cellular automata. The undecidability of this problem was only established recently in [1].
As in [2] it follows from the proof that the topological entropy cannot be computed, even
approximately. We also give an undecidability result for saturated linear systems, which
are a restricted class of iterated piecewise-affine maps. These systems have been of interest
in control theory, see for instance [7]. Finally we show that there exists a dimensionn and
nilpotent saturated linear mapsf : Rn→ R

n such thatf k (thek-th iterate off ) is not iden-
tically zero, wherek is an arbitrarily large integer. This clarifies an observation of [1]. It is
however still unknown whether there existsn such that the nilpotency problem for saturated
linear functions in dimensionn is undecidable.

We conclude this introduction with an open problem: is the topological entropy of a
piecewise-affine map always a computable real number? The concept of computable real
number is explained in many texts on recursive function theory or recursive analysis, see
e.g. [4, 9]. Here as elsewhere we assume that the piecewise-affine map has only rational
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coefficients, see section 2.2. Our undecidability result does not seem to provide an answer
to this question. It is however clear from the definition of topological entropy that this
number is always in the arithmetical hierarchy of real numbers studied in [10]. Conversely,
one can ask whether every computable real number can be obtained as the topological
entropy of an iterated piecewise-affine map. These two questions also make sense for
cellular automata, and it seems that they have not been addressed so far.

2 Dynamical Systems
We consider dynamical systems defined by iteration of a mapf : X→ X. A trajectory of
such a system is a sequence(xt)t∈N of points ofX such thatxt+1 = f (xt) for all t ∈ N. We
are mainly interested in the case wheref is piecewise affine andX is thed-dimensional
cube[−1,1]d.

2.1 The Topological Entropy
Let (X,d) be a compact metric space andf : X → X an arbitrary (possibly discontinu-
ous) map. Fromd and f we can construct a family(dn) of distance functions as follows:
dn(x,y) = max0≤i≤nd( f i(x), f i(y)). We say that a subsetF of X is anε-spanning set for
(X,dn) if for all x∈ X there existsy∈ F such thatdn(x,y) ≤ ε. There is a dual notion of
ε-separated set: this is a subsetF of X suchdn(x,y)> ε for any distinct pointsx andy of F .
We denote byrn(ε) the smallest cardinality of anyε-spanning set of(X,dn), and bysn(ε)
the largest cardinality of anyε-separated set. We also writern(ε, f ) andsn(ε, f ) when f is
not clear from the context. It follows from the compactness ofX that rn(ε) andsn(ε) are
always finite.

One can show that the two limits

lim
ε→0

limsup
n→∞

ln rn(ε)/n

and
lim
ε→0

limsup
n→∞

lnsn(ε)/n

exist and are equal (they may be infinite). This common limit is called the topological
entropy of f , and is denotedh( f ). For more details we refer the reader to [5] and [8] (the
latter reference defines the topological entropy only for uniformly continuous maps).

Consider for instance the case wheref is a nilpotent map. This means that there exists
an integerm such thatf m(X) = {0}, where 0 is a distinguished point ofX. Thenh( f ) = 0
sincern(ε) is bounded independently fromn by rm(ε).

As a second example, consider the “tent map”φ : [0,1]→ [0,1] defined by:φ(x) = 2x for
x∈ [0,1/2] andφ(x) = 2(1−x) for x∈ [1/2,1]. Then-th iterate ofφ is made of 2n “laps”
(monotone pieces). This implies thath(φ) = ln2 [6] (this can also be checked directly from
the definition of topological entropy). Here as in the remainder of the paper, the topological
entropy is computed with respect to the Euclidean distance. The example of the tent map
will be used later. In fact we will only need to know that the topological entropy ofφ is
nonzero.

2.2 Piecewise-affine maps
A function f :Rp→Rq is piecewise affineif its graph is a semilinear subset ofRp×Rq (i.e.,
a boolean combination of halfspaces). We will assume that the corresponding halfspaces
are defined by affine inequalities with rational coefficients only. Also we will work only
with continuous piecewise affine maps.

Let σ : R→ R be the piecewise affine map such thatσ(x) = x for x∈ [−1,1], σ(x) = 1
for x≥ 1, andσ(x) =−1 for x≤−1. A saturated linear map is a piecewise affine function
f : Rp→ R

q of the form f (x) = σ(Ax). Hereσ is applied componentwise. Naturally, we
say thatA is the matrix associated tof .
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Theorem 3, our undecidability result for saturated linear maps, is obtained by a reduction
from the problem of Theorem 2: deciding whether the entropy of a continuous piecewise
affine map is equal to zero. In order to obtain this reduction, we find it convenient to prove
Theorem 2 for a restricted class of continuous piecewise affine maps: the so-calledσ∗0-
functions. We recall from [1] that aσ∗0-function of depthd is a composition ofd saturated
linear functions. Note thatf : Rp→ R

q is aσ∗0-function iff each of itsq components is a
σ∗0-function (for the if part, note that we may assume that theq components have the same
depth sinceσ(g) = g for anyσ∗0-functiong : Rp→ R).

3 Undecidable Properties
Our undecidability results are based on reductions from the “hyperplane problem” [1].

Theorem 1 (Theorem 7 of [1]) The following decision problem is undecidable.

• Instance: threeσ∗0-functions f,g,Z : R3→ R.

• Question: does there exist a trajectory of the system(xt+1,yt+1) =
( f (xt ,yt ,1),g(xt ,yt ,1)) which satisfies Z(xt ,yt ,1) = 0 for all t?

Let us recall some constructions from [1].Sel: R2→ R is aσ∗0-function which is zero
in a neighbourhood of 0, and satisfies

1. Sel(1,e) = e

2. Sel(0,e) = 0

for all e∈ [−1,1].
In the same paper we constructed aσ∗0-functionStab: R2→ R which is zero in a neigh-

bourhood of 0, and satisfies the following property. For allz0 ∈ R and for all functions
e : N→ R, the sequencezt+1 = Stab(zt ,et) falls into one of the following three mutually
exclusive cases:

1. The sequencezt , t ≥ 1 is constant, always equal to 1. This case happens only when
σ(z0) = 1 and whenet = 0 for all t.

2. The sequencezt , t ≥ 1 is constant, always equal to−1. This case happens only when
σ(z0) =−1 and whenet = 0 for all t.

3. The sequencezt is eventually null: there existst0 with zt = 0 for all t ≥ t0.

It is shown in [1] that one may takeSel(z,e) = σ(2h(3z/4+ e/4)−h(z)) whereh denotes
the functionh(x) = σ(2σ(x)−σ(2x)). For Stabone may takeStab(z,e) = h(σ(σ(z))−
Abs(z,e)/2), whereAbs(z,e) = σ(σ(e−z)−σ(e+z)+2σ(z)).

Theorem 2 It is undecidable whether the topological entropy of a givenσ∗0-function F :
[−1,1]4→ [−1,1]4 is equal to zero.

This problem remains unsolvable even if we are promised that F satisfies the following
condition: if h(F) = 0 then F is nilpotent.

Proof. We reduce the problem of Theorem 1 to this problem. letf ,g,Z : R3→ R be three
σ∗0-functions. Consider the following four-dimensional systemXt+1 = F(Xt):

wt+1 = Sel(zt ,ψ(wt ,zt))
xt+1 = Sel(zt , f (xt ,yt ,zt))
yt+1 = Sel(zt ,g(xt ,yt ,zt))
zt+1 = Stab(zt ,Z(xt ,yt ,zt))

Hereψ is theσ∗0-functionψ(w,z) = σ((σ(4w−z)+σ(3z−4w))/2). Forw∈ [0,1], note that
ψ(w,1) is equal toφ(w), the tent map from section 2.1. Note also thatF is aσ∗0-function
since its four components areσ∗0-functions.

We claim that the four following properties are equivalent.
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(i) No trajectory of the system(xt+1,yt+1) = ( f (xt ,yt ,1),g(xt ,yt ,1)) satisfies
Z(xt ,yt ,1) = 0 for all t.

(ii) F is mortal.

(iii) F is nilpotent.

(iv) The topological entropy ofF is equal to zero.

Theorem 2 then follows immediately from Theorem 1 and the equivalence of (i), (iii) and
(iv).

Assume first that (i) holds. To show thatF is mortal, we only need to consider
trajectories withz1 ∈ [0,1] since F is an odd function. Ifzt is always constant and
equal to 1 then by construction ofSel and Stab, (xt ,yt) is a trajectory of the system
(xt+1,yt+1) = ( f (xt ,yt ,1),g(xt ,yt ,1)) which satisfiesZ(xt ,yt ,1) = 0 for all t. This is im-
possible by hypothesis. By construction of Stab,zt must therefore be eventually null. By
construction ofSel, this implies thatwt , xt andyt are also eventually null: the system’s
trajectory is indeed mortal.

SinceSel andStabare zero in a neighbourhood of zero, the same is true ofF : there
exists an open neighbourhoodU of 0 such thatF(U) = {0}. The implication from
mortality to nilpotency then follows by compactness: ifF is mortal then[−1,1]4 =⋃

n≥0F−n(U). Hence there is a finite cover of the form[−1,1]4 =
⋃N

n=0F−n(U), which
impliesFN+1([−1,1]4) = {0}.

As pointed out in section 2.1, (iii) implies (iv). Finally, in order to show that (iv) implies
(i) we show that¬ (i) implies ¬ (iv). Consider a trajectory of the system(xt+1,yt+1) =
( f (xt ,yt ,1),g(xt ,yt ,1)) which satisfiesZ(xt ,yt ,1) = 0 for all t. For any initial valuew0 ∈
[0,1] we obtain a trajectory ofF which satisfieswt+1 = φ(wt) andzt = 1 for all t. This
implies thatst(ε,F)≥ st(ε,φ) for all t,ε> 0, so thath(F)≥ h(φ)> 0. 2

Note that the piecewise-affine functionF constructed in this proof either satisfiesh(F) = 0
or h(F)≥ ln2. This implies that forε< ln2 no algorithm can approximate the topological
entropy of a piecewise-affine with an absolute error bounded byε. A variation on this
construction would show just as in [2] that the topological entropy cannot be approximated
up toε, no matter how largeε is.

Theorem 3 It is undecidable whether the topological entropy of a given saturated linear
function is equal to zero.

This problem remains unsolvable even if we are promised that the saturated linear func-
tion is nilpotent if its topological entropy is equal to zero.

Proof. We reduce the problem of Theorem 2 to this problem. LetF : [−1,1]4→ [−1,1]4 be
aσ∗0-function. To this function we can associate a saturated linear functionF ′ as in [1]. This
is done as follows. Assume thatF is of the form fk ◦ fk−1 ◦ . . .◦ f1 for someσ0-functions
f j(x) = σ(A jx), where f j : Rd j−1→ Rd j with d0,d1, . . . ,dk ∈ N, andd0 = dk = 4.

Letd = d0+d1+ · · ·+dk, and consider the saturated linear functionF ′ :Rd→Rd defined
by F ′(x) = σ(Ax) where

A =


0 0 . . . 0 Ak

A1 0 . . . 0 0
0 A2 . . . 0 0
...

... 0 0
0 0 . . . Ak−1 0

 . (1)

As pointed out in [1], it is clear that ifFm≡ 0 for some integerm thenF ′km≡ 0, so that
h(F ′) = 0. Conversely, consider a trajectoryXt+1 = F(Xt) of F , and a trajectoryX′t+1 =
F ′(X′t ) such that the firstd0 components ofX′0 are equal toX0. The firstd0 components
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of X′kt are then equal toXt for all t ≥ 0. This implies thatstk(ε,F ′) ≥ st(ε,F) so that
h(F ′)≥ h(F)/k.

We can now conclude. Assume that we are promised thatF is nilpotent ifh(F) = 0. We
have shown that:

(i) if h(F) = 0 thenh(F ′) = 0 andF ′ is nilpotent.

(ii) if h(F)> 0 thenh(F ′)> 0.

The problem of Theorem 3 is therefore undecidable.2

4 Nilpotent Systems in Fixed Dimension
It was pointed out in [1] that our undecidability results have “purely mathematical” con-
sequences. For instance, there is no recursive functions(n) such that all saturated linear
maps f : Rn→ R

n satisfy f s(n) = 0. Note in contrast that the bounds(n) = n is valid for
nilpotent linear maps. The existence of such a bound for saturated linear maps would im-
ply the decidability of their nilpotency problem, but this problem is undecidable [1]. This
observation leaves us with the following alternative:

(i) either there is for alln a finite bounds(n) such that all saturated linear mapsf :Rn→
R

n satisfy f s(n) = 0 (and in this cases must be a very fast growing function).

(ii) or for some integern no finite bound exists.

We now show that the second branch of the alternative is the correct one.

Proposition 1 There exists an integer n such that for any integer k there exists a nilpotent
saturated linear map f: Rn→ Rn with fk 6= 0.

This follows from Lemma 1 below (note again the contrast with the case of linear maps).

Lemma 1 Let Niln be the set of matrices of nilpotent saturated linear maps in dimension
n. There exists an integer n such that Niln is not a closed subset ofRn2

.

Proof. Consider the one dimensional systemzt+1 = Fε(zt), whereFε is the σ∗0-function
zt 7→ Stab(zt ,εzt). Hereε is a real parameter. Forε = 0 the system is not nilpotent since 1
is a fixed point. Forε 6= 0 the system is mortal by the third property ofStab. SinceFε is
identically zero in a neighborhood of zero, this implies by compactness (as in the proof of
Theorem 3) thatFε is in fact nilpotent.

Consider now as in (1) the matrixAε of the saturated linear mapF ′ε which is associated
to Fε. This σ∗0-function is nilpotent if and only ifF ′ε is nilpotent, and as a consequenceAε
is in Niln if and only if ε 6= 0. 2

Proof of Theorem 1.Let Niln,k be the set of matrices of saturated linear mapsf : Rn→ R
n

such thatf k = 0. By continuity eachNiln,k is a closed subset ofRn2
, but we have just seen

thatNil = ∪k≥1Niln,k is not closed. We conclude thatNiln\Niln,k 6= /0 for all k. 2

It follows from the explicit formula forStabgiven before Theorem 2 that one may take
n = 9 in Lemma 1 and Proposition 1.
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