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We show that it is impossible to compute (or even to approximate) the topological entropy of a
continuous piecewise affine function in dimension four. The same result holds for saturated linear
functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine
function is always a computable real number, and conversely whether every non-negative computable
real number can be obtained as the topological entropy of a piecewise affine function. It seems that
these two questions are also open for cellular automata.
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1 Introduction

There is an active line of research in which dynamical systems are studied from an effective
point of view. Here one main goal is to clarify the boundary between decidable and unde-
cidable properties of dynamical systems. Cellular automata and iterated piecewise-affine
maps are two classes of systems for which this endeavour has been particularly successful.
The present paper is devoted to iterated piecewise-affine continuous maps. We show that
it is undecidable whether the topological entropy of such a function defined on the four-
dimensional cubé—1,1]* is equal to zero (precise definitions are given in sedtjon 2). A
similar result was obtained several years ago for one-dimensional cellular automata [2] by
a reduction from the nilpotency problem, which was proved undecidable in [3]. We also
use a reduction from the nilpotency problem, albeit of piecewise-affine maps instead of
cellular automata. The undecidability of this problem was only established receriily in [1].
As in [7] it follows from the proof that the topological entropy cannot be computed, even
approximately. We also give an undecidability result for saturated linear systems, which
are a restricted class of iterated piecewise-affine maps. These systems have been of interest
in control theory, see for instance [7]. Finally we show that there exists a dimemsiot
nilpotent saturated linear mags R" — R" such thatfX (thek-th iterate off) is not iden-

tically zero, wherek is an arbitrarily large integer. This clarifies an observatioriiof [1]. It is
however still unknown whether there exigtsuch that the nilpotency problem for saturated
linear functions in dimension is undecidable.

We conclude this introduction with an open problem: is the topological entropy of a
piecewise-affine map always a computable real number? The concept of computable real
number is explained in many texts on recursive function theory or recursive analysis, see
e.g. [4,[9]. Here as elsewhere we assume that the piecewise-affine map has only rational
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coefficients, see sectign P.2. Our undecidability result does not seem to provide an answer
to this question. It is however clear from the definition of topological entropy that this
number is always in the arithmetical hierarchy of real numbers studiédiin [10]. Conversely,
one can ask whether every computable real number can be obtained as the topological
entropy of an iterated piecewise-affine map. These two questions also make sense for
cellular automata, and it seems that they have not been addressed so far.

2 Dynamical Systems

We consider dynamical systems defined by iteration of a fnajd — X. A trajectory of
such a system is a sequern@ecn Of points ofX such that¢,1 = f(x) forallt € N. We
are mainly interested in the case whdrés piecewise affine an¥ is thed-dimensional
cube[-1,1]9.

2.1 The Topological Entropy

Let (X,d) be a compact metric space afd X — X an arbitrary (possibly discontinu-
ous) map. Frond and f we can construct a familyd,) of distance functions as follows:
dn(X,y) = maxo<i<nd(f'(x), fi(y)). We say that a subsét of X is ane-spanning set for
(X,dp) if for all x € X there existy € F such thatdy(x,y) < €. There is a dual notion of
e-separated set: this is a subBedf X suchd,(x,y) > € for any distinct pointx andy of F.
We denote by, (€) the smallest cardinality of argrspanning set ofX,dy), and bys,(g)
the largest cardinality of angrseparated set. We also writg(e, f) andsy(¢, f) whenf is
not clear from the context. It follows from the compactnesXdhatr(€) ands, () are
always finite.
One can show that the two limits

lim limsuplnrp(€)/n
-0 nooo
and
lim limsuplns,(g)/n
-0 pnoow
exist and are equal (they may be infinite). This common limit is called the topological
entropy off, and is denoteti(f). For more details we refer the reader[fo [5] afid [8] (the
latter reference defines the topological entropy only for uniformly continuous maps).
Consider for instance the case whéres a nilpotent map. This means that there exists
an integem such thatf™(X) = {0}, where 0 is a distinguished point f Thenh(f) =0
sincerp(€) is bounded independently fromby rm(€).
As a second example, consider the “tent m@p(0, 1] — [0, 1] defined by:@(x) = 2x for
x € [0,1/2] and@(x) = 2(1—x) for x € [1/2,1]. Then-th iterate ofpis made of 2 “laps”
(monotone pieces). This implies thHetp) = In 2 [E] (this can also be checked directly from
the definition of topological entropy). Here as in the remainder of the paper, the topological
entropy is computed with respect to the Euclidean distance. The example of the tent map
will be used later. In fact we will only need to know that the topological entropy isf
nonzero.

2.2 Piecewise-affine maps

Afunction f : RP — RYis piecewise affind its graph is a semilinear subset®P x RY (i.e.,
a boolean combination of halfspaces). We will assume that the corresponding halfspaces
are defined by affine inequalities with rational coefficients only. Also we will work only
with continuous piecewise affine maps.
Leto: R — R be the piecewise affine map such tbgx) = x for x € [-1,1], o(x) =1
for x> 1, ando(x) = —1 forx < —1. A saturated linear map is a piecewise affine function
f : RP — RRY of the form f (X) = 0(Ax). Hereo is applied componentwise. Naturally, we
say thatA is the matrix associated t
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TheoreniB, our undecidability result for saturated linear maps, is obtained by a reduction
from the problem of Theoremj 2: deciding whether the entropy of a continuous piecewise
affine map is equal to zero. In order to obtain this reduction, we find it convenient to prove
Theorem[P for a restricted class of continuous piecewise affine maps: the soaglled
functions. We recall from[1] that e-function of depthd is a composition ofl saturated
linear functions. Note that : RP — R9 is aay-function iff each of itsqg components is a
og-function (for the if part, note that we may assume thatgltemponents have the same
depth sinces(g) = g for anyo-functiong : RP — R).

3 Undecidable Properties

Our undecidability results are based on reductions from the “hyperplane protiem” [1].
Theorem 1 (Theorem 7 of [1]) The following decision problem is undecidable.

e Instance: threesj-functions £g,Z: R3 - R.

e Question: does there exist a trajectory of the systém 1,¥i11) =
(f(%,¥%,1),9(%, ¥, 1)) which satisfies B¢, y:,1) = O for all t?

Let us recall some constructions from [Bel: R2 — R is aag-function which is zero
in a neighbourhood of 0, and satisfies

1. Sell,e)=e
2. Sel0,e) =0

forallee [-1,1].

In the same paper we constructediafunction Stab: R2 — R which is zero in a neigh-
bourhood of 0, and satisfies the following property. Forzgle R and for all functions
e: N — R, the sequenca.1 = Stal{z, &) falls into one of the following three mutually
exclusive cases:

1. The sequencg, t > 1 is constant, always equal to 1. This case happens only when
0(Z) = 1 and wherg, = 0 for allt.

2. The sequencg,t > 1 is constant, always equal tal. This case happens only when
0(zy) = —1 and wherg = O for all t.

3. The sequencsg is eventually null: there existg with z = 0 for allt > to.

It is shown in [1] that one may tak®elz e) = o(2h(3z/4+e/4) —h(z)) whereh denotes
the functionh(x) = o(20(x) — 0(2x)). For Stabone may takeStal{z e) = h(o(o(2)) —
Abgz e)/2), whereAbgz e) = o(o(e—z) — a(e+2z) + 20(2)).

Theorem 2 It is undecidable whether the topological entropy of a giggrunction F:
[-1,1)* — [~1,1]*is equal to zero.

This problem remains unsolvable even if we are promised that F satisfies the following
condition: if h(F) = 0 then F is nilpotent.

Proof. We reduce the problem of Theoréin 1 to this problemfletZ : R® — R be three
og-functions. Consider the following four-dimensional syst&m = F (X):

W1 = Selz, P(w, )

Xi+1=Selz, f(x.y1,2))

Vi1 = Selz,9(%, %, 2))

z1 = Stal{z, Z(x%, %t z))
Herey is theay-functiony(w, z) = o((0(4w—2z) +0(3z—4w))/2). Forw € [0, 1], note that
P(w, 1) is equal tog(w), the tent map from sectidn 2.1. Note also that aog-function
since its four components agg-functions.

We claim that the four following properties are equivalent.
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() No trajectory of the system(x;1,¥ir1) = (f(%,W%,1),9(%,¥%,1)) satisfies
Z(%,¥t,1) =0 for allt.

(i) F is mortal.
(iif) F is nilpotent.
(iv) The topological entropy dof is equal to zero.

TheorenTR then follows immediately from Theor@m 1 and the equivalence of (i), (iii) and
(iv).

Assume first that (i) holds. To show th&t is mortal, we only need to consider
trajectories withz; € [0,1] sinceF is an odd function. [fz is always constant and
equal to 1 then by construction &el and Stah (x,Y:) is a trajectory of the system
(%41, Yi+1) = (F(%, ¥, 1),9(%, ¥, 1)) which satisfiesZ(x,Vt,1) = 0 for all t. This is im-
possible by hypothesis. By construction of Stalbmust therefore be eventually null. By
construction ofSel this implies thatw, % andy; are also eventually null: the system’s
trajectory is indeed mortal.

SinceSeland Stabare zero in a neighbourhood of zero, the same is true:othere
exists an open neighbourhoddl of 0 such thatF(U) = {0}. The implication from
mortality to nilpotency then follows by compactness: Ffis mortal then[—1,1]* =
Un>oF "(U). Hence there is a finite cover of the form1,1]* = JN_oF"(U), which
impliesFN*1([-1,1]*) = {0}.

As pointed out in sectiop 2.1, (iii) implies (iv). Finally, in order to show that (iv) implies
(i) we show that- (i) implies — (iv). Consider a trajectory of the systef1,¥i+1) =
(f(%,¥,1),9(%,¥t,1)) which satisfieZ(x,yt,1) = 0 for all t. For any initial valuewp €
[0,1] we obtain a trajectory of which satisfiesm 1 = @(w;) andz = 1 for allt. This
implies thats (¢,F) > s (g, ) for all t,e > 0, so thah(F) > h(g) > 0. O

Note that the piecewise-affine functibnconstructed in this proof either satisfig$) =0

or h(F) > In2. This implies that foe < In2 no algorithm can approximate the topological
entropy of a piecewise-affine with an absolute error bounded. bj variation on this
construction would show just as ifi [2] that the topological entropy cannot be approximated
up tog, no matter how large is.

Theorem 3 It is undecidable whether the topological entropy of a given saturated linear
function is equal to zero.

This problem remains unsolvable even if we are promised that the saturated linear func-
tion is nilpotent if its topological entropy is equal to zero.

Proof. We reduce the problem of Theorgm 2 to this problem.Ref—1,1]* — [-1,1]* be
aog-function. To this function we can associate a saturated linear furfetiasin [1]. This
is done as follows. Assume thhtis of the formfio fy_10...0o f; for someop-functions
fj(X) = 0(Ajx), wheref;j : R%-1 — RY with do,dy, ..., d € N, anddp = di = 4.

Letd = dg+di+- - - +dy, and consider the saturated linear funcidnRY — RY defined
by F/(x) = o(Ax) where

0O O 0 Ay
A1 O 0 0
A-| 0O A 0 0 1)
D 0 0
0O O A1 O

As pointed out inl[d], it is clear that iF™ = 0 for some integem then F/XM= 0, so that
h(F’) = 0. Conversely, consider a trajectoXy, 1 = F(X) of F, and a trajectory(, , =
F/(X/) such that the firstlh components oK, are equal toX,. The firstdg components
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of X are then equal t& for all t > 0. This implies thatsy(e,F’) > s(¢,F) so that
h(F") > h(F)/k.

We can now conclude. Assume that we are promisedithisinilpotent ifh(F) = 0. We
have shown that:

(i) if h(F) =0 thenh(F’) =0 andF’ is nilpotent.
(ii) if h(F) > 0thenh(F’) > 0.

The problem of Theorem 3 is therefore undecidatie.

4 Nilpotent Systems in Fixed Dimension

It was pointed out infi1] that our undecidability results have “purely mathematical” con-
sequences. For instance, there is no recursive funstignsuch that all saturated linear
mapsf : R" — R" satisfy fS" = 0. Note in contrast that the boursth) = n is valid for
nilpotent linear maps. The existence of such a bound for saturated linear maps would im-
ply the decidability of their nilpotency problem, but this problem is undecidéble [1]. This
observation leaves us with the following alternative:

(i) either there is for alh a finite bounds(n) such that all saturated linear mapsR" —
R" satisfy fS" = 0 (and in this case must be a very fast growing function).

(ii) or for some integen no finite bound exists.

We now show that the second branch of the alternative is the correct one.

Proposition 1 There exists an integer n such that for any integer k there exists a nilpotent
saturated linear map fR" — R" with fK £ 0.

This follows from Lemm4]1 below (note again the contrast with the case of linear maps).

Lemma 1 Let Nil, be the set of matrices of nilpotent saturated linear maps in dimension
n. There exists an integer n such thatNd not a closed subset B

Proof. Consider the one dimensional system; = F(z), whereF is the o§-function
z — Stal{z,€z). Heree is a real parameter. Far= 0 the system is not nilpotent since 1
is a fixed point. Foe # 0 the system is mortal by the third propertyStfab SinceF; is
identically zero in a neighborhood of zero, this implies by compactness (as in the proof of
TheoreniR) thak; is in fact nilpotent.

Consider now as i[(1) the matrd¢ of the saturated linear mdgl which is associated
to Fe. This aj-function is nilpotent if and only i is nilpotent, and as a consequemge
isinNilp ifand only ife £ 0. O

Proof of Theoren]1Let Nil, x be the set of matrices of saturated linear map&" — R"
such thatfk = 0. By continuity eaciNilp is a closed subset (M”Z, but we have just seen
thatNil = Ux>1Nil,  is not closed. We conclude thiil, \ Nil, # @ for all k. O

It follows from the explicit formula forStabgiven before Theorem 2 that one may take
n=9 in LemmgL and Propositidh 1.
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