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Many protocols need a discovery mechanism to enable a given node to locate one or several nodes involved in the
same communication. However, there is no protocol ready to fulfill this service at the network-layer. Every protocol
usually implements its own solution. In particular, multicast protocols often use a searching technique based on
an algorithm called expanding ring search. This algorithm searches for nodes in all directions and thus uses much
bandwidth. However a typical search can usually restrict its scan in a specific direction. To enable this broadcast
restriction, we propose an oriented multicast routing algorithm. The algorithm’s principle is to direct the multicast
of packets towards a special node, involved in the communication, in order to search only in a limited area. The
area must be as small as possible to reduce network flooding but still has to contain many nodes satisfying the search
criteria. This new algorithm is the core part of a network-level node search framework also defined herein. A search
protocol based on this framework could provide a network-level agent discovery service to current protocols. We
have simulated an agent search with our algorithm on one side and with the expanding ring algorithm on the other
side and we give comparative results.
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1 Introduction
Many network protocols need information from a service discovery system before setting up a communi-
cation. A device such as an end-user computer or a router which hosts a service has to be advertised or
found in order to be used. We call such a device an agent. Some services provide shared resources and
the location of the agents that host them does not evolve over time. In this case, a service discovery based
on a directory system works well. But many other services provide resources for a short period of time.
In particular, services provided by multicast protocols such as multicast tree creation and maintenance,
are very volatile. In this case the service discovery should be dynamic. This means that the search must
be done at each request as the results are supposed to change rapidly. At the network level (i.e. the IP
layer) carrying out an agent search means trying to locate an agent by broadcasting messages containing
information about the service needed. The broadcast can be done by using IP broadcasting [Mog84],
multicasting by Reverse Path Forwarding (RPF) [DM78] or anycasting [PMM93]. Multicast protocols
usually implement the second solution in a mechanism called Expanding Ring Search (ERS). This is be-
cause IP broadcasting in not efficient considering its network resource consumption and anycasting is not
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yet ready for use. Although the ERS algorithm uses RPF and is incremental, it is not always efficient.
This is because it scans in all directions and therefore sends packets in uninteresting areas. In many cases
where only a specific area needs to be scanned for agents, a mechanism based on our new algorithm can
give better results than the use of the ERS algorithm.

In this paper we give an overview of a search framework and a detailed description of its key mechanism:
the oriented multicast routing algorithm. Section 3 contains the algorithm’s description in pseudo-code as
well as the data structures needed for the algorithm. Section 4 describes the framework of a network-level
agent search. Its architecture and basic features are explained. Finally, section 5 gives simulation results
of an agent search using the oriented multicast routing algorithm compared to an agent search using the
ERS algorithm.

2 Related work
The classical multicast technique currently used by some protocols to carry out an agent search is the
expanding ring search [CC97]. For instance, in a reliable communication, some nodes (called agents)
are responsible for retransmitting data that has not been correctly received by one or more receivers. In
reliable multicast protocols such as LGMP [Hof97], RMTP [PSLB97] and TMTP [YGS95], receivers
search for these retransmitting agents by multicasting requests according to the ERS scheme. Receivers
look for the nearest agent, but the agent should also be as close to the source as possible. We could
orient the multicast by taking the multicast source as the target node. In multicast tree creation and
maintenance protocols such as PIM-SM [EFH+98], YAM [CC97] and QoSMIC [BFP98], when a receiver
has succeeded in contacting the root of the multicast tree of the group, it must be inserted into the existing
multicast tree. In YAM and QoSMIC, the receiver then uses an ERS to be able to graft itself to a node
already belonging to the desired multicast tree. The receiver would like to be grafted to an on-tree node
that minimizes the total distance receiver - in -tree node - root node, in order to minimize delays. However
these protocols include more efficient search methods that are more expensive too. YAM has defined the
directed spanning join which can be seen as a particular instance of our algorithm. QoSMIC has defined
a dual method : search is accomplished simultaneously by a limited ERS from the initiator, and a search
from the multicast tree. In our approach, we could take the root of the multicast tree as our target node. In
protocols needing the use of gateways such as MeGa [AMK98], agents are servents grouped in clusters,
that provide video streams adapted to the link capacity. At this time, clients use out-of-band means to
contact these agents (e.g. via DHCP or a configuration file). However, the needs are the same than in the
previous examples. The client search a servent which will adapt the video stream throughput sent by the
source. We can see here that we need a third-party search mechanism. The aim here too is to minimize
the total distance client-servent-source. Note that the video source would be the target of the search.

As we saw above, ERS is a multicast technique widely used in current protocols. It is based on the use
of a field of the IP header called TTL (Time To Live). This field is decremented each time the packet
goes through a router. Its initial value, at most 255, is chosen by the source. When the TTL value reaches
0, the router destroys the packet. The original aim of this field is to avoid infinitely looping packets due
to erroneous routing information. In the case of the ERS, the TTL field is also used for the following
mechanism: packets are sent by the source with an arbitrary fixed TTL value. This value defines arange
for the packet. The packet is then forwarded by a multicast technique called Reverse Path Forwarding
(RPF) [DM78]. When a packet is received by a router, the latter checks if the packet comes from a
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shortest path to the source (RPF Check). If it is true, the packet is duplicated and sent on every router
interface except the receiving one, if it is false the packet is discarded. When an agent (noted A) receives
the search packet, it sends an answer packet to the source. Initially an ERS packet is sent with a small
TTL (say 1 or 2). If no agent is found, a new packet is sent with an increased TTL and so on until an
agent is found or a threshold value for the TTL is reached. Note that with a TTL greater than 10, one can
probably reach millions of hosts in the Internet. The evolution of the TTL value can follow an arithmetic
or a geometric progression. The nodes reached by this multicasting can be viewed as a disk centered at
the initiator and with a radius equal to the highest TTL value used, hence the name expanding ring. In
real life, use of an ERS with an initial TTL greater than 7 or 8 is hardly conceivable. A request packet
propagated by an ERS by a source S does not take into account the position of the other actors of the
communication and floods surrounding nodes in all directions. However we saw in each of the preceding
examples that we could find a special target node serving as a beacon for the search area. Our aim is to
use this information to orient the search and produce a more efficient agent search algorithm.

3 Oriented multicast routing algorithm

We propose an algorithm to define a new kind of multicast (i.e. oriented multicast). The idea is to perform
a limited multicast channeled around the unicast path joining the sender to a specific destination, hence
the use of the termoriented. This algorithm is close to RPF multicast algorithms but the flooding is much
more controlled. The generic principle of the algorithm is to reach only the nodes located on or near
the (or a) shortest path between the multicast initiator S (called source) and the target node D (called
destination). Every packet contains a special field, besides the TTL, calledrange. As long as the packet
travels along a shortest path between S and D, it is multicasted on every link of the node except the arrival
link and the range is not decreased. When it goes out of the shortest path SD, the policy depends on the
parameter settings of the algorithm. It can be propagated by Reverse Path Forwarding (RPF) or by lateral
multicasting. Lateral multicasting means that the packet is only sent on links not leading by a shortest
path to the source or the destination. This rule gives to the packets a lateral propagation effect intended to
avoid packets redundancy.

In most cases the packet range is decreased for each hop and thus the maximum traveling distance (out
of SD) for the packet is limited to at most the initial range value. In some case the initial range value is
not fixed but depends on the position where the packet leaves SD. The initial range is then dynamically
calculated at the point where the packet leaves the shortest path from S to D. The idea is that the distance
that can be covered shall increase when the packet leaves the path farther from S up to the middle of SD
and decrease when the packet leaves the path beyond the middle of SD up to D. In fact, when the packet
has covered a distance lower or equal to half the distance SD, the initial range is set proportionally to the
value of the distance covered. When the packet has covered a distance greater than half the distance SD,
the initial range is set proportionally to the distance SD minus the distance already covered by the packet.

Although we talk about shortest paths, and SD shortest path in particular, through this paper, it is indeed
the path given by the underlying unicast routing system. The fact that it is not always a true shortest path
does not matter and our algorithm still works.
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Fig. 1: Multicast areas of various models

3.1 Oriented multicast variants

Our algorithm is parameterized. By changing the values of the parameters we can obtain several different
versions of our algorithm that we callvariants. We study six of them in this paper. Figure 1 shows the
areas covered by an expanding ring and some variants of our algorithm. Each thin black line defines the
area covered in one attempt with a given value for the initial range. S represents the node initiating the
multicast while D represents the target node of the multicast (used by our algorithm only). The notion of
attempt is valid in a search context. If the search fails in the currently covered area, a new attempt will be
made with an increased initial range to cover an extended area. In the expanding ring example of Figure 1
we represented three attempts having each an increased initial TTL value. Concerning the variants, three
examples are shown in Figure 1. Each variant example is represented with two attempts. We can see that
the area of a search attempt of a variant is always surrounding the SD shortest path.

In the context of agent search described in section 4, it is clear that the agents that can be found by an
ERS could be a the opposite of the SD direction and thus not optimizing the S-A-D distance. Although
the variants will cover a greater area than the expanding ring when SD increases, they have a much greater
chance to find a agent located near the SD shortest path and thus minimizing the S-A-D distance. The
variants labeled (a) and (b) have been tested in our simulation. The variant (c) has not been tested yet but
its use could be of interest for specific applications.

3.2 Definition of the algorithm and the data structures

Thevariant structure contains the parameters of the algorithm. Table 1 gives a detailed explanation for
each field of this structure. The (a) kind variants of Figure 1 are obtained with theshapeparameter set to
fixed and the (b) kind variants with theshapeparameter set tovariable.
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Name Possible Values Description

multicast method broadcast, Defines the multicast mode when the packets
lateral have left the SD shortest path

f rontal rangedec true, Boolean indicating if the packet range has to be
false decreased when a packet is on a shortest path

to S or D but not on a SD shortest path
shape fixed, Defines the way of calculating the range value when

variable the packets leave the SD shortest path
initial range n∈N ∗ Defines the initial range value of a packet

Tab. 1: Algorithm parameters

Table 2 lists the fields of apacketstructure: it contains a number of fields concerning the IP protocol
as well as our multicast algorithm and our search mechanism. From the packet current router position,
we define E as being a neighbor router not belonging to a SD shortest path. The packet contains fields
belonging to three categories. The first category contains a number of fields typical of the IP protocol
(i.e. IPsourceaddress, IPdestinationaddress andTTL). The second category contains fields necessary to
the oriented multicast routing algorithm (i.e.SD, ES, ED, rangeanddistancecovered). Finally the third
category contains fields for the agent search framework (i.e.typeandfunctionsearched). It will contain
more fields in the future when we have finalized our framework in a search algorithm (however we already
designate it as thesearch algorithmin some parts of the paper).

Name Possible Values Description

source @∈ A IP address of the search initiator
destination @∈ A IP address of the special node (target)
TTL 0 - 255 Time To Live: maximum number of hops left

distancecovered 0 - 255 Number of hops already done
SD true , false Boolean indicating if the packet comes

from a link on the shortest path from S to D
ES true , false Boolean indicating if the packet comes

from a link on a shortest path (from E) to S
(E is not on a shortest path from S to D)

ED true , false Boolean indicating if the packet comes
from a link on a shortest path (from E) to D
(E is not on a shortest path from S to D)

range n∈N Integer used to define the degree of multicasting (the bigger
it is, the farther the multicasting will be from the S, D axis)

type request,answer Defines the packet’s type
f unctionsearched f ∈ F Identifies the function searched by the source router

Tab. 2: Packet fields
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Table 3 gives an explanation of the only field of arouter structure. In our simulation each node of a
graph represents a router (the algorithm’s extensions to hosts will be done at a later time). The only
information currently used by the search framework is thefunction id. It indicates what service a router
(or a host attached to the router’s local network) is able to provide. Notice that our oriented multicast
routing algorithm maintains no state information in the routers.

Name Possible Values Description

f unction id f ∈ F Identifies the function performed by the router’s agent

Tab. 3: Router attribute

Table 4 gives an explanation of the only field of aninterfacestructure. The information contained in this
field is needed for any routing process (whether unicast or multicast) and it is not specific to our oriented
multicast routing.

Name Possible Values Description

receivingrouter @∈ A Defines the address of the next hop router of the interface

Tab. 4: Interface attribute

The algorithm’s functions are given below in pseudo-code. These functions will mainly be executed in
routers as a core part of an eventual protocol implementation. The algorithm’s parameters are accessible
through thevariant structure.

The ROUTE function provides an access to the underlying unicast routing system. It can be called in any
router. It takes a routeraddressand a network interface number. If the given networkinterfaceleads to
the router having the givenaddressby a shortest path then the function returnstrue else it returnsfalse.

ROUTE(address, inter f ace)
1 if inter f aceleads torouter.addressby a shortest path
2 then return true
3 else return false

When an agent search is triggered at the application layer, the firstpacketis created and fields that are
specific to the algorithm are initialized by the INITIALIZE function of the source node S. Notice that the
last two fields belong to the search algorithm and should not be set at the oriented multicast routing layer
but we have set their values here for completeness.
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INITIALIZE (packet)
1 packet.TTL← 255
2 packet.distancecovered← 0
3 packet.SD← true
4 packet.ES← false
5 packet.ED← false
6 packet.type← request
7 packet.searchedf unction← f unction id

Notice the initialization of the fieldsXX. Indeed at startup thepacketis on a shortest path from S to D (it
is in S !), but is not on a shortest path from E to S or D because, according to our previous definition, E
represent a router which is not on a shortest path from S to D. After the initialization of the firstpacket,
PROCESSis called. This function is crucial because it is at the start of a series of recursive function calls
that which model the travel of thepacketin the network. A part of the network will be flooded by the
packetsin a depth-first order.

First a very important remark concerning the PROCESSfunction. It belongs to the agent search algorithm
andnot to the oriented multicast routing algorithm. However we have included it here for a better un-
derstanding of the function calls and because it is currently the only function of the search algorithm (i.e.
putting it alone in a subsection would not have made the presentation clearer). The PROCESSfunction
checks if it can reply positively to the search request. Then it performs a check on thepackethop counts:
if the TTLor therangeequals zero, it destroys thepacket. Otherwise it forwards thepacketto the SWITCH

function.
PROCESS(packet)

1 switch packet.type
2 caserequest:
3 if f unction id = packet.searchedf unction
4 then // send answer to source by unicast
5 if packet.range≤ 0 or packet.TTL≤ 0
6 then DISCARD(packet)
7 else SWITCH(packet)
8 break
9 caseanswer:

10 // forward answer to application layer
11 break

The aim of the SWITCH function is to determine the position of thepacket(e.g. is it on a shortest path
from S to D?), in order to select the multicast technique. Notice that themulticastmethodparameter
affects this choice. Its value depends on the choice of thevariant.

SWITCH(packet)
1 if packet.SD= true
2 then MULTICAST(packet,broadcast)
3 else MULTICAST(packet,variant.multicast method)
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The MULTICAST function will spread thepacketby various methods thus obtaining the different variants.
The support for RPF-like forwarding is given by thebroadcastoption. Thelateral option only spread
packets on links which are orthogonal to the SD direction (i.e. links not leading to S or D by a shortest
path). The router’s interfaces are noted outputinterface for output interfaces and inputinterface for input
interfaces.

MULTICAST(packet,method)
1 switch method
2 casebroadcast:
3 for eachout put inter f ace
4 do if out put inter f ace6= packet.input inter f ace
5 then SEND(packet,out put inter f ace)
6 break
7 caselateral :
8 for eachout put inter f ace
9 do if out put inter f ace6= packet.input inter f ace

10 and ROUTE(packet.source,out put inter f ace) = false
11 and ROUTE(packet.destination,out put inter f ace) = false
12 then SEND(packet,out put inter f ace)
13 break

The SEND function sets theinitial rangevalue if thepacketis leaving the SD shortest path. It also sets
theESandED booleans if thepacketis already out of an SD shortest path. It calls the RECEIVE function
of the router at the other end of the sendinginterface. This function call models the travel of thepacket
between two routers.

SEND(packet, inter f ace)
1 if packet.SD= true
2 then if ROUTE(packet.destination, inter f ace) = false
3 then packet.SD← false
4 if variant.shape= fixed
5 then packet.range← variant.initial range
6 else cd← packet.covereddistance
7 if cd≤ packet.SD dist÷2
8 then packet.range← cd÷ (4−variant.initial range)
9 else packet.range← (packet.SD dist−cd)÷ (4−variant.initial range)

10 else ifROUTE(packet.destination, inter f ace) = true
11 then packet.ED← true
12 else packet.ED← false
13 if ROUTE(packet.source, inter f ace) = true
14 then packet.ES← true
15 else packet.ES← false
16 inter f ace.receivingrouter.RECEIVE(packet)
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The last function of the algorithm is the RECEIVE function. It performs a RPF check on thepacketand
discards it if necessary. It also decreases the values of theTTL and therange, if needed, and transfers the
packetto the PROCESSfunction.

RECEIVE(packet)
1 if ROUTE(packet.source, input inter f ace) = false
2 then DISCARD(packet)
3 packet.input inter f ace← input inter f ace
4 packet.TTL← packet.TTL−1
5 if packet.SD= false
6 then if variant. f rontal rangedec= true or ( packet.ES= false andpacket.ED = false)
7 then packet.range← packet.range−1
8 packet.covereddistance← packet.covereddistance+1
9 PROCESS(packet)

4 Network-level agent search framework
In many setup phases of network protocols, one or several network nodes with a specific functionality
need to be selected. Depending on the specific problem, these nodes, that we call agents, can be network
devices like routers, specialized servers or even end-user computers. Some examples of these agents
include:

• A print server.

• A multicast tree node to graft a new member.

• A multicast retransmission node for reliable multicast streams.

• An application gateway that will convert data between incompatible clients.

Note that in the first example the server can be looked for in any direction, whereas in the three other cases,
the search could be directed toward a specific node called the target. For the multicast tree, the target could
be the root of the tree. For the reliable multicast, the target could be the source of the multicast stream.
For the application gateway, the target could be the distant client. Moreover in these cases, it is desirable
for the agent to be as close as possible to the shortest path from the initiator to the target. Such an agent
can be found by several methods:

• Lookup in a directory, such as a name server. In this case, it is hard to choose the location of the
agent. Potential agents must be declared in advance in the directory.

• Anycasting [BEH+98]: the routing system is in charge to forward requests to the nearest agent.
Potential agents must declare themselves to the routing system. Directed anycasting is not currently
considered.

• Network search: search packets are multicasted through the network until they reach agents, such
as in the expanding ring search. Potential agents need not to be declared in advance.
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We saw in section 2 that the first two methods are not suitable for finding agents belonging to the last
three agent categories. In particular, multicast protocol agents are usually discovered by a network-level
search.

We propose, in such cases, to replace the commonly used ERS by a search protocol using our oriented
multicast routing algorithm. It is oriented towards the target (defined in each of the above examples)
and it could be more efficient than the ERS method. Moreover our algorithm is designed to find agents
as close as possible to a shortest path from the initiator to the target which is of a great interest to the
above protocols. Our aim is to build an mechanism that uses the position of the other devices implied in
the search. The search framework has to find a relay agent named A located somewhere between a node
called S and a node called D, the target, in such a way that the search of this agent is done in a channel area
between S and D. Our oriented multicast routing algorithm provides such a mechanism. Its use ensures
that flooding is avoided and that the SAD distance is bounded. Compared to the expanding ring search,
our algorithm needs an additional information which is the address of the target router D. We are free to
increase the area of the search if no agent node has been found (i.e. like the ERS does).

4.1 Context of use
Our search framework is designed to operate in IP networks. The requirements on the routers are:

• All routers should run an instance of our search algorithm and an instance of our oriented multi-
cast routing algorithm. In particular no tunneling should be done otherwise the oriented multicast
routing behavior could become unpredictable.

• Routers may declare hosting a service on behalf of a host being on its local network (in a IGMP-like
mechanism [Fen97]).

• No TCP-like stream facilities are needed by our algorithms.

• Each router should allow access to its unicast routing table, calculated by an independent algorithm.

In this context, we also ensure that the algorithms have the following properties:

• The search algorithm is fully dynamic (although a short-time cache system is not excluded) and
thus does not rely on out-of-band methods (e.g. use of directories) to find agents.

• The oriented multicast routing algorithm will mainly run in routers and thus will not rely on any
centralized mechanism. In particular, this algorithm only needs information from the underlying
unicast routing system. No knowledge of the global network topology is required.

• Both the oriented algorithm and the search algorithm do not maintain any state information in
routers for scalability reasons.

4.2 Architecture
An overview of the search framework is given in Figure 2. It shows how a request packet is handled by
a router and forwarded to a next-hop router. Our oriented multicast routing algorithm will probably be
implemented in a packet as an extension of a regular IP packet (e.g. like ICMP is). Of course in the
routers, our oriented multicast routing algorithm will replace the regular IP packet forwarding mechanism
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Fig. 2: Architecture

(and thus will place itself at the same level as the IP protocol). Concerning the search algorithm no choice
has been made yet. It could be implemented directly on top of our oriented multicast routing algorithm or
be implemented above UDP by using a specific port number. As we said before our search algorithm will
not use stream facilities for speed and efficiency reasons. So UDP can provide the necessary mechanisms
for implementing our search algorithm. Notice that for the moment only the process function belongs to
the search layer whereas all the other functions belong to the oriented multicast routing layer. As we will
develop our search algorithm, new functions will probably be added.

5 Agent search simulation
We have implemented our oriented multicast routing algorithm in an agent search framework to be able to
compare it to the ERS algorithm. This implementation was done in the simulation module of our network
manipulator (nm) software tool. With this module, we can run static simulations to evaluate informations
on the behavior of the algorithms such as the number of packets multicasted or the number of agents hit.
Thenmsimulation module can be used for algorithm simulation but not protocol simulation because:

• It does not take into account the temporal aspects of networks (propagation delays, packet sequenc-
ing on emission or reception, . . . ).

• It only performs evaluations on static objects (no possibility of broken links, failed routers, routing
information changes, . . . ), in other words the topology is frozen.

• Its evaluations are done in an arbitrary order which does not correspond to reality (graph traveled
in depth-first order). In particular, the moves of packets are not concurrent.

However thenm simulation module provides enough results for a first evaluation of our new algorithm
before going deeper into the algorithm’s description. This would require the definition of additional
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parameters such as timers that do not exist at this point. It is also for this reason that we did not use the
LBNL simulatorns[VIN]. We will use nswhen we will have taken into account every temporal parameter
needed by the algorithm.

5.1 Simulation parameters and environment description
We have carried out our simulation runs over network topologies modeled by graphs. In a graph, each
node represents a router and each edge represents a link between two routers. It could be a high throughput
ATM link or a slower Frame Relay or ISDN link. We suppose that links are bi-directionals and we use the
hop count as the only distance metric. The graphs have been created by using the Georgia Tech - Internet
Topology Model package developed by Zegura et al. [ZCD97].

The parameters used for the creation of the graphs are given in Table 5. The transit-stub method has
been chosen because it generates more realistic graphs than those obtained by using only the Waxman
method [Wax88]. The parameters concerning the AS have been chosen to match as close as possible the
values of the AS network topology studied by Magoni et al. in [MP01].

Parameter name Value

Generation method Transit-Stub
Nb of transit AS in top domain 20
Nb of nodes per transit AS 4
Nb of stub AS per transit node 2
Nb of nodes per stub AS 12
Total nb of nodes 2000
Edge connection method Waxman
α 0.5
β 0.5

Tab. 5: ITM network generator parameters

Table 6 shows the average property values of the 20 graphs used for simulation. More than 75% of the
nodes are in the mesh which is not very realistic compared to real Internet map values. The average
degree is nearly three which is an acceptable value. Yet the average degree distribution of the graphs is
not following the power laws 1 and 2 defined by Faloutsos et al. [FFF99] in their AS and router level
analysis. The average distance, eccentricity, radius and diameter have values that make realistic the use of
the SD distances of 4, 8, 12 and 16 for simulation. Finally the trees have acceptable characteristics even
though their tree size and depth distributions do not follow power laws 6, 7 and 8 defined by Magoni et
al. [MP01].

Simulation parameters are shown in Table 7. The agent nodes have been randomly chosen and there are
only representing 1% of all the nodes. This means that the agents are quite rare. It is worth noticing
that if the agents are numerous (e.g. half or one-third of all the nodes) our search algorithm becomes
uninteresting as it is trivial to find an agent in such conditions. Furthermore the random placement of the
agents may not reflect reality. The agent placement will probably depend on the kind of application using
the search algorithm. There have been one run for each variant (plus the ERS), for each source-destination
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Property name Average value

Nb of nodes 2000
Nb of nodes in the mesh 1603.6
Nb of leaf nodes (degree 1) 302.1
Nb of mesh nodes on a bridge56.8
Nb of cut-point mesh nodes 306.5
Average degree 2.99
Average mesh degree 3.24
Average distance 9.8
Average eccentricity 16.7
Diameter 22.6
Radius 11.7
Nb of trees 255.9
Average tree size 2.54
Maximum tree size 13.3
Average tree depth 1.34
Maximum tree depth 7.3

Tab. 6: Average properties of ITM networks

Parameter name Value(s)

Nb of ITM networks generated 20
Source-destination distances tested 4, 8, 12, 16
Nb of source-destination pairs tested per distance500
Nb of variants tested per source-destination pair6
Percentage of agent nodes 1
Routing Multiple equal-distance route management

Tab. 7: Simulation parameters

pair, for each distance and for each graph which gives a total of 280000 runs. The results of these runs
have been merged to give the average results shown in the next subsection.

Table 8 shows the parameter settings corresponding to the 6 variants that have been tested. All the vari-
ables in the first column are fields of thevariant data structure used in the oriented multicast routing
algorithm. The explanation of the possible values taken by these variables has been given previously in
Table 1. In Table 8 theinitial rangevalue is not given. This is because it depends on the attempt number.
For the ERS, the TTL is increased by 1 while no optimal agent is found, starting at 1 up to 5 (i.e. 1, 2, 3,
4 and 5). For all the six variants, theinitial rangeis increased by 1 starting at 1 up to 3. As for the ERS,
each oriented multicast with an increasedinitial rangeis counted as one more attempt. We deduce that in
the case where no optimal agent is found, an ERS will make at most 5 attempts while an oriented search
will make at most 3 attempts. In a future implementation it is probable that only the most efficient variant
will be retained and the values of the parameters will be definitely set according to this specific variant.
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No of variant 1 2 3 4 5 6

multicast method broadcast broadcast lateral broadcast broadcast lateral
f rontal rangedec true false N/A true false N/A
shape fixed fixed fixed variable variable variable

Tab. 8: Parameter settings for the studied variants

5.2 Simulation results
In all the following figures, the values shown are always the ratio of the variant’s value versus the ERS’s
value (i.e. it is always a relative value). Furthermore the value is an average of the four SD distances
tested. As 500 source-destination pairs are tested for each SD distance and for each of the 20 graphs, the
ratio of a given measure (e.g. bandwidth usage) for a given variant is an average of 40000 values. We did
not include the separate results for each SD distance because it would have taken too much space.

Figure 3 shows the ratio of the bandwidth usage of each variant versus the ERS. The bandwidth usage is
equal to the average number of packets created in the network for an search. For example, variant 1 has a
ratio of 3.2 which means that variant 1 creates 3.2 more packets than the ERS for an average search. This
can be explained by the fact that the ERS is limited to a TTL of five while an oriented search covers an
area that spans the SD distance (i.e. for 4 to 16 hops).

The number of optimal agents hit for each variant are shown in Figure 4. This is perhaps the most
important figure as it shows the rate of success of each variant. For example, variant 1 has a ratio of
3.6. This means that variant 1 finds on average 3.6 more agents than an ERS. But this value can be
interpreted differently. A search stops when one (or several) agent(s) are found. So the ratio also means
that for one successful ERS search, 3.6 searches using variant 1 are successful. Indeed at an SD distance
of 12, an ERS search is successful half of the time (i.e. finds 0.56 optimal agents on average) while a
search using variant 1 is always successful (i.e. finds 1.58 optimal agents on average). We see that the
variant having the highest ratio (i.e. rate of success) is variant 2 with a value of 4. The worst variant

Fig. 3: Bandwidth usage
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Fig. 4: Optimal agents hit

(i.e. no 6) still outperforms the ERS by a factor of 2.8. To conclude we can say that any variant of
our oriented multicast-based search algorithm is on average three times more successful than an ERS
for any SD distance between 4 to 16. In other words any variant of our oriented multicast-based search
algorithm always finds at least one optimal agent whereas an ERS succeeds only once per two or three
search attempts.

Figure 5 shows the average number of attempts needed to find at least one optimal agent. The ERS
needs on average 4.5 attempts to succeed which corresponds to a maximum TTL of 4 to 5. The variants
need on average around 2 attempts to succeed which corresponds to a maximum range of 2. As we can see
in the figure the variants only need 44% to 47% of the number of attempts required by an ERS. This means
that if we introduce time in the simulation, our variants will probably be faster than an ERS. Although

Fig. 5: Number of attempts
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not twice as fast because the variants multicast the packets at a greater distance than the ERS thus each
attempt will take a longer time. It’s worth noticing that variant 2 has the best ratio (the lowest).

The number of routers that have received packets are shown on Figure 6. As usual it is the ratio of each
variant score divided by the ERS score. Every variant hit from 3 to nearly 5 more routers than the ERS.
This must be compared to the number of packets emitted in the network. We see that there is not an exact
correlation with the bandwidth usage. This means that some variants have more redundant packets than
others (i.e. a given router is hit by many packets which is useless). From these two figures we can stem
the average number of packets received per router and thus evaluate the redundancy of each variant. In
the figure we can clearly see two groups of variants. The first group of variants 1 to 3 have nearly the
same ratio value of 3, their common point is that their initial range is fixed. The second group of Variants
4 to 6 also have the same ratio but its value is nearly 5, and their initial range is variable. It is clear that
it is the initial range parameter value that make the difference between the variants’ results. Although the
second group hits on average many more routers than the first, they find less optimal agents as we can see
in Figure 4. Therefore they are less efficient.

Fig. 6: Routers involved

To compare the variants in a concise way, we have defined a ratio called efficiency. It is equal to the
number of optimal agents hit divided by the number of packets emitted in the network. The efficiency of a
variant is then divided by the efficiency of the ERS for a quick comparison. The resulting ratio is shown in
Figure 7 for each variant. The variants having a fixed initial range (i.e. corresponding to the (a) shape of
Figure 1) have a 50% better efficiency than the variants having a variable initial range (i.e. the (b) shape).
These variants numbered 1 to 3 have roughly the same efficiency and it is 20% above the ERS efficiency.
Variant 3 is slightly ahead. Concerning variants 4 to 6 they also have roughly the same efficiency and it
is 20% below the ERS efficiency. Although variant 3 has the best efficiency ratio, we remind the reader
that variant 2 has the highest successful search rate, and the two are not balanced. This means that for an
efficiency ratio loss of 0.04, the optimal agent hit ratio gains 0.55. So variant 2 is more interesting than
variant 3.
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Fig. 7: Efficiency

6 Conclusion
Contribution: We have designed an original oriented multicast routing algorithm that avoids the packet
exploding phenomenon correlated to multicast methods such as flooding or reverse path forwarding. We
showed that, used in a search framework, our algorithm outperforms the expanding ring algorithm. An
agent search protocol based on our framework could give to the client the possibility to find a topologically
smart-placed intermediary in the network. Indeed the search optimizes the distance criterion between the
concerned entities, which is a matter of interest for any protocol using our search service.

Future work:The second phase of the search algorithm has to be completely defined. We have to study the
reply methods of the responding agents as well as the optimization of these reply messages to the source
(e.g. by a filtering or aggregation technique). Once the answers are collected, we have to define criteria
to select the best agent if more than one are found. The protocol implementation of the oriented multicast
and agent search algorithms still have to be done. This would require to further define the algorithms’
messages and to introduce timers and finite state machine diagrams. The resulting agent search protocol
and its underlying oriented multicast routing protocol could serve many network protocols and particularly
multicast protocols. We also have to simulate the dynamic behavior of our algorithms.
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