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Let X be a two-element set of words over a finite alphabet. If a bi-infinite word possessisfagtorizations which
are not shiftequivalent, then the primitive roots of the wordX iare conjugates. Note, that this is a strict sharpening
of a defect theorem for bi-infinite words stated in JKIVIP2].

Moreover, we prove that there is at most one bi-infinite word possessing two diffésfatorizations and give a
necessary and sufficient conditions Xffior the existence of such a word. Finally, we prove that the family of$ets
for which such a word exists is parameterizable.
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1 Introduction

Defect theorem is one of the fundamental results on words,f [Lo]. Intuitively it states thabifds sat-
isfy a nontrivial relation, then these words can be expressed as products of at-+ibstords. Actually,
as discussed in[CK], for example, there does not exist just one defect theorem but several ones depending
on restrictions put on the required- 1 words.

It is also well-known that the nontrivial relation above can be replaced by a weaker condition, namely
by the nontrivial one-way infinite relation, cf[Br] and-[HK]. The goal of this note is to look for defect
theorems for bi-infinite words. In a strict sense such results do not exist: tie-sdiab,ba} of words

satisfies a bi-infinite nontrivial relation sin(:ab)Z = (ba)Z, but there exists no worplsuch thaiX C p™.
However, in [KMP2] there was proved one result and we are going to prove another one in a special case
which both can be viewed as defect theorems for bi-infinite words.

In terms of factorizations of words defect theorem can be stated as follow¥ CeXt be a finite set
of words. If there exists a wont € =T having two differenX-factorizations, then the rank ¥fis at most
card X) — 1. Here the rank oK can be defined in different ways, cf again JCK]. For example, it can be
defined as a combinatorial rank(X) denoting the smallest numbesuch thaX C Y+ with cardY) = k.
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To describe our results let be a bi-infinite word, i.e., an element EZ, andX a finite subset oE™.
We say thatv has anX-factorization ifw € XZ, and thatv has two differenX-factorizations, if it has two
X-factorizations such that they do not match at least in one powt dafhe following result was shown
in [KMPZ2]:

If a nonperiodicbi-infinite wordw has two differeniX-factorizations, then the combinatorial rank
re(X) of X is at most car@X) — 1. Moreover, ifr¢(X) = cardX), then the number of bi-infinite
words with two differeniX-factorizations is finite.

We are going to prove a strict sharpening of this result for the two-element case:

Let cardX) =r¢(X) =2, sothakX is a code. If a bi-infinite worgv has two differenX-factorizations
which are not shiftequivalent, then the primitive roots of wordX iare conjugates. Moreover, there
is at most one bi-infinite word possessing two differ¥érfactorizations.

The first part of our result is related to the main resultofIRIR], and, we believe, deducible from consider-
ations of that paper. However, our proof is self-contained and essentially shorter, and moreover formulated
directly to yield a defect-type of theorem.

Our paper is organized as follows.

In SectioR we fix our terminology and present the auxiliary results needed for our proofs. In $ection 3
we prove, as our main result, a defect theorem for binary)éstisfying a nontrivial bi-infinite relation.
To prove this seems to be quite complicated. In Sediion 4 we prove the second part of our result, i.e.,
the unigueness of th&-ambiguous bi-infinite word in the two-element case. In Secfjon 5 we give a
characterization of two-element sets which allow anX-ambiguous bi-infinite word. The last section
contains conclusions and open problems.

The extended abstract of this paper and paper [KMP2] has appeafedin][KMP1].

2 Preliminaries

In this section we fix our terminology and recall a few lemmas on combinatorics of words needed for the
proofs of our results. For undefined notions we referto [LoJ-orl[CK].

Let Z be a finite alphabet and a finite subset oE™. The sets of all finite, infinite and bi-infinite words
over X are denoted by*, sN andZZ, respectively. Formally, eepresentatiorof bi-infinite word is a
mappingfy : Z — Z, usually written as

W=...a1aa;1... with & = fy(i).

Representations: Z — Z andf’ : Z — X represent the same bi-infinite word if there exists an integer
such that for all integerss f (i) = f/(io+1i).

Let f,y be a representation of a bi-infinite wowd We say that a bi-infinite word is periodic if there
exists a positive integdp, calleda period such thatfy(i) = fw(ip+1) for all integersi. Note that a
non-periodic bi-infinite word has infinitely many representations, while a periodic one has ex@etly
representations, wheréw) is the smallest period af.
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An X-factorization ofw is any sequence of words fro¥yieldingw as their products. Formally, le§,
be a fixed representation ufe >Z. An X-factorizationof wis a mappingd- : Z — X x Z such that for
eachk € Z if F(k) = (a,i) andF(k+1) = (B, ]), thenaja11...aj_1 = q, i.e., the position is a starting
position of the factoo in w. We say that twoX-factorizationd; andF; of a bi-infinite word are

o different whenever there islg € Z such that for each € Z, F1 (ko) # F2(K),
o disjoint, whenever the starting positions of all factord-inare distinct from the ones iR,
¢ shiftequivalentif there is aky such that wheneve (k) = (a,i) andF (ko + k) = (B, j), thena = 3.

Notice that the above definitions are independent on the choice of a representation of

An X-ambiguoudi-infinite word is a bi-infinite word, which has two differedt-factorizations. Let
amb(X) be the set of alK-ambiguous bi-infinite words and let sgK) be the sum of lengths of words in
X, i.e., thesizeof X.

Example 1. Let X = {a,bab baab}. The word(baa)Z has two differeniX-factorizations, namely the
ones depicted as:

AN
... baabaab...
S— AN

They are clearly shiftequivalent. On the other hand the word

w=...bababaabaab - = N(ba)b(aab)N
also has two differenX-factorizations, which, however, are not shiftequivalent:

Y YY YYV YYVY N
. ababababaabaabaabaa...
SN ANAANSA AN AN

Clearly, in both of the above cases the two factorizations are disjoint.

We define the&eombinatorial rankof X C =t by the formula
re(X) = min{cardY) | X CY*}.
For the sake of completeness we remind that
re(X) <rs(X) < cardX),

wherer; (X) denotes théree rank(or simply therank) of X defined as the cardinality of the base of the
smallest free semigroup containiXg cf [CK.

Example 1 (continued). Clearly,r (X) = 2, sinceX C {a,b}*, but for no wordp the inclusionX C p*
holds. On the other hand, sinXeis a code we conclude thgt(X) = 3.
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We say that a finite word/ = ws ... Wy, has aperiod ne N, if there is a wordu such thatv = u". The
shortest period is callethe periodof w, denoted astw). If w= u™"), thenu is calledthe rootof w,
denoted ap(w). A word w is primitive if p(w) = w. Themirror image of w, denotedaR, is the word
Wnm...W1.

Next we recall a few basic results on words that we shall need in our later considerations, for their
proofs the reader is referred tofLo] ar[CK].

Lemma 1. (Fine and Wilf) Letuve =T If the words &' and W have a common prefix of length
at least|u| + |v| — gcd(|u[,|v|), then u and v are powers of a common word.

Lemma 2. No primitive word r satisfies a relation = srp with s 1 and p# 1.

Lemma 3. If two words u and v satisfy the relation ittv for some w,t € =7, i.e., if they are conjugates,
then there exist words p and q such that pq is primitive and

u=(pg), v=(qp' and tep(qp)* forsomei>1.

In Section# we shall need also the following result which has been proved'in [LyS].

Lemma 4. Consider nonempty words X, Y, z satisfying equatiba=x"z", where mn, p > 2. Then all
words xY,z are powers of a common word.

In order to formulate our fifth, and most crucial lemma, we need some terminolody, cf [CKI-or [HK].
We associate a finite sé&t C = with a graphGx = (Vx,Ex), calledthe dependency grapbf X, as
follows: the sew/x of vertices ofGx equals toX, and the sefEx of edges ofGx is defined by the condition

xy) eBx it xxNoyxN2o.

Then we have

Lemma 5. For each finite set XC 1, the combinatorial rank of X is at most the number of connected
components ofx.

As we shall see, Lemma 5 is particularly suitable for our subsequent considerations. Indeed, in that
lemma it is crucial that words iX are nonempty, and that indeed is satisfied in the proofs of our Theo-
remeL2.

3 The Two-element Case

In this section we generalize the following result of [KMIP2] in the case of two-element sets.

Theorem 1. Consider a set %= {01,...,0,} C Z*. Let w be a bi-infinite word oveX and R,F, two
different X-factorizations of w. Then the combinatorial rank of X is at mestipor both the word w
and the X-factorizationsikF, are periodic. Moreover, if the rank of X is n, then the number of periodic
bi-infinite words with two different X-factorizations is finite.

A restriction of Theorenf]1 to two-element sets yields the following consequence.

Corollary 1. Consider set X= {a,B} C =*. Let w be a bi-infinite word oveX and F,F, two different
X-factorizations of w. Then the words3 commute or both the word w and the X-factorizations
are periodic.
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First we recall that in a strict sense we cannot have a defect theorem for bi-infinite words even in this
simple case.

Example 2. The setX = {ab,ba} is of combinatorial rank 2 although the wo(db)Z has two disjoint,
and even non-shiftequivalenf;factorizations.

As a main result of this paper we, however, show that the above example, and its natural variants, are
the only exceptions which may occur. And even in these cases the roots of wordseérconjugates, i.e.,
they are cyclic permutations of powers of a common word.

To prove our main result we will need also one patrtial result froam [KMP2], which can be stated as
follows:

Lemma6. Let XC =T and let
W= .. .W_oW_1WoW1W>...
be a bi-infinite word. If there exists words, f, f], f, € X, aword te £* and integers k j <k <1,
i <j' <K <V, such that
=W Wj_1 =Wg.. . Wj_1 = Wjr...Wjr_1 =W ... Wr_g,
'f]_:Wj...W|_;|_7 fi:Wj/“'Wl’fla
fo=w... W1, fé:Wi’---Wk’fly

then either f and f] (resp. § and f}) commute, or¢(X) < card X).
In the notation of [KMP2] this lemma claims that the situation whgpossesses two different minimal
t-pairs implies a defect effect. This situation is depicted in Figlure 1.
f1 fl
t/7 Y\ t/ N
Tt « T
f2 f;

Fig. 1. An illustration of the situation considered in Lemifa 6.

Theorem 2. Consider set X= {a,B} with o, € Z*. Let w be a bi-infinite word oveE and R,
two different X-factorizations of w containing together both elements of X. Then one of the following
possibilities holds:

() a andp commute, or
(ii) the roots ofa andf3 are conjugates and aZ, Fe BZ, or vice versa, or

(iif) the two X-factorizations EF, are shiftequivalent and there exists arnl such that I, R, €
(O(B”)Z anda is primitive or i, F, € (Ba”)Z andf is primitive.

Proof. We can assume thatandf3 do not commute.
Then, by Lemmad]5, the factorizatiofs, F, must be disjoint. Indeed, if factorizatiofs andF, are
not disjoint, then we can take the parts of factorizations to the right (respectively, to the left) from a
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place where they are joint to obtain an infinite equalig - -- = y1y»... overX (respectivelyx?xg =
yRYR... overXR). Since the factorizations are different, at least one of these two equations is nontrivial.
Hence, by Lemm§ 5, the wordsand3 commute, a contradiction.

Further, by Corollanf]1, the factorizatiofig, F> are periodic. By Lemm@ 1 the periods ef andF,
have the same length and are conjugates. Whenever we find the situation which is shown ifij Figure 2,
since the factorizations are periodic with the same length of the periods, this situation occurs infinitely
many times. Using Lemma 6 we get that f, are periods of, F.

f1€x+
t/ \
_Jt

f2€X+

Fig. 2. In the situation depicted in the pictufe (f2) is a part of the factorizatioR; (of the factorizatior).

If both a and are not primitive, we can replace them by powers of their regts™ @) p(B)™P and
explore the situation over a slightly different sét= {p(a),p(B)}. If we prove that the claim holds for
p(a),p(B), then, as is obvious, it must hold also forand3 and, moreover, in cad@i) we have either
m(a) =1, i.e.,a is primitive, or(B) = 1, i.e.,B is primitive. So it is enough to consider only the case
whena andp are primitive.

a

[

a a o a
Fig. 3. An illustration of the situation wheR, = a

Z andF; containsa.

Without loss of generality we can also assume that |3|. Now, if F, does not contain the factor,
then it contains only’s or only B's or there is a point insidE, from which to the left there are onfys
and to the right onlya’s. In the last case the factorizatids is clearly nonperiodic — a contradiction

with Corollary[i. Consider now, for example, the cdse= o, |f F1 contains anya, then we have
the situation depicted in Figui@ 3 which, by Lemfa 2, contradicts the primitiveness $6 we have

FL= BZ, and, by Lemmﬂlq andf must be conjugates, which is ca&g.

[\ LN £
N A A
o« B “ B “@ B

Fig. 4. All possible coverings of factanp in F.

From now on we may assume thatcontains the factonf3. In Figure[# we can see all possibilities how
F, covers the border between the above occurrencasaofd3. We shall analyze all three cases.
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Fig. 5. The second case of 3 cases shown in Fifure 4.

Case 1,2.We can analyze first two cases simultaneously, because when we forget about the relation
between lengths af andf3, then they are clearly symmetric. So consider the second case of 3 possibilities
drawn in Figurd}4. If the word to the right of tfein the factorizatiorf; is alsof3, thenf is not primitive

which is not the case. Hence, we have the situation shown in Figure 5. Ngw=ifa or z2 = a, then

V1 =V and we arrive into the situation depicted in Fig[ire 2 with= Ba and f, = aff which is casdiii)

of our claim. So consider the other case wkgn= z_ = 3. We can continue in this way inductively until
sequences d¥'s exceedn’s (on both sides at the same time) or we obtain the situation in F[gure 2 with

f1 = B"a, f, = af", for somen > 1, which is again casgii) . The first possibility is shown in Figuié 6.

a
B B B 7 (=)
1 4
VR RN
Z B B B
a i>2

Fig. 6. The situation when sequences{d exceedx’s on both sides.

Now again ifzz = 3, then we have; = v», and hence we are again in céii¢. So assume thag = a. We
havep = vat = tvs, which by Lemm4]3 allows us to write = (pg)¥, v4 = (qp)%, t = p(qp)", wherepqis
primitive andk > 1, n > 0. We can see that ends withpgand starts witlgp. This means that the word
pggpmatches the worf = (pg)<t"p around the black point shown in Figuie 6. Since the factorizations
are disjoint, the black point must lie insifle There are 5 possibilities where the black point ingd=an

be. In case (1) the black point matches with the end of thedinstf3, in case (2) it matches with the end
of any pqin B, in case (3) it occurs inside the firgtof B, in case (4) inside the firgf, and, finally, in the
last case it occurs in the rest®fas it is shown in Figurg 7.

1) @) ...
EOING)

B

Fig. 7. 3 possibilities where the black point can occufin

In case (1) we have, according to Figlire 6, the following two equations with unknéwn&a, p,q}:

a=vp ?p=qwy, a=pB Avz=pw,,  wherew;,w, € Y".
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The dependency graph of this system is then connected which implies that unkndyasahhence also
o andf, commute, which is a contradiction.
Similarly, in case (2) we can write

a=vip2(pg), aesf'a = pap " 'eaf *(pg),

wherel > 1, e;,6, € X* and the second equation is obtained by taking partg d%, between the black
point and the next occurrence (to the right) of the black poing; $® a part of the factorizatiof;. We
can rewrite these two equations as a system of equations with unkiowr{s, p,q}:

a=qpw, Oows=pws,  wherew;s € {p,q}*, wo,wz € Y",

and, by Lemmd]5, we have again a contradiction.

In case (3) thep, which follows the black point, lies inside the figs pin 3. But this is a contradiction
because thepgcannot be primitive. In case (5) we can use the same argument witlojthieich precedes
the black point. The situation around the black point in case (4) is shown in Higure 8.

o a
p q q p

p q p

Fig. 8. The situation around the black point in case (4).

It follows, by LemmdR, thagj is not primitive, and that there is arsuch thau; = 8, u; = sl andg =5 !
with i, j > 1. Now, as above, we have two equations with unknowes{a, p,s}:

a = v 2pup =$Hwy,
swiera = uy taea = (pg) " peaptpw = pwp,
wherew, W, € Y* andep, e; € X* are parts of theX-factorizations. Note that the second equation deals

with the word starting with the firat, after the black point and ending in the next occurrence of the black
point.

Case 3.Now we shall analyze the third possibility shown in Fig{ire 4. Sipce primitive there must be

a to the right of theB on the upper line. Using the same considerations as in the previous case we come
to Figure[®, or we end up in cagié) with f; = Ba", f, = a"B for somen > 1. In the first case we have

O = ViV3 = VaV2, Where|vy| = |v2| and|vs| = |v4|. There are again two possibilities.

B i>2
a o &R
Vl 3 /‘Y’
/ - Val V2
a M
B B

Fig. 9. The situation inCase 3.
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Assume first thatgr = a. We know thaf3 starts withvsvy, so, as it is shown in Figufe]1Q3v; lies inside
aa = vivavivs. This implies that eithea is not primitive, orvsv; matches withvavy in aa. In the first
case we have a contradiction. In the second case it is obvious from Figure 1@ thag, say equal to
p, andv; = V4, say equal tay, and moreover thdip| = |vs| = |v4| = |g|. So we havepa'1p = Ba'~1q,
which means that = pa'~1 = p(qp)'~* conjugates withi = a'~1q = q(pg)' . We shall show that this
is again a contradiction with the primitivenessoof= qp.

Fig. 10. The casar = q.

We have already analyzed this situation. Since the woigla conjugate withv, a factor of the word

uu must be equal to the word The wordu starts withqp and ends withpg, so the middle point of
the word pqqgplies inside the word/ = p(qp)i‘l. There are again 5 possibilities (see Figlre 7). Since
|p| = |g| in cases (1) and (2) we haye= g, so that = vyv3 = qp= p? proving thata is not primitive, a
contradiction. In cases (3) and (5) we also have a contradiction with the primitivenesssofie already
proved. In case (4) we hawe =S, u, =/, = s (see Figurd]8), and sinde| = |q| we also have

p = upu; = S/ = g, which is again a contradiction.

R=p
a VoVy
V4 \ V2 Va K 1
z(=a)
B B

Fig. 11. The caser = .

So it remains the casgy = . The situation is drawn in Figufe]11. Sinds not primitive z must be
a. Itis obvious thaft| = |v2| = |v1|, which impliest = v1. We know thaf3 ends withv,vs, and hence
there iswvpv, at the end of the last upp@rin Figure[Il, and, at the end of the last lowd}. But since
|Vova| = |vat| we have the equatiowpva = vat = vav;. According to Figuréd]9 and Figufe]1l we have the
following system of equations with unknowls= {3, v1,V2,V3,V4}:

VaVg = VgVy, Va(V1va)' 1B = B(Vavp)'

(0 =) ViV3 = VgV, V2B = Bvy.

Vg,

The dependency graph associated with this system is connected, and hence all unknowns commute, in
particulara commutes with. This completes the proof of the theorem. O
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Theoreni2 deserves a few comments. The number of différdattorizations of the bi-infinite words
having anX-factorization is very different in cas€i—iii) . In casg(i) there exist non-denumerably many
suchX-factorizations, in cas@i) there are finitely many differen-factorizations, and if we consider all
shiftequivaleniX-factorizations as the one, then there are exactly two of them. Finally, iniiagbere
are also finitely many differerX-factorizations, which are all shiftequivalent. This actually means that in
casg(iii) no bi-infinite word can be expressed in two different ways as a product of words{rdience,
indeed, Theorer 2 shows a defect effect of a two-element set for bi-infinite factorizations.

In TheorenfR we showed that if the wordsXtlo not commute and their roots are not conjugates, then
only the caskiii) is possible. But if they do not commute and are conjugates Thegrem 2 allows either
case(ii) or (iii) . Now we shall prove that in this situation only cggg is possible. According to the last
part of the proof of Theoreij 2, we can formulate the following lemma.

Lemma 7. If pq is primitive and pq are nonempty, then(gp)" and ¢ pg)" are not conjugates for any
n>1.

This yields easily

Corollary 2. If a andf are different conjugates, therf3 must be primitive.

Proof. Assume the contrary thatf} is not primitive, so we havep =t', wheret is primitive andi > 2.
Now if i is even, then immediately = (3, which is a contradiction. For odd= 2n+ 1 we havea = t"p,
B = qt", wheret = pg. Buta andp are conjugates and so, by Lemfia 7, we have a contradiction]

In fact Corollary[R is a special case of the claimlin]LeS] which states under the additional assumption
thata, B are primitive, thati™ is primitive for all natural numbers. The proof is not difficult, but we
need only this special case to prove the next result.

Corollary 3. Consider set X= {a,B} with a, € Z*. Let w be a bi-infinite word oveE and F,R
two different X-factorizations of w containing together both elements of X. If the roatsodire non-

commuting conjugates, then E GZ, Fe BZ, or vice versa.

Proof. Again as in the proof of Theorefh 2, we can assumedh@tare primitive. We have to show that
the one of theX-factorizationd=;, F, consists only ofi’s and the other only d¥’s. So assume the contrary
that the lower factorization contains bathandf3. Without loss of generality we have the situation shown

in Figure[IP.

Fig. 12. The situation whemt andf3 are conjugates and the lower factorization contains bicahd.

Sincef is primitive we havez = a, by Lemma[R. We can writf = uou3z = usuy, and so, by Lemmfg 3,
we have

w=(pg, w=(p,i>1, uz=p(gp", n>0,
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wherepqis primitive. If z = a, then, by Lemmd]|2a3 is not primitive, which contradicts Corollafy 2.
Hence assumg = (3, which impliesu; = us. Similarly us = uz and we havep(qp)"(pg)' = Uil = a =
Usus = (qp)'p(qp)". By Lemma[b, therp andg commute, which is again a contradiction. O

4 The Uniqueness of the Bi-infinite Word

In [KMPZ], cf. Theoren{IL it was proved that if the rank of the Xe¢quals to carX), then the number

of X-ambiguous bi-infinite words is finite. In this section we shall prove that in the two-element case, for
each seX, there is at most ong-ambiguous bi-infinite word. This holds also in the case wh¢X) =1,

since then both elements ¥fare powers of a common wotdand the only possible bi-infinite word is

tZ. The situation is also trivial in the case when roots of elements ef {a,B} are conjugates: by
Corollary[:l; the only possible bi-infinite word i8 = ol = BZ. So we need to consider only the case
when the roots oft andf3 are not conjugates.

In this case, by Theoreﬂ1 2, we know thabéambiguous bi-infinite word must be of the forimp"

or (a”B)Z. Moreover, sincev has twoX-factorizations, the word " or the worda"3 cannot be primitive,
by LemmaR.

As we stated in the previous sectionqifind are conjugates, then the wor@R" anda"3 are primitive
for all n. Now, we shall show a similar result for, 3 being non-conjugates, i.e., we shall show that at
most one word in the set of words("; n> 1} U{a™B; m> 1} is not primitive. By this result, we have
that also in the last case there is at most Br@mbiguous bi-infinite word. We need two lemmas.

)Z

Lemma 8. Leta, 3 be primitive and not conjugates. Then for anym> 0 with n=£ m, at most one of the
wordsaf" andaf™is not primitive.

Proof. Assume the contrary that bod3", apf™ are non-primitive withm < n. Form= 0 the claim is
obvious, so we can assume> 1, and sa > 2. We can write

ap"=¢ o

P . and therefore alsos =t!g" ™, Q)
ap™ =t/
wheres;t are primitive and, j > 2. Now if n—m > 2, then, by Lemm&]4s, t and3 are powers of a
common word, and so a@ and 3, which is a contradiction. So we can assume= n—1, and thus
equation 1) simplifies te =t!p.

Now if |s| < (n—1)|B|, then|B| + |s| < |B"|, so that, by the equaticmB” = &, WOI’dSNB andNs have
a common suffix of a length at leaf| + |s|. Applying Lemma[JlL we conclude that wordsand 3 are
powers of a common word, which again yields to a contradiction. So we have

Is| > (n—1)|B| > |B|, and similarly, @)
[t} > (m=1)B| = (n—2)|p|. @)
Inequality (2) together with equatiofi (1) impligs| =i|s| — |B| > (i—1)|s|. So, ifi > 3 we havet!| > 2|s],

and sincej > 2 also thaft!| > || 4 |t|. Then equation[J1) and Lemnii 1 implies tsandt commutes
which leads to a contradiction. Hence we can assum@.
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If [t|+|B| < |s], then using equatiof](1) we derive inequaltty > (i —1)|s| + [t| and, by Lemm&]1, we
have a contradiction again. Hence we may assume that

]+ 18] > |9 @
Now consider the case> 3. We have
1 ()] @, @ . ® .
2t = (14— )t > itl+ 1B > Is| @ jit| + 1B~ Is| > (| ~ D)t (5)

which implies thatj = 2 and also thalt| > |B| by the two first inequalities. The second inequality and the
equationaf" = t2 imply thatt = xB for somex # 1. Thus equatiori{1) yields & = t2B = xBxpp, which
implies that|| is an even integefxB| < |s| and3|B| < |s|. Hence, we can write= xBy = zB,p for some
y,z# 1, wherely| = |B2| = ‘—gl B = BiB2 and|x| = |7. We can divide this equation into two parts= z
andfy = 2B, where the second one, by Lemfha 2, contradicts the primitivengss of

The last case we have to analyzenis- 2. Now if [t| > |B|, then, by [p), we have|g > |t| + |B| >
(j —D)Jt] and j = 2, which is again the previous case. So consider the [tase|B| < |5/, where the
second inequality comes froifj (2). By the equatiafis=ti andap? = s? we can write3 = xt ands = yt
for somex,y # 1. Hence equatior{](1) leads yoyt = tIB. We havelyt| = |s| = [t!| + |B| — || < [t!], sO
that we can writgtz=t!, z# 1. Now eithert is not primitive by Lemma4]2, or matches with somein
tl, but then we havg = t¥, and hence alss= t“*?, so that words, s are powers of a common word. In
both cases we arrive to a contradiction. O

Lemma 9. Leta, 3 be primitive and not conjugates. Then for anym> 0 with (n,m) # (1,1), at most
one of the wordsi3" anda™p is not primitive.

Proof. Casesn= 0 andn = 0 are trivial. The casen= 1 is a special case of Lemmia 8. In the case 1l

we can exchange andf3 and take reverses of words, and we are again in themasgé. We shall use this
reasoning again later, so let us calthie reverse argumentConsidem,m > 2 and assume the contrary
thataf" =s, a™B =t!, wherei, j > 2 ands;t are primitive. Using the same argument as in the proof of
the previous lemma we have

s> (=DIB[=[B],  [t|>(m-1)ja]=>]a]. (6)
Hence
|a] =ils| = n[B| > (in—i—n)[B], @
Bl = jlt| = mlaf > (jm—j—m)|al,

which implies that
[(i —1)(n—1)—1} . [(j —1)(m-1) —1] <1

So we have either=n= 2, or j = m= 2. Now by the reverse argument the first case is equivalent to the
second one, so it is enough to consider only the ¢gasen= 2. If |t| < |B|, then, by [B), we obtain

® @
lal <[t/ <[BI <15

Together with [[7) we havé — 1)(n— 1) — 1 < 1, which implies that also= n = 2. Now again we can
apply the reverse argument and the inequadity- |a| transforms to the inequality| > |B|. So, without
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loss of generality, we can assume that> |B|. We have the situation depicted in Figdré 13, where
B = UyUp with |uy| = |up| = 3|B| anda = a'uy = U0’

Fig. 13. The situation when2f = t2 andap" = s with n> 2.

Sinceua’ = a’uy, Lemma[B gives us

Uz = (pg) ket
= (qp)¥ and therefore 4 - P(ap) ,
o gzg)p), { B= (ap)*(pa)*

wherek > 1,1 > 0 andpqis primitive. We may assump,q # 1. Now considering the last occurrence of
sin Figure[1B we can, by[(6), write= S = ¢ (qp)*(pg)¥. We also have

. ®
sl = la]+n[B| = (i—1)Is| < |of +n|B[ —|s| < |a]+ ],

which yields
s(ap*(pa)'r =sr=ap = p(ap)**' (pa)*,
N—_——
w
for somer # 1. The first occurrence afpin s afters' must match withgp in w, otherwiseqp is not

primitive. But then, since # 1, the first occurrence giqin s afters (qp)¥ matches with somgpin w,
so we havepg = gp, which is again a contradiction with the primitivenesspaof O

As a consequence of Lemmas 8 &hd 9 we have the following corollary:

Corollary 4. Leta, B be primitive and not conjugates. Then at most one word in the s@t; n >
1} U{a™B; m> 1} is not primitive.

Finally, we can state the result of this section, which is a consequence of Cofpllary 4 and the consider-
ations in the beginning of this section.

Theorem 3. Consider set X= {a,} witha, € Z*. There is at most one X-ambiguous bi-infinite word
overz.

5 The Existence of the Bi-infinite Word

We consider again only the two-element case in this section. In the previous section we proved that there
is at most oneX-ambiguous bi-infinite word. It is natural to ask when such a word exists. It is easy to
see that there are seXsfor which there is naX-ambiguous bi-infinite word. For example, take a set
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X =% ={ab}. We say that a family of sets of words with the same cardinaliisyparameterizabléf it
can be described in terms bformulas with word and integer parameters. We shall prove now that the
family of binary setsX for which there exists aX-ambiguous bi-infinite word is parameterizable.

In case(i) of Theorenﬂz, when words of are powers of a common wotd the bi-infinite wordtZ
has infinitely manyX-factorizations. In particular, in the case there is alwayXambiguous bi-infinite

word. In cas«ii), when roots of words iiX = {a,} are conjugates, the bi-infinite wond = BZ has
exactly two differeniX-factorizations, so it iX-ambiguous.
Consider now the last cag#i), and the seX = {a,B}. By Theorem[]2, arK-ambiguous bi-infinite

word is of the form(uB“)Z, whereaf3" is not primitive, or(a”B)Z, wherea" is not primitive, i.e., there
aren>1,i >2andse Z* such that
ap"=<s or a"Bp=¢. (8)

Conversely, if for soman > 1 andi > 2 at least one of equationg (8) has a solution, then clearly the

bi-infinite word (aB“)Z (resp.(a”B)Z) has exactlyi shiftequivalent, but differenX-factorizations. We
formalize this as a lemma.

Lemma 10. Let X = {a,B} € =" be a set of two non-commuting words such that their roots are not
conjugates. Then there is an X-ambiguous bi-infinite word if and only if one of the equafidns s
anda"B=¢, withn>1,i > 2, has a solution.

We shall also give a characterization of the solutions of the equafions (8). We need the following lemma.
Lemma 11. The all nonperiodic solutions of the equation

Ul = ug(puz)™, m>1 9
are of the form
uz =(qgp,
uz = p(qp)¥, (10)

1

up = uz(upuz)™ " pa,

where pge *, k> 0.

Proof. It is easy to check thaf{JL0) is really a solution of equati@n (9). Now we shall prove that if equa-
tion () has a nonperiodic solution, then it is of the fofm (10). We proceed by induction.

Consider first the casa= 1. We have the equatianuz = uzupus. It is obvious thatu;| > |ug|, so we
can writeu; = ust. The equation transforms inta; = uuz, which has, by Lemmpg 3, the only solutions
t = pg, uz = gpanduy = p(qp)¥, k > 0. This implies that, = qppg so we have a solution of the form
(LQ) form=1.

Consider now equatiori](9) witm > 2. Again we haveu;| > |us|, SO we can substitute; = ust and
equation [9) becomessi, = Upuz(upuz)™ L. By Lemma[B, we havé = uv, uz(upuz)™ ™t = vu, up =
u(vu)'. If 1 > 1, then|vu| = |ug(uauz)™ 1| > 2|u| + |v| + |uz|. This implies thatu = uz = 1, which
leads to a periodic solution. Hence, consider the ¢asé. We haveu, = u, u; = ugUzv andvu, =
us(uuz)™ L. Now we can apply induction hypothesis on the last equation and we obtain that all non-
commuting solutions are of the form

uz=qp, U=p(gp, v=us(uus)™2pg, k>0,
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which impliesu; = usupv = u3(upuz)™ pg. We obtained exactly solutioi{10), which completes the
proof. O

The following lemma gives us the characterization of solutions of equdlion (8) and hence also<of sets
allowing anX-ambiguous bi-infinite word in cagé) .

Lemma 12. Assume thatt and do not commute. All solutions of the equati" = ' satisfying n> 1,
i >2are

B=p(ap)’,
s=qpp" (11)
a=s"'p1pg,

where pgez*, j>0and j<iifn=1.

Proof. It is easy to check thaf{]L1) is a solution of equatidn (8). For the converse implication we analyze
3 cases.

Case 1Assume thats| > |B"|. Then we havel = s ~1qands= gB" for someq # 1. This is solution[{T1)
forj=0,p=p.

Case 2. Assume thats| < |B"| andn = 1. The situation is depicted in Figure] 14.

Fig. 14. The situation whens| < |B"| andn = 1.

Directly from the figure we can write

i—j—1
)

B=p(@p)’, s=ap, a=q(po)
wherep,q# 1 andj <i. Since

i—j-1

s~ 1pg=(ap) *[p(ap)] *pa=(ap’ ' ta=aq,

we have solution[{11) fon = 1.

n>2
a e N

B B
N A

S S

Fig. 15. The situation wheis| < |B"| andn > 2.



288 Jan Manuch

Case 3.Finally assume thafs| < |B"| andn > 2. Since we are looking for non-commuting solutions,
necessarilys| > [B"*| (see the proof of Lemmd 8). Hence, we have a situation shown in Fighre 15.
According to this figure we can wrifg= uus, o = S ~2u; andugu = s= ugp™* = ug(upuz)" 1, which
is equation[(9). Now, LemmaJl1 implies

B=tzus = p(gp)"* = p(gp)’, for j = k+1,

$= Uylp = Ug(Uats)" *pap(ap)* = apB" *p = qpR™*, and

a =s"%u = §2u3(pUs)" ?pg =S *qpR" BBt pg =3B *pa.
This is exactly solution[{11). O

The following theorem summarizes the previous results.
Theorem 4. Consider set XC £ with card X) = 2. There exists an X-ambiguous bi-infinite word if and
only if one of the following conditions is satisfied:
(i) X ={p",p™}, where pc =+ andnm> 1,
(i) X ={(pg)",(qp)™}, where pge =" andnm> 1,
(iii) X ={a,B}, where _ ‘
B=p@ap’, a=(gp" ") *pa,
forp,ge Zt,n>1,i>2, j>0andif n=1, then j<i.
Notice, that in the last case of Theoré¢m 4 the occurrend@ btan be eliminated, but we prefer this
form for its simplicity. This theorem shows that the family of the two-element Xetsuch that there
exists anX-ambiguous bi-infinite word, is parameterizable. Such a characterization does not help us, if

we want to decide whether there isdrambiguous bi-infinite word for the certain s€t but we can use
it to generate all such sets.

Example 3. Let us choose in(11p =a,q=b,n=2,i =2 andj = 2. We have
=ababa s=baababa o = baab.
The bi-infinite WOFd(GBZ)Z has two differenX-factorizations:

a B B

...baabababaababa..

B B a B

6 Conclusions and Open Problems

Our Theoreni]2 is closely related to the main resultof[IRIR], where it is characterized when a finite word
can have two disjoinK-interpretations for a binary s&t. Our result could be concluded, with some
effort, from the considerations in this paper. However, our proof is simpler, due to the use of the graph
lemma (Lemmd@]5), and moreover directly formulated to obtain a defect type of theorems.

We pose an open problem asking whether Thediem 2 can be extended to arbitrary sets.
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Open problem 1. Let X C = be a finite set such thag (X) = card X). Does there exist a bi-infinite
word w having twoX-factorizationg=; andF, satisfying:

(i) bothF; andF, contain all elements of, and
(i) F1 andF, are not shiftequivalent?

Observe here that in the case of a two-elemenXdbe answer to this problem is negative, but without
the assumption that all elementsXbccur in both factorizations the answer is trivially positive.

The answer is also positive if the conditiog{X) = card X) is replaced by a weaker one involving the
free rank:r; (X) = card X). This is verified by Examplfg 1.

Another open problem asks whether Corollgry 3 can be generalized for an arbitrarXfinite

Open problem 2. Let X C =7 be a finite set satisfying. (X) = card X). Suppose that primitive roots of
all elements oX are conjugates and that a bi-infinite warthas at least two differerX-factorizations.

Are all X-factorizations ofwv of the formch, wherea € X?

Example 4. The answer to the above question is negative if we omit the assunmptih= card X). In-
deed, leXX = {a1,0,,0a3}, wherea; =baa 0, = aba a3 = aah Then clearlya; ~ a, ~ a3 and the word

(abaaaljZ has two different, and even non-shiftequivaIe)(m‘,actorizations:(ouo(z)Z and(azag)Z.
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