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We have worked with the local access network design problem with two cable technologies. This is an optimization
problem in graphs that consists of linking an origin node to a set of terminal nodes which have a flow demand. There
are also a set of Steiner or transshipment nodes which do not have demand. Each arc of the graph has two associated
costs: a variable cost depending on the flow through the arc and a fixed cost associated with the installation of the arc.
Moreover, in each arc we can install one of two available technologies: optical fiber or copper (we can also use radio
links with any other cable technology). Each one of these technologies has different variable and fixed costs. To be
more precise, the fixed cost of the optical fiber is greater than that of the copper, but its variable cost is much smaller.

The problem was modeled using a multicommodity flow formulation in which we added some structural constraints.
This model was used to apply the Benders decomposition method. The structural constraints have the objective of
trying to guarantee that the master problem of the Benders decomposition will yield a tree. The Benders subproblems
are trivial network flow problems. The dual variables have commodity meaningfull values and are evaluated in a
systematic form. The algorithm was implemented in C++ with CPLEX 3.0 callable library. We have tested the
algorithm with some test instances obtained by a generator of problems that we developed.
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1 Introduction

This article addresses an extension of the local access network design problem (LAND). In the LAND
problem we have to connect an origin node to a set of demand nodes minimizing the total cost. That cost
is made of two parts: a variable cost which depends on the flow passing through the arc and a fixed cost
to install the arc. There are also transshipment or Steiner nodes that do not have any demand and can
be used or not in the optimal topology. In the problem that we work with in this paper, we can install
one of two available technologies, for instance, optical fiber or copper cables, in each arc of the network.
Note that it is also possible to think about radio links as an alternative to one of these cable technologies.
We call this problem the local access network design problem with two technologies (LAND-2T). We
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will follow the notation given in [BMMY94b] and will denote the two kinds of links by "primary links”
(optical fiber) and "secondary links” (copper). The copper cable has a fixed cost smaller than that of the
optical fiber, but its variable cost is greater than the variable cost of the optical fiber. We also work with
primary connectivity constraints that require that primary links be connected to the origin node by a path
consisting of primary links only. The reason for using such constraints is that a message which flows
from one technology link to another technology link has to undergo some kind of data transformation
which implies that a switching device has to be installed at every node where a change of technology
takes place. In our problem, the primary connectivity constraints ensure that the number of such devices
will be small and the cost of installing these devices is not considered. Another reason for requiring the
primary connectivity constraints is that they imply that more paths can benefit from the higher quality of
the primary links.

There are many possible variations of the LAND-2T problem that result in new problems. Balakrishnan
et al. [BMMY94d] have worked with a problem similar to the LAND-2T where a minimum cost spanning
tree that contains an embedded primary subtree connecting all the primary nodes (and optionally includ-
ing secondary nodes) has to be found. As in the LAND-2T, one can install one of two available cable
technologies for each arc. Note that they divide the set of nodes into primary and secondary nodes. The
primary nodes have to be connected to the origin node by primary arcs. The secondary nodes can be
linked to the origin node by primary or secondary arcs. They have proposed a dual-ascent algorithm to
find an approximate solution.

Gouveia and Janssen]G198] have worked with a similar problem that is an extension of the minimal
spanning tree problem, but with two cable technologies too. The model that they explore has generalized
hop constraints and primary connectivity constraints. Hop constraints limit the number of links (hops)
between the root node and any terminal and measure in a certain way the reliability of the tree network.
The primary connectivity constraints are the same that we described above. The problem is shown to be
NP-hard and procedures to obtain lower and upper bounds are presented. They formulate the problem
as a directed multicommodity flow model. To derive lower bounds they use Lagrangean relaxation with
subgradient optimization. A Lagrangean heuristic is developed to construct feasible solutions. Moreover,
they discuss several different ways of modeling the primary connectivity constraints. One outcome of their
discussion is that an extended and compact representation of the convex hull of directed rooted subtrees
when the underlying graph is series-parallel can be derived.

De Jonghet al. [dJGI99] have also worked with a closely related problem in which a pair of nodes
has to be linked by two node disjoint paths with minimum total cost and two cable technologies. This
problem is a little different from the LAND-2T since for each arc of the network there is only one available
technology, that is, each arc has a specified technology and there are arcs of type 1 and arcs of type 2. In
the LAND-2T problem, for each arc we have two available technologies. They also consider a transition
cost that is associated with each node. This cost is incurred only when a flow enters and leaves the
corresponding node on arcs of different types. Two heuristics were proposed-in [dJGL99] and a lower
bounding procedure based on Lagrangean relaxation is provided. These procedures are used in a branch-
and-bound strategy to solve the problem.

In a previous paper, we worked with the local access network design probiem [ILRM98]. In this article,
we studied two formulations of the problem: single commodity flow formulation; multicommodity flow
formulation. The problem was solved exactly by CPLEX (with the two formulations), by a branch-and-
bound algorithm, by a branch-and-cut algorithm and by a Benders decomposition. The success obtained
by Benders decomposition to solve this problem has induced us to extend the algorithm developed to the
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local access network design problem to solve the LAND-2T. In Section 2 the mathematical programming
formulation of the problem is presented. Section 3 presents the Benders decomposition applied to solve
the problem. The implemented algorithm is showed in Section 4. Section 5 presents and discusses the
computational results obtained. Section 6 closes this article with conclusions and final comments.

2 Formulation of the Problem

Consider a directed connected gra@fV,E), whereV denotes the set of nodes akds a collection

of directed arcs. Each arc of the graph represents a possible pair of nodes between which a directed
transmission link can be placed. This transmission link can be a primary or a secondary link. Suppose
we have an origin node that must be linked to a number gf| demand nodes, each of them with a
commodity flow requirement aly, wherek € K andK C V.

With appropriate structural and operational costs, the problem is to find a minimal cost arborescence
that links the origin node to all the terminal nodes and that has a connected set of primary links beginning
from the origin node. Remark that all flows are originated at the origin node.

We define the variables:

N 1 if adirect primary transmission link is placed in drcj)
1171 0 otherwise;

- 1 if adirect secondary transmission link is placed in@¢)
1270 0 otherwise;

fijk1: flow passing through the primary afic j) and destinated to the demand néde
fijco: flow passing through the secondary &g ) and destinated to the demand ndéde

And we also define the cost parameters:

bij1: fixed (structural) cost to install a direct primary transmission linkiif);

bij2: fixed (structural) cost to install a direct secondary transmission lirfK jr;

Cijk1: variable (operational) cost to transmit one unit of commokitiyrough the primary arg, j);
Cijko: variable (operational) cost to transmit one unit of commokitiyrough the secondary aft j);

The mathematical modd\), for the LAND-2T problem is:

min 5> (i +biiiz+ 5 (G i+ iz fiice)) (1)
(i,)eE ke
subject to:
(fojks+ foje) = —dk, for nodeo andvk € K (2)
(o,))€E
; (fikka + fikke) = dk, VkeK ©)
(i,k)eE
Y (fike+fie) = Y (fike+ fjke) = 0vj € V — {o} andj # kandvk € K 4)
(i,)eE (j,NeE

fijke < dXij1, V(i,j) €e Eandvke K (5)
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fijke < deXij2, V(i,j) € Eandvk e K (6)
fik1 >0, V(i) € Eandvk € K )
fiike >0, V(i,j) € Eandvk € K (8)
; (XK1 +Xk2) =1, VkeK )
(i,k)eE
S (qjptxe)— Y (GitXiz) 20, VleV-K (10)
(I,)eE (i,)ee
> (XjitXi2)
(I.)€E
> (Gitxiz) = , VleV—-K-{o} (11)
E= > 1
(I,))eE
Xij1+Xij2+Xjii+Xji2 <1, V(i,j)€E (12)
> Xi1=Xj1, (i,]) €E,VieV—{o} (13)
hE=
Xij1,%j2 € {0,1}, V(i,j) €E (14)

The objective function minimizes the total cost associated with the fixed and variable costs. Constraints
(B) ensure that the flow of commodikythat leaves the origin node is equal to the demand of the node
k. Constraints[{3) guarantee that the flow of commodithat arrives at nodk is equal to its demand.
Constraints[{4) are flow conservation constraints. The fact that a flow can pass through an arc only if this
arc is selected to the design is expressed by constrgints (5) (for primary arcg) and (6) (for secondary arcs).
Constraints[([7) and](8) ensure that the flow variables are greater than zero. Constrairs from](9) to (13) are
redundant, but they are important to try to guarantee that the solution of the master problem resulting of
Benders decomposition is an arborescence (Benders decomposition method will be described in the next
section). We call these constraints structural constraints. Constidints (9) ensure that at each demand node
enters only one arc. Constrainfs](10) guarantee that at each Steiner node the number of nodes that leave
the node is greater than or equal to the number of arcs that enter the node. CongTtaints (11) express the fact
that if at least one arc leaves the nddthen at least one arc enters the nbdBetween any nodeasand
j the number of selected arcs, in any direction, has to be less than or equal to 1. Conf§faints (12) express
this fact. Constraintg{13) are the primary connectivity constraints and guarantee that the set of primary
arcs constitutes a connected set from the origin. Finally, constr@imts (14) define the binary vagiables

3 Benders Decomposition of the Problem

Benders partitioning method was published in 1962 [Ben62] and was initially developed to solve mixed
integer programming problems. The computational success of the method to solve large scale multicom-
modity distribution system design models has been confirmed since the pioneering paper of Geoffrion and
Graves [GG74]. Floriaret al. [EGBZ6] have used Benders decomposition to schedule the movement of
railways engines and Richardsan[Ric76] has applied the algorithm to airline routing. Fisher and Jaiku-
mar [EI78] have discussed the advantages of using the algorithm for vehicle routing problems. Magnanti
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and Wong [MW8&I1] have proposed methodology for improving the performance of Benders decompo-
sition when applied to mixed integer programs. They have introduced a technique for accelerating the
convergence of the algorithm and theory for distinguishing "good” model formulations of a problem that
has distinct, but equivalent mixed integer programming representations_Tn [MMW86], Maghahti

have applied Benders decomposition to solve the uncapacitated network design problem (with undirected
edges) and have adapted this technique to be as efficient as possibie_Th [AB97], Benders decomposition
is applied for solving network design problems with underlying tree structuré._In [TRM98] Benders de-
composition method was used to solve the local access network design problem and performed better than
branch-and-cut and branch-and-bound algorithms.

3.1 Master Problem
The mathematical model of the master problem is constituted by the following objective function:
min % (bijixij1 +bijoxij2) +t (15)
(i,))eE
subject to the constraintg (91, {10, (11)]1(12]] (1B)] (14) and by the Benders cut constraint
t> Y d(p— 5 (@i +afioxiz), h=12..H (16)
keK (i,))eE

The parameteh is a cycle counter and indicates the number of Benders cuts that must be taken into
account. For givei andk, the corresponding value in the right-hand-side of constrdints (16) provides a
lower bound on the cost of the flow that leaves the origin node to the demandknode

Consequently, there are three series of dual variables that can be interpreted as prices informations:

e pil: price of opening the communicatidr{k € K) at node (I € V) in cycleh (h=1..H),

. Gihjk13 maximal reduction in the operational cost of commodit§ the primary link at ard(i, j) is
selected to the design in cydbe

e afl,,: maximal reduction in the operational cost of commoditfthe secondary link at ar@, j) is
selected to the design in cydbe

The real variablé that appears in objective function[15) is a lower bound on the total operational cost.

3.2 Subproblems

For a fixed arborescenéd, associated with the vectox§ andx5, we have to solve separately a series of
trivial network flow problems. Leﬂ”:gkl be the set of arcs of type 1 in the path from the source node to the
demand nod& andcgla be the set of arcs of type 2 in the path from the source node to the demankl node
that have been defined by the master problem of dyclhe primal-dual pair to be solved for commaodity
kis:

min % (Gijka filr + Gijka Fika) (7)
(i,))eA

subject to:
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— Y (fja+ o) = —dk for the rooto (18)
(o,])€E
; (fhg+ fho) =d¢ for nodek (19)
(i,keE
S (fla+fha)— 3 (ffka+fike) =0Vj eV —{o}andj #k (20)
(i.f)eE (ilee
— i > —d V(i) e A (21)
~flle > —de V(i) A" (22)
fha>0 V(i j)cA (23)
fho>0 V(i j)cAn (24)

The trivial and unique solution of the problem is:

h [ de df(i,j)eChy CA"
k1™ 0  otherwise

0 otherwise

¢h :{ d if(i,j) eCh, C A

The dual subproblem for commodikyis:

max d(— 3 (a1 +fha) + Pl — Phi) (25)

phah>0 (i,j)eAh

J)En

subject to:

p?k_pn(_aihjkl < G V(i,j)€E (26)
Pl — Pk —Ofke < Cijke V(i) €E (27)
affer, oz = O V(i) €E (28)
pf unrestricted Vi e V (29)

From the complementary slackness condition we have:
Pl — Pk — oy =Gijkr (i, j) €Chq C A
(fijk1 = dk)

Pl — Pk —aflo =Gz (i, j) €Cho C A"
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(fijk2 = dk)

in such a way that we can construct, associated with the primal sokitjdine following dual feasible
solution:

pl, = 0 VkeKforthe origin node (30)
Pl = Ph+cie V(i) eChy c A" (31)
Pl = Plk+cike V(i,j)eChoc A" (32)
ph = pd viev-vh (33)
Oy = 0 V(i,j)eChqg CA (34)
afs = Ph—Pk—Cja V(,j) € E—Cfysuch that
Pk — Pk > Cijka (35)
Ay = 0 V(i) € E—Chy such thap, — pl < Gija (36)
afe = 0 V(i,j) €Cho C A (37)
afe = Pk—Pk—Giez V(i,]) € E—Cf,such that
Pl — Pl > Gijkz (38)
afe = 0 V(i) € E—Ch,such thap, — pl < Gijcz (39)

The systematic evaluation of the dual variables with commodity meaningful values is a key factor for an
efficient implementation. The dual variahﬂ%kl evaluates for commodity the maximal reduction in the
operational cost that could be gained with the introduction of a primary link at thg @yén the solution.

It can also be understood as a tax to be paid with the use of the primafiy grin order to maintain the
distribution agents with no positive profit. Remark that the dual solution set represents spatial prices for
which there is no positive profit for any distribution agent that pays the ggstto flow commaodityk

across the primary ai@, j). The same interpretation is valid for the dual variahﬂ%&.

4  Algorithm

In this section we present the implemented algorithm. Our algorithm is not simply a Benders decomposi-
tion algorithm. We work with a special feasible solution of the problem that minimizes the total variable
cost. This solution is obtained applying the Dijkstra’s algoritfim [Dij59] to find the shortest path from the
origin to all nodes, but only the variable cost to flow from origin to each demand node is computed. The
main steps of the algorithm are the following:

1. Use Dijkstra’s algorithm to find the shortest path from the orio every node of the network.
Let E? be the arcs of the arborescence that contains the shortest paths to all the nodes and let
T(VO A% be the correspondent arborescence that links the oddgmall demand nodek € K

O, =1v(i,j) € A% X, = OV(i, j) € E— A%andX}, = 0¥(i, j) € E). Make

P, = 0 VkeK, forthe origin node
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P = px+Gja V(i j) € E% Vke Kacross®
0 V(i,j)eE,vkeK
0 V(i,j)eE,vkeK

0
Uijk1

0
Uijkz2

Compute the cost associated wilifv%, A%) (the sum of the fixed cost of the arcs A plus the

sum of the variable costs of sending the flow requirement of each demand frmohe the origin

to the demand node). This value gives an initial upper bourl= z(i_j)er(bijp(ﬂl+ bijoXij2) +

S kek AP, and(x2,x3, £9) is an incumbent solution. Also, the shortest paths solution provides the
minimal total variable cost among all possible arborescences, and thus we can use it to initialize the
lower bound B = ¥« dkp(k’k. This is also a lower bound on the variablef the master problem.

. Initialize the cycle counter with zero,e, h=0.

. Solve the master problem. It provides a lower bound for the problem. If the lower bound is greater

than (or equal to) the upper bound, thetap.

. Increment the cycle countédr,

. Solve the subproblem. To solve it, verify first if the selected arcs in the master problem build an

arborescence from the origin to all demand nodes.

e Ifthey do, letT (V", A") be the arborescence that links the origito all demand nodds< K,
contained in the original grap®&(V, E), IetCQkl be the set of primary arcs in the path from the
origin to the demand nodeacrossA", and IetCQ|<2 be the set of secondary arcs in the path
from the origin to the demand nodte

e Else, the solution of the master problem turns the subproblem infeasible in the sense that it
generates a cycle in the path from the origin to one or more demand nodes. In this case, the
cycles are identified and constraints to avoid them are added to the master problem model and
no new upper bound is generated. The master problem must again be solved, then go to step
3.

. Compute the values of the dual variables shown by equafiohs[{30)-(39). A new value for the upper

bound is calculated and if this value is less than the current upper bound then the current upper
bound is updated. If the lower bound is greater than (or equal to) the upper bounstahen

. Add a new Benders cut to the master problem using the dual variable calculated in the previous

step. Go to step 3.

5 Computational Results

The tests were executed on a Sun Ultra Enterprise 3000 with two 250 MHz UltraSPARC processors and
512 Mbytes of RAM memory. The operational system is Solaris 2.5.1. The Benders decomposition
algorithm was implemented in C++ witBPLEX 3.0callable library. The test problems from 1 to 5

are Euclidean graphs randomly generated using a procedure similar to that presenfed’in [Ane80]. This
procedure has extensively been applied for creating testbeds of the Steiner problem and we have used
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Problem CPLEX Benders Decomposi tion

Number |V| |E| |K| B&BNodes Time(s) InitialGap Cycles Time(s)
1 10 40 4 0 0.75 92% 7 0.70
2 10 50 4 0 0.27 58% 8 161
3 12 50 5 0 0.10 51% 5 0.95
4 15 50 8 0 0.11 48% 7 3.11
5 16 60 10 0 0.31 48% 9 2.37
6 21 112 4 0 2.40 95% 2 0.50
7 31 220 5 0 50.07 96% 2 49.27
8 31 240 6 0 29.79 2% 2 241
9 36 322 7 0 159.08 2% 4 30.21
10 41 417 8 0 269.69 2% 2 2.05

Table 1: Computational results for the problem LAND-2T.

this procedure to generate test instances of the local access network design pfobiem! [LRM98]. The
test problems from 6 to 10 were generated by a different procedure which has been used to generate
test instances for the local access network design problem in such a way that the linear relaxation of
the multicommaodity flow formulation of this problem does not find an optimal integer solution. This
procedure was proposed by THH98].

Table[l shows the results obtained by solving the test problems by CPLEX and by Benders decompo-
sition method. The number of cycles (number of master problems solved) was small, specially for the
problems from 6 to 10 for which the greatest number of cycles was 4. Benders decomposition algorithm
was better than CPLEX for 6 of the 10 problems. For the problems from 6 to 10, the execution time of
Benders decomposition was smaller than the execution time of CPLEX for all problems (this difference
between the execution times was more significative for problems 8, 9 and 10). Although the initial gap
((upper bound - lower bound)/upper bound) obtained from the first solved master problem may be high,
the performance of Benders decomposition algorithm is encouraging.

It is important to note that for all test problems in Tafle 1 the linear relaxation of the rivbpedduces
an optimal integer solution. We have not tested the instances which do not have this property yet. From
our previous experience with one cable technology, we know that Benders decomposition may be better
than other methods as branch-and-bound and branch-and-cut. So, we believe that the performance of
Benders decomposition can be better than this obtained with these preliminary experiments.

6 Conclusions

In this article we have extended a Benders decomposition algorithm that we have previously implemented
to solve the local access network design problem. This algorithm performed very well on the local access
network design problem and the obtained results have lead us to extend it to solve the LAND-2T.

We have presented a multicommodity flow formulation for the LAND-2T with primary connectivity
constraints. Moreover, we have added some structural constraints to the model with the objective of
getting feasible solutions from the master problem. Benders decomposition was applied to this model and
the values of the dual variables were derived.

Some computational experiments were developed and the number of master problems solved was small,
from 2 to 9. Benders decomposition has performed better than CPLEX for 6 of the 10 test problems.
In some instances, Benders execution time was 10% of CPLEX execution time. We have not tested
the algorithm with the instances for which the linear relaxation of mddl@loes not find an optimal
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integer solution of the problem. From our previous experience, we expect that the best results of Benders
decomposition algorithm will be reached for these problems.
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