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We exhibit an initial specification of the rational numbers equipped with addition, subtraction, multiplication, greatest
integer function, and absolute value. Our specification uses only the sort of rational numbers. It uses one hidden
function; that function is unary. But it does not use an error constant, or extra (hidden) sorts, or conditional equations.
All of our work is elementary and self-contained.
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1 Introduction

This paper is a comment on the use of hidden functions in a well-studied example in the field of abstract
data types. We are concerned with the rational numbers, considered as an @gabrahe constants

0 and 1 and the operations of addition, subtraction, and multiplication, greatest integer fur¢teord
absolute value functio}x|. To specifyQ using initial algebra semantics means coming up with a possibly
bigger signatur&, writing a finite se€ of equations irk, and then showing that the initia-model ofE

is an expansion dD.

This particular example of rational arithmetic (withduxt] and|x|) seems to have been important his-
torically, and a number of sources mention it. It is problematic because one cannot take a specification of
the integers and add an inverse function(x). (The natural equation to add would ke inv (x) = 1.

But there is no way to equip the rationals with such an operation; there is no inverse of 0.) Itis well-known
thatQ can be specified in some versionmény-sortecquational logic. For example, Ehrig and Maltr [4]

has a specification using “hidden” sorts of integers and booleans and also an error constant. This raises
the issue of whether the error constant is necessary, and indeed it also raises the same issue about the use
of more than one sort. It is also not hard to give a specification avoiding the error constant and using
conditional equations and two sorts (s@e [5]). But then this raises the same question about conditional
equations.

Ehrig and Mahr were also of the opinion (see p. 1500f [4]) that “Similar to other examplebere
seems to be also in this example no way around hidden function symbols.” It is not clear whether they
mean that hiddesortswere needed, but one senses that they were. Meseguer’s réviewi]5] of [4] interprets
their comment by saying, “the authors conclude in 6.10 that there is no way around heavily using hidden
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functions and error constants to get the rational numbers.” Again, it is not clear what would constitute a
“heavy” use, but one senses that it would be the use of an additional sort. For it had been known from
the work of Thatcher et al([6] (following earlier results of Majster) that there are examples where hidden
sorts are indeed necessary. And since rational arithmetic was not easily specifiable without hidden sorts,
one might think that it wagnpossibleo do so.

The goal of this note is to clear up the situation with regar@tdeither extra sorts nor error constants
are needed to specify. Moreover, one can get by with just one hidden function, and that function can be
taken to be unary. The key to our work is a recent result of Calkin and Wilf [2] which shows that there is
a bijectiong : N — Q' which is definable by a very simple set of equations.

We should mention that the fact th@thas a finite specification with no hidden sorts follows immedi-
ately from the main theorem of Bergstra and Tucker [1]. Inde€ed, [1] has the stronger result that a minimal
computable algebra has a specification which may be taken to a finite complete rewriting system. We shall
have more to say on the “complete rewriting system” part at the very end of our note. For now, here is an
explanation of how Bergstra and Tucker’s theorem implies @hts an equational specification. Since
the rationals are countable, there are functionf, andy such thatQ,0,1,+,—, x) = (N,0,1,a,[,y).
Moreover,a, 3, andy may be taken to be primitive recursive. Now “minimal” means that every element
of the carrier set should be the denotation of some term. This is not the cas@Qutti, +, —, x), so
not with (N, 0,1,a,3,y) either. But if we add to our signature a symbkaind interpret it by the successor
functionsonN, thenN’ = (N,0,1,a,,y,s) is minimal (and computable). So by the main theorenilof [1],
there is a bigger signature (but without new sorts) and a set of equations in it spe€fying

However, if one follows the method ofl [1], the specificationNdfthat one would get would be large.

(The exact size would depend on the exact build up,@, y as primitive recursive functions. My guess

is that the actual specification would be too large for many people to ever write explicitly.) Our purpose is
to exhibit small specifications which can be understood from first principles. These should be interesting
to people who have worked in the area, and it would be suitable for classroom or textbook presentation.

The easiest way to get a one-sorted specification @fis to begin with a specification faf (any one
will do, for example the laws of commutative rings with 1). Then add a function syfmbbhrity 4, with
the equation:

f(WxY,2) x (L+wW+x°+y?+2) = 1

The intended semantics f$w, x,y,z) = (1+w? +x? +y? +72)~1. The point is that thi is total function

on the rationals, and moreover, for every natural nunmberl, there are natural numbens x, y, and

zso thatf(w,x,y,z) = 1/n. This uses the classical result of Lagrange that every natural number is the
sum of four squares. It is not hard to check that this gives a specificatiQn \bfe omit the details here

since similar ones will be presented in Secfipn 2 for a different set of equations below. The reason that we
want to consider a different specification is that there does not seem to be a way to add other interesting
functions, such as absolute value or greatest integer, on top of this specification. Another reason is that |
could not see a way to reduce the arityfofPerhaps a unary function likix) = (14 x+x%)~* would

work, but the matter is open. (As Ignacio Viglizzo pointed out to rife) = (1+ x?)~* does not work
because the smallest subring@tlosed under this operation does not conta@. L

Our results are summarized in the table below. Each line represents a specification. The result that
(Q,0,1,+,—, %x,| |) can be specified with one hidden symbol which is unary is probably the most impor-
tant of this paper.
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| Structure | Hidden symbols Number of Hidden Equations
(Q,0,1,+,—,x) one 4-ary 1
(Q,0,1,+,—, x) two unary 21
(Q,0,1,+,—,x,[ ) one unary 18
(Q,0,1,+,—,x,| I,|]) | one unary 18

2 A Specification of (Q,0,1,+,—,x,| |)
We begin with the following result:

Proposition 1 There is a unique f Z — Z so that for all ne Z:

f(4n) = 1

f(1+44n) = f(n)

f(2+4n) = f(n)+ f(1+n)
f(3+4n) = f(1+n)

Moreover,
1. Porallne Z, f(n) > 1.
2. Foralla,gcdf(a), f(14+a)) =1.

3. If a and b are positive integers such trgatd(a, b) = 1, then there is some® 0 so that fic) = a
and f(1+c) =b.

Proof For the uniqueness, note that for all integer$l +4n| > nand|2+4n| > n+ 1. This implies
that for alln except 0, the values of the left sides of the recursion equationt &oe always greater in
absolute value than those on the right. This, together with the facf (Bat= 1, means thaf is specified
uniquely on all integers.

Parts [IL) and[{2) are an easy inductionrofiror (3), we argue by induction on m@xb). Ifa=b=1,
we takec = 0. In casea > b > 1, we considea— b andb. Clearly gcda—b,b) = 1. (This is just the
argument behind the Euclidean algorithm for the gcd.) And (@axb,b) < max(a,b). By our induction
hypothesis, let be so thaff (c) =a—bandf(1+c¢) =b. Thenf(2+4c) =aandf(3+4c) =b. In case
1 < a< b, we consideb—a andb. Again, gcda,b—a) =1, and maxb—a,a) < maxa,b). By our
induction hypothesis, letbe so thaf (c) =aandf(1+c) =b—a. Thenf(1+4c) =aandf(2+4c)=h.

4|

Our f is not the only function with the properties of Proposit{dn 1, of course. For our purposes, the
only facts we need are those of the proposition, together with the facts that some natural functions related
to f are equationally specifiable. We turn to these matters shortly.

But first, we should mention that this functidnis based on a function from Calkin and Wilf’s arti-
cle [2]. That paper considers the following simpler version which we ®allfg(0) = 1, fo(2n+1) =
fo(n), andfp(2n+2) = fo(n) + fo(n+1). Then [2] shows that for ah > 0, fo(n) and fo(n+ 1) are rela-
tively prime, and that for all relatively primeandb there is aunique nso thatfo(n) =aandfg(n+1) =b.
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In other words, if we defing : N — QT by g(n) = fo(n)/fo(n+ 1), theng is a bijection. This leads to a
rather explicit proof of Cantor’s theorem that the rationals are countable.

The problem for us abotf is that the equatiofp(2n+2) = fo(n) + fo(n+ 1) implies thatfo(—1) = 0.
We needed to modifyy to obtain a function oz all of whose values are positive. We lose the uniqueness
assertion, but this is not a big problem.

Returning to our development, we extefido a function which we also call in the following way:
f(x) = f(|x]). (Here|x]| is the greatest integet x; for example|—1/2| = —1.) This is one natural way
to extendf. There are other ways, and they would lead to other sets of equations. We chose this way
because the details are the simplest that we could find, and because the resulting set of equations is the
smallest. Once again, we u$éx) = f(|x]). This determines : Q — Q. Next, letg : Q — Q be given
by g(x) = f(x)/f(1+x). Then agairg(x) = g(|x]). The point abouy is that for every positive rational
numbem/nin lowest terms, there is some natural numaep thatg(a) = m/n.

We need the following equations involvimgand x| :

Lg(4n)J = h(n) Lfg(4n)J _ -1
l9(1+4nm)] = O |-g(1+4n)] = -1
l9(2+4n)] = 1+[g(n)] |-9(2+4n)] = —1+[-g(n)]
lg(3+4n)] = f(1+n) |-g(3+4n)] = —f(1+n)

Note that heren is an integer. We can obtain equations valid for all rationaly replacingn by |x|
throughout. The functioh : Z — Z which figures intag is given by

h(4n) = 1
h(1+4n) = h(n)
h(2+4n) = 0
h(3+4n) = h(14n)

As with g, h extends naturally to a function @by h(x) = h(|x]). The point is that for alh, h(n) = 1 iff
f(n) =1, andh(n) = 0iiff f(n) > 1. So|g(4n)| = 0iff h(1+4n) =0, and|g(4n) | = 1iff h(1+4n) = 1.
It follows that for allx € Q, |g(4n)| = h(1+4n) = h(n). As we have seen, the extendei equationally
specifiable.

2.1 The specification

We take our signaturE to consist of the symboB, 1, +, —, x, |, f, g, h, where0 and1 are O-ary (i.e.,
constants):-, |, f, g, andh are 1-ary; and+ and x are binary. As we have already been doing, we use a
different font to distinguish syntax from semantics. OurBeif equations is listed in the box below. Of
course, the main example oBaalgebra satisfyinge is

Q = <Q70717+1_7x7|_Jafagah>7

where all of the interpretations shown are the ones we have already considered. That is, heQceforth
denotes the rationals equipped with all of the functions above.

Here are a few comments on our notation and equations: In general, we omit the parenthgsgs on
and we sometimes omit other parentheses for readability. We use 2 as an abbreviatignlfoarid
similarly for 3 and 4. Further, |« abbreviates 4 |x. In the invariance equatioti](3), we do not need
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The setE of equations fofQ,0,1,+, —, x, | |) using hidden functions, g, andh

1. The equational laws of commutative rings with 1.

2. Concerning: [0=0, [(1+Xx) =1+ |x and|(—1+X) = —1+|x.

3. The laws that is invariant forf andh: f x=f |[xandhx=h|[x.

4. The connection of andf : g(x) x f (1+x) =f (X).

5. The recursion equations fbr h, |g and| —g:
f (4|x) = 1 h(4|x) = 1
f(1+4|x) = f(x) h(1+4|x) = h(x)
f(2+4|x) = f(x)+f (1+x) h(2+4|x) = 0
f(3+4|x) = f(1+x) h(3+4|x) = h(1+x)
19(4[x) = h(x |—g(4]x) -
lg(1+4|x) = 0 |—g(1+4]x) = -1
g(2+4x) = 1+|g(x) [-9(2+4[x) = —1+[-g(x)
[gB+4[x) = f(1+x) [-9B+4x) = —f(1+x

gx = g|X; the ground instances of this turn out to be derivable. For the same reason, we do not need
| [ x=[xin (@). Concerning[{5), note that earlier we had the same laws but for integ@te important
point is that since (x) = f(|x]) for all x, the laws in [[p) are valid i®Q.

Finally, notice thaE has 2+ 1+ 16 = 19 equations that use the hidden symbols.

2.2 Proof of correctness

As usual, we lefTs be the set of (groundX-terms, andTs/E the quotient ofTs by the smallest-
congruence including the substitution instance&ofLet e : Ts — Q be the uniqgu&-homomorphism.
We writeE -t = uto mean that = uis derivable fromE in equational logic. (This is the logical system
whose axioms are the substitution instances of the equatidbs §x = x} and whose rules of inference
correspond to the symmetric and transitive properties of equality and to the substitution of equals for
equals in functions.) We shall only be interested in this whandu are ground terms, and then it also
means thaft] = [u] in Tz /E.

We prove thalls /E = Q. The idea is that every term is provably equal, nigdo a special kind of term
which we callnormal To state the definition, and for our future work, we associate with each imeger
termn in the following way. Fom = 0, we setn to beO; forn=1+---+1, we sein to bel+---+1;
and forn= —(1+4---4+1), we use—(1+ --- +1). Now we can say that our normal terms arg() for
n>1,and—g(n)forne Z.

Lemma?2 Leta, b, and &= Z.
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1. Ifa+b=c, then E-a+b = ¢, and similarly forx and —.
2. EFa=a.
3. If f(a) =b, then E-f (a) = b, and similarly for h anch.

Proof Part (1) is an easy consequence of the initialit a@mong commutative rings with 1. Paft (2) is
an easy induction ofa|, as is [B). In addition,[[3) uses the invariance laws|farith f andh, and also
parts [1) and[{2). It is essentially an elaboration of the proof of Propogition 1. —

Lemma 3 Ift € Tsissuchthat B-t xf (1+n) =f (n), then EFt =g(n).

Proof Letm=1+4(1+n), so thatf(m) =1, f(14+m)= f(1+n), andg(m) =1/f(1+n). Then
EFg(mxf(l+m =1. And by LemmaJ(3)E F f (1+n) =f (1+m). From these facts and the
commutative, associative, and unit laws, we deduce accordiBghat

t = tx1
= txf (1
= txf (1
= f(n)

g
= g

Lemma4 Letabe Z. Then
1. E-ga=g]a.
2. If |g(a)| = b, then E- |ga =b, and if|—g(a)| = b, then B+ | —ga =b.

Proof The first part is an easy calculation using Lemjiha 3, and the second is an inductejrusimg
the first and Lemm@ Z(3). =

Lemmab Leta, b, and &= Z.

1. If g(a) = g(b), then E+g(a) = g(b).

=
Q
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5

Proof For part [IL), note that sincé(a) and f(1+ a) are relatively prime, and similarly fof(b) and
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f(1+b), we havef(a) = f(b) andf(1+a) = f(1+4b). Now our result follows easily from Lemnja 3.
Part (2) is similar. Ifg(a) is the natural numbeb, then f(a) = b and f(14+a) = 1. Then since
EFbxf(l1+a)=f(a), we seethaEt+ g(a)=Dh.
We also use Lemm@ 3 to check pdit (3). We know that
f(a)f(1+b)+ f(1+a)f(b) f(c)

f(1+a)f(1+b)  f(l+co)

Moreover, the second fraction is reduced. frete such tham- f(c) = f(a)f(1+b)+ f(1+a)f(b) and
m- f(1+c)= f(1+a)f(1+b). Letn be such thaf (n) =1 andf(1+n) =m. Sog(n) = 1/m. Using
LemmalR, parts[[1) andi(3), we see that

EFf(1+n)xf(c) = (f(a)xf(1+b))+(f (1+a)xf (b)),

and alsothaE -f (n) =1 andthaEFf (1+n) xf (1+c)=f (1+a)xf (1+b). So modulcE,

I
—h —h —h

(a)f (1+a)f (1+b)+g(b)f (1+a)f (1+b))xg(n)
= (f(a)f (1+b)+f (1+a)f (b)) xg(n)
= f(c)xf(1+n)xg(n)
= (c)xf(n)

(c)

(We have omitted some signs for readability.) Parf](4) is similar, arfd (5) is the easiest to check.H
In the next lemma, recall that thrmalterms ared and alsqgn and—gn for n € Z.
Lemma 6 For every te Ts there is some normal @ Ty such that B-t = u.

Proof By induction ont. ObviouslyO is normal, and as fot, E + 1 = g(0) by a calculation involving
Lemma[B. Assuming the lemma foandu, we easily get it fot + u, —t andt x u. The routine details use
Lemmalb.

Concerning|t, we argue as follows: By induction hypothegiss normal. IfE -t =0, thenE I |t =
|0 =0. Suppose, for example, that-t = —g(n). ThenE+ [t = |—g(n). Now | —g(n) | is some natural
numberb, and by Lemm&|3{2E - | —g(n) = b. If b= 0, thenb is normal and we are done. Otherwise,
leta be so thag(a) = b. Then by Lemm#]$[2) we see tHat- [t = |—g(n) =g(a).

The argument fof (t) is similar: fE-t =0, thenE+f (t) =f (0) =1 = g(0). Suppose again that
Ert=—g(n). ThenE+f (t) =f (—g(n)) =f |—g(n). This uses the invariance law forandf . Now
| —g(n) ] is some natural numbér and by Lemm@%[2) + | —g(n) =b. Letaandc be natural numbers
such that = f(b) andg(a) = ¢, so thatE - f (b) =c =g(a). ThenE+f (t) =g(a).

The same argument works fbr(t). Forg(t), the argument is slightly easier: as soon as we know
EF |—g(n) =b, we then hav& - g| —g(n) = g(b). This last term is normal. =

Theorem 7 Ts /E = Q.
Proof Let¢ : Tz /E — Q be the uniqu&-homomorphism, by initiality. Explicitly$ ([t]) = €(t). Then¢
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is surjective, sincé(0) = 0, and for every positive rationalthere is some so thate(g(n)) =g(n) =r
(and hence alse(—g(n)) = —r).

We conclude by showing thdt is injective. Lete(t) = €(u). We assume first that this number is
positive, say(t) = g(n). Then there are normal terrtisandu’ so thatE -t =t andE Fu=U'. Since
e(t’) =€(t) = g(n) > 0,t' must be of the forng(m) for somem. Similarly, U must be of the forng(p)
for somep. But nowg(m) = g(n) = g(p). So by Lemma&]3{1), we see tHat- g(m =g(n) =g(p). And
from this we see tha -t = g(n) =t’. This concludes the argument whe() > 0. Of course, the same
reasoning applies wheaft) < 0. If g(t) = 0=¢(t’), then again we have normalandu’ as above. We
havee(u) = g(t) ande(u’) = g(t’). By normality,u andu’ must both be the ter®. And soEHt=0=t.

4|

2.3 One hidden function

We promised at the outset to get things down to one hidden function symbol which is unary. Currently we
have three hidden symbols, g, andh. To combine them into one, say we first describe the intended
semantic functiom. On integersi is given byi(3n) = f(n), i(1+4 3n) = g(n), andi(2+3n) = h(n). Then
we extend this to all rationals byx) =i(|x]). LetQ* = (Q,0,1,+, —, x,i).
Let 2 be our old signature, and I& = (X\ {f ,g,h})U{i }. There is a translation— t* of Ts to Ts-
given as followsxx" = x for variables0* =0, 1* =1, (|t)* = [t¥, (t+u)* =t* +u*, and similarly for—
and x, (ft)* =i (3[t%), (gt)* =i (1+3|t*), (ht)* =i (2+3|t*). For examplen* =n for all n € Z.
And the translations of the normal termsTfare just those of the forin(1+3n), wheren € Z. We get
a setE* of Z*-equations by

E* = {t"=u":t=uisanaxiomofE}.
Theorem 8 Ty« /E* = Q*.

Proof The translation map commutes with substitution in the appropriate sense. Using this, we prove
by an easy induction on derivations thaEif-t = u, thenE* - t* = u*.
The crux of the proof is the analog of Lemifja 6: for every terenTs- there is some normal € Ts
such thaE* -t = u*. Just as in Theoreff 7, this implies tiat /E* =~ Q*.
We argue by induction on The only interesting case is for Assuming thaE* -t = u*, we consider
i (t). Since the case thatis O is easy, we consider only the case whes gn. ThenE* i (t) =i [t =
i [(gn)* =i (|gn)*. Letm=|g(n)], SOE F |gn = mby Lemma#[R). Thug* i (t) =i (m). Now we
argue by cases om. If mis of the form 3 or 2+ 3p for some positive integep, thenim is (fp )* or
(hp)*. Both situations are similar. In the first, igbe such thag(q) = f(p). ThenE +fp =gq, and so
E*Fi (t) = (gq)*. If mis of the form 1+ 2p, theni (m) is (gp)*. SOE* i (t) = (gp)*. =

At this point, E* has 19 equations involving. The translations of |[x = f x andh|x = hx can be
replaced by |[x=1i x. So we are left with a specification with as the one and only hidden function
symbol, and 18 equations using

2.4 Additional remarks

More operations We also promised to specifp with the absolute value functigw|. Here we would
add|0[ =0, [g(x)| = g(x), and|—g(x)| = g(x).

We could also consider a functiagmv on Q defined byinv(0) = 0 andinv(m/n) = n/m. We specify this
usinginv (0) =0, inv (gx) xgx=1, andinv (—gx) x (—gx) = 1.
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Fewer operations Suppose one wants to drdg| and specify the rindQ,0,1,+, —, x) with as few

hidden symbols as possible. Our work gives this with two hidden unary sympalsji . Since| is

hidden, we now have 183 = 21 hidden equations. We do not know how to specify this structure with
just one unary hidden symbol, though we believe that this should be possible. As we mentioned early on,
one 4-ary symbol suffices.

Rewriting Specifications ofQ We conclude with a remark on rewriting presentations@pas studied

in Contejean et al([3]. Their paper is really about getting a rewriting presentation suitable for efficient
computation. Our work does not address that important issue. In any case, the paper gives a three-
sorted presentation of rational arithmetic usingpanplete rewrite systenThe three sorts are the natural
numbers, the non-zero natural numbers, and the rationals. Moreover, the addition and multiplication on
the natural number sort are associative and commutative. A complete rewrite system obtained by the
methods of[[1] should be neither associative nor commutative. It is still open to get a rewrite presentation
with addition and multiplication on the rational number sort being associative and commutative.

Our approach cannot directly give a complete rewrite system for two reasons. First and foremost, the
connection lavg (x) x f (1+x) =f (x) leads to a non-confluent system. The same is true of the distributive
law, which we have used in a few places. (However, [3] show how to use a positional notation for integers
to get around this.) We believe it is likely that our work could be combined with thafl of [3] to get a
two-sorted presentation of rational arithmetic, again with addition and multiplication on integers to be
associative and commutative.
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