Discrete Mathematics and Theoretical Computer Scieh@)01, 179-194

Finite Automata with
Generalized Acceptance Criterial

Timo Peichl and Heribert Vollmer
Theoretische Informatik, Univerait Wurzburg, Am Hubland, D-97074 Wzburg, Germany.

received Nov 24, 199%evised September, 200fccepted October 2000

We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf lan-
guage, i. e., a condition on the sequence of leaves in the automaton’s computation tree. We study leaf languages either
taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class.
We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits.

Keywords: finite automata, generalized acceptance criteria, leaf language, formal languages, complexity classes

1 Introduction

Let M be a nondeterministic finite automaton amde an input word. Usually is said to be accepted
by M if and only if there is at least one possible computation pathl afhich acceptsv. In this paper
we look at the tre@y (w) of all computations that automatdh on inputw can possibly perform. A node
v in this tree is labelled by a configurati@of M at a certain point during its computation on inpyt
where such a configuration is given by the stat®aind the portion of the input which is still unscanned.
The children ofv in the computation tree are associated with the successor configurati@ns. ef, if
the transition function oM has several entries for this particul@r then each of these will lead to a
successor configuration and a childwih the computation tree. The leaves in the tree are associated to
those configurations thid reaches when all input symbols are consumed.

Now the acceptance criterion of nondeterministic automata can be rephrased as follows: An input word
w is accepted b if and only if in the computation tree &l on x there is at least one leaf labelled with
an accepting state.

Using the concept of computation trees, we will study modified acceptance criteria in this paper. Con-
sider for example the following question: If we say that a word is acceptéd ibyand only if the number
of accepting leaves in the computation tree is divisible by a fixed prime numbkzm non-regular lan-
guages be recognized in this way? The acceptance here is thus given by a more complicated condition on
the cardinality of the set of accepting paths in the computation tree. (For the definition of the class REG

TA preliminary version appeared in the Proceedings of the 26th International Colloquium on Automata, Languages, and
Programming, Springer Lecture Notes in Computer Science Vol. 1644, pp. 605-614, 1999.

1365-80500C) 2001 Maison de I'lnformatique et des Métiatiques Disates (MIMD), Paris, France

180 Timo Peichl and Heribert Vollmer

we just require that this cardinality is non-zero.) But we do not only consider such cardinality conditions
in the present paper.

If we attach certain symbols to the leavesTw(w), e.g., the symbol 1 to an accepting leaf and 0
to a non-accepting leaf, then the computation tredlobn inputw defines a word, which we get by
concatenating the symbols attached to the leaves, read from left to right (in a natural order of the paths of
Tw(w) we define below). We call this string theaf wordof M onw. Observe that the length of the leaf
word can be exponential in the lengthwf Generally, an acceptance criterion is nothing other than the
set of those leaf words that makkéaccept its input; that is, such a criterion is defined by a so céaifd
language Lover the alphabet of the leaf symbols. By definition a word is acceptéd ihyand only if the
leaf word ofM on inputw is in L. In the example above we used as leaf language the akall binary
words with a number of 1's divisible bg.

We now ask what class of languages such automata can accept given a particular class of leaf lan-
guages. E.g., what if we allow all regular languages as acceptance criteria, can non-regular languages
be recognized? The main result of this paper is a negative answer to this question. As another example,
if the criterion is given by a context-free language, then we see that non-regular, even non context-free
languages can be recognized. To mention a final example, if we allow leaf languages from the circuit
class NG (a class whose power is captured in a sense by the regular languages, since there are regular
languages complete for N@inder uniform projections, a very strict reducibility [BI$90]), then we obtain
that even PSPACE-complete languages can be accepted by such finite automata.

In this paper we study in a systematic way the power of acceptance criteria given by leaf languages
which are (1) taken from a (complexity) class defined via space or time restrictions for Turing machines,
or (2) taken from a (formal language) class of the Chomsky hierarchy.

The power ofnondeterministic Turing machin@ghose acceptance is given by a leaf language is well-
studied, see, e.g.[[BCS9Z, Verd3, HI®s, (IMTY6]. More recently the model has also been applied
to Boolean circuits, see JCMTV98]; formally, in this latter model so calledgrams over automata
were used as leaf string generators — in the case of language decision these programs are known to yield
exactly the power of the class NBarg89]. Programs over automata consist of (uniform) projections
whose outputs are fed into nondeterministic FAs. The power of finite automata per se, the probably most
basic type of machine, with acceptance defined by a leaf language, has not been considered so far in the
literature. The present paper closes this gap. In general, as had to be expected, our results differ quite
a lot from those obtained in the above cited papers. However, in the context of leaf languages taken
from a complexity class we will see that finite automata as underlying model are essentially as good as
polynomial-time Turing machines.

2 Preliminaries

We assume the reader is familiar with the basic automata and machine models from formal language
theory and complexity theory, see, e. d, [HU7Y9, BDGY5, BCY4, Pap94]. For more background on the
models we use, we refer the reader to the different chaptersin[RS97].

Our Turing machines are standard multi-tape machines,[See [HU79]. For the definition of sublinear
time classes we usaedexing machingsintroduced in [[Sip83]. These machines cannot directly access
their input tape, but instead have to write down a number in binary on a so called index tape. When they
enter a specified read state with @ijnon the index tape, they are supplied with tieinput symbol (or
a particular blank symbol, if exceeds the input length) in unit time. We use the so cataddard(or,

Finite Automata with Generalized Acceptance Criteria 181

proviso 1) modelwhich does not delete its index tape after a read operation[Seel[CCY95, RV97]. This
means that, even with a logarithmic time-bound, such a machine may access logarithmically many bits of
its input; this fact allows it to determine the length of the input using one-sided binary search.

In our main proof we make use of a generalized model of automata, known as alternating finite automata
(AFA). They were introduced by Chandra, Kozen, and Stockmeyerin [CKS81] and work like the better
known alternating Turing machines. Although the model at first sight seems to be more powerful than
deterministic automata, it was shown that the class of languages they accept is REGI[CKS81].

The following, somewhat intuitive, exposition is basically fram_[Yu97], for a more precise definition of
the model refer tofCKS81].

Let B = {0,1} andQ be a finite set. TherB? is the set of all mappings fror® into B. Note that
u € B9 can be considered ag@|-dimensional vector with entries .

An alternating finite automaton (AFA3 a quintupleA = (Q, Z, s, F,) whereQ is the finite set of states,
> is the input alphabet € Q is the starting statd; C Q is the set of final states amgs a function from
Q into the set of all functions fror x B9 into B.

Note thatg(q), for g € Q, is a function froms x B into B, denoted below by,

How does an AFA work? Inductively, we define the language accepted by ajstafeas follows: A
stateq € Q accepts the empty woid if and only ifq € F. Having a nontrivial inpuk=ay,a€ 2,y € *,

g reads the first lettegt and calls all states to work on the rgstf the input. The states working grwill
accept or reject and those results can be described by a veetBf. Now the valuegg(a,u) € B shows
whetherg accepts or rejects. An AFA accepts an input when the initial stataccepts it.

One form to represent an alternating finite automaten(Q, %, s,F, g) is to give a system of equations,
for all g € Q, of the form

X= Y a-gg(a,X)+g5, geQ.

ac

Xq represents the statpe Q andX is the vector of all variableXy. The finaleq is used to denote i is
accepting: Ifeq = A thenq is an accepting state; otherwise we sgt= 0. The reader may think of the
symbol 0 as used here in these equations by convention for “rejection”; we do not want to imply anything
else from its use — in particular, 0 need not be an alphabet letter. (This does not say, of course, that this is
an arbitrary convention; that there is good reason to use 0 here can be seen from the extensive treatment
of the equation calculus inYii97].)

In the equatiorXy = a- X +b- (X, AXs) +c- 0, for exampleq is not an accepting state. In this state
there is a deterministic transition intovhen reading ama. Stateq definitely rejects when readingca If
abis read therg will accept if and only ifr accepts the rest of the input aadejects it.

Itis clear that one obtains a nondeterministic automaton with a system of equations in which only the
function occurs. A more detailed elaboration of this topic and a proof of the following statement is given
in [CKS&1,Y197].

Proposition 2.1 The class of languages accepted by alternating finite automata is REG.

3 Leaf Automata

In this section we will formally definéinite automata with generalized acceptance criterion

The basic model we use is that of nondeterministic finite automata. On an inputwgarch a device
defines a tree of possible computations. We want to consider this tree, but with a natural order on the
leaves. Therefore we make the following definition:

182 Timo Peichl and Heribert Vollmer

A finite leaf automatorfleaf automaton for short) is a tuplé = (Q, 2, d,s,I",v), where

2 is an alphabet, thimput alphabet

Qs the finite set obtates

d: Q x I — Qt is thetransition function

s Qis theinitial state

I is an alphabet, thieaf alphabet
e v: Q — I is afunction that associates a stgteith its value \(q).

If we contrast this with the definition of nondeterministic finite automata, where we haw&thaj is
asetof states, we here additionally fix an ordering on the possible successor states by arranging them in
a string fromQ™. We explicitly remark that in leaf automata we allow the same state to appear more than
once as a successordfg, a); an example is the automatéhin the proof of Theorerf 4.1.

Let M be as above. The computation trég(w) of M on inputw is a labeled directed rooted tree
defined as follows:

1. The root ofTy (w) is labeled(s, w).

2. Leti be a node infy (w) labeled by(q,x), wherex# A, x=ayforac ¥,y € ¥*. Letd(q,a) =
0102 - Gk- Theni hask children inTy (w), and these are labeled b, y), (d2,Y), - - -, (Ok,) in this
order.

We now consider an extensidi: Q x ¥* — Q* of the transition functio® as follows:
1. 6"(gq,A) =qforallge Q.
2. 3(q,ay) = 8"(ay,Y)3" (dz,y) ---8°(0k.Y), if € Q,a€ Z,y € 2%, andd(q, a) = duGa- - - G-

LetV: QF — ' be the homomorphic extensionwflf now w € 3*, then leafstrinf (w) =get 9(5*(s,w))
is theleaf stringof M on inputw.

If we look at the tre€ly(w) and attach the symbael(q) to a leaf in this tree with labelg, €), then
leafstring” (w) is the string of symbols attached to the leaves, read from left to right in the order induced
by d.

As an example, supposé = (%,Q,d,s,F) is a usual non-deterministic finite automaton, where Q
is the set of accepting states. Define a leaf automktos (Q,%,8',s,I",v), wherel = {0,1}, v(q) =
1if g€ F andv(q) = 0 else, and¥(q,a) is concatenation of the elements of the &@t,a) ordered
arbitrarily. Then obviouslyM accepts inputv if and only if Ieafstrin@"'(w) contains at least one letter 1,
i.e., Ieafstrind'/(w) € 0°1(0+1)*. Conversely, every leaf automaton with= {0,1} may be thought of
as a non-deterministic finite automaton.

In the above example we used the languagg¢®@+-1)* as acceptance criterion. We want to use arbitrary
languages below. Therefore we define: Met= (Z,Q,9,s,I,v) be a leaf automaton, and IatC I'*. The
IanguageLean (A) =def {w ex* | leafstrind! (w) e A} is the language accepted bMywith acceptance
criterion A. The clasd eaf™ (A) consists of all language® C =*, for which there is a leaf automaton

Finite Automata with Generalized Acceptance Criteria 183

M with input alphabe& and leaf alphabet such thaB = Leaf"! (A). If Cis a class of languages then
Leaf™(C) =det UaccLeaf ™ (A).

Our example above shows thataf™ (0*1(0+1)*) = REG. It will be our aim in the upcoming section
to identify Leaf™ () for different classeg.

We will also consider a more restricted form of leaf automata, defined as follows:

LetM = (2,Q,9,s,I",v) be such thatd(qg,a)| < 2 for all g€ Q anda € Z; that is, in every stepM
has at most two possible successor states. In terms of the computatidf (kgehis means that leaves
trivially have no successors and inner nodes have either one or two successors. Observe that all paths
have length exactip. Thus a path is given by a womle {L,R}", describing how one has to move from
the root to the leaf (L stands for left, R for right). Since there may be inner nod&g(i) with only
one successor (which, by definition, then is consideretefhsuccessor), there maybe wogls {L,R}"
with no corresponding path. In this case we say thatpath g is missingWe say that the computation
treeTum(X) is balanced if the following holds: There is a path € {L,R}" in T;m(x) such that to the left
of p no path is missing, and to the right pfall paths are missing. Thysis the rightmost path iy (x),
andTu (x) informally is a complete binary tree with a missing subpart in the right.

ForACT™, the cIasQLeafFA(A) consists of all languagdsC 2*, for which there is a leaf automaton
M with input alphabek and leaf alphabdt such that

1. For all input wordsv € Z*, the computation tre®y (w) is balanced; and
2. B=Leaf"(A).

We will compare the classg®)Leaf™ () with (B)Leaf"(C), (B)Leaf(C), (B)Leaf-°CT(¢) (the
classes of languages definable with leaf languages taken dras acceptance criterion for (balanced)
nondeterministic Turing machines operating respectively in polynomial time, logarithmic space, and log-

arithmic time), and(B)LeafNCl(C) (languages definable with leaf languages taken fidras accep-
tance criterion for so called programs over automata, a model which corresponds to the circuit class

programs but taking only finite automata). For background on these models, we refer the reader to
[HLST93, IMT96, CMTVIB].

4 Acceptance Criteria Given by a Complexity Class

We first turn to leaf languages defined by time- or space-bounded Turing machines.

Theorem 4.1 Let t(n) > logn. ThenBLeaf ™ (ATIME(t(n))) = ATIME(t(2")).

Proof. The proof uses standard padding arguments. R
(2): Let Ac ATIME (t(2")) via Turing machineM. Define the leaf automatoN = (£,Q,3,s,Z,V),
whereQ = {s} U{da|a€ X}, v(qa) = aforallac Z, andd is given as follows:

o0(s,a) = s forallacX, and
o(gp,8) = qpgp forallabeZ.
The reader may check that, given input Xy - - - X, N produces the leaf word

2 8 n-1,
V(S)XnX_1 Xﬁfz Xn3 " Xp

184 Timo Peichl and Heribert Vollmer

hence théth symbol ofx is equal to the 2"1-'th symbol in leafstring(x). It is clear that the computation
tree ofN is always balanced.

Now define the indexing machird’ operating essentially ad, but whenM reads itsith input sym-
bol thenM’ reads its 271-'th input symbol. To simulat®!’s read operationsy’ on input of length
2™ (corresponding to inpux; - - - Xm of machineM) first initializes its index tape with the string 10
Now head movements d¥l can easily be simulated by adjusting the index tape (movements to the
right correspond to deleting a 0, movements to the left to adding aMJ)thus accepts a leaf word
V(S)xmX2, x4 38 43" " of Nif and only if x; - -Xm € A. MachineM’ operates in time(2™) with
respect to input length = 2™, henceA € BLeaf ™ (ATIME (t(n))).

(9): LetAe BLeafFA(ATIME(t(n))); let N be the corresponding leaf automaton, andMebe the
Turing machine accepting the leaf language in ttmBefineM’ as follows:M’ works asM, but whenM
reads itsth input symbolM’ guesses the input bit and then branches universally. On one of these branches
the simulation ofM is continued, on the other brandhon itsith path is simulated deterministically.
This is possible, since the computation tree is balanced, and hence the nummnitiem down in binary
immediately gives the nondeterministic choicesNobn theith path. The time requirements for this
simulation are given by the time bound of machMdi.e.,t(2") for an input ofM’ of lengthn) plustime
O(n) for a single simulation oN. O

At this point, two remarks are in order. First, observe that, for the left-to-right inclusion, to obtain the
time boundt(2") for machineM’ we make essential use of its ability to branch existentially and univer-
sally; hence this works only for alternating machines. Second, for the above simulation it is necessary
that the computation tree producedMys balanced, because we have to findithgath ofN, given only
numberi. Next we want to examine what happens when these requirements no longer hold.

Let us first address the case of deterministic machines, i.e., we no longer have the power of alternation,
used above to guess and verify. We will see that, nevertheless, a statement similar to the above can be
proved if the resource bound class is closed under addition and multiplication.

Theorem 4.2 Let t(n) > logn. ThenBLeaf ™ (DTIME((t(n))°V))) = DTIME((t(2"))°W).

Proof. The proof is similar to the above one. For the right to left inclusion, just replace ATIME by DTIME
in the above argument.

For the left to right inclusion, leA € BLeaf™ (DTIME ((t(n))°Y)) via the leaf automato and
Turing machineM accepting the leaf language. As in the proof of Theofein 4.1 we dikfirte work as
M, but this time, whemM reads itgth input symbol, we interrupt the simulation bf, simulateN on its
ith path to compute the input symbol i, and then resume the simulationMf These subprograms for
simulations ofN will lead to an extra factor of(n) w.r.t. the time requirements &f’, which poses no
problem here. Note that above, in Theorgn 4.1, we did not have this extra time available, hence the other
form of simulation there, making use of the power of alternation. O

Next we turn to non-balanced computation trees. Given the position of a symbol of the leaf string now
no longer enables us to immediately follow the corresponding path in the leaf automaton, because the
relation between the position and the nondeterministic choices on the corresponding path is not valid any
more. However, as soon as at least linear, this is no longer needed as we observe next.

Let us also consider the case of unbalanced trees where the automata we consider have the property
that|3(q,a)| < 2 for all g € Q anda € . Our notation for the obtained classes &af5”(.).

Finite Automata with Generalized Acceptance Criteria 185

Theorem 4.3 Let t(n) > n. Then we have:
1. BLeaf™(DTIME(t(n))) = Leaf5*(DTIME(t(n))) = DTIME(t(2")).
2. Leaf™(DTIME(t(n))) = DTIME(t(2°(M)).

Proof. Similar to the above.

To prove all of the inclusion8Leaf™ (DTIME(t(n))) C DTIME (t(2")), Leafy* (DTIME(t(n))) C
DTIME (t(2")), andLeaf™ (DTIME(t(n))) C DTIME (t(2°(")), it is sufficient to observe that we now
have enough time to first compute the whole leaf word (for statement 1 in fimeof that we have at
most binary branches in the finite automaton; for statement 2 in tfff¢) 2nd then simulat#! (in time
t(2"), resp.t(2°M)).

The converse inclusions in statement 1, DTI{@")) C BLeaf™ (DTIME(t(n))) and DTIME(t(2"))

C Leaf* (DTIME(t(n))), are proven exactly as before.

For the inclusion DTIME{t(2°<”))) - LeafFA(DTIME(t(n))) we also proceed along the same line, but,
if necessary, we replace automaféirom Theorenf 4]1 by an automaton with a higher branching degree
to pad a lengt input to a length 2" string for suitablec € N. O

In fact the above result can be generalized to many familiar complexity measure. In particdbdnglet
one of the measures DTIMETIME, DSPACENSPACE Z, TIME, @ TIME, Lett(n) > nin case of
atime-restriction, ant{n) > logn in case of a space-restriction. The proof given for Thedrem 4.3 remains
valid in the case of these measures and bounds; hence we conclude that

BLeaf(®(t(n))) = ®(t(2"),
Leaf™(d(t(n))) = @(t(2°M)).
More generally, using Hertrampf’s locally definable acceptance typesHer9”1Her94], we conclude that
BLeaf ™ ((F)TIME(t(n))) = (F)TIME(t(2"),
Leaf™ ((F)TIME(t(n))) = (F)TIME(t(2°")),

for any locally definable acceptance tyfe
Hence we obtain in particular:

Corollary 4.4 1. BLeaf™(POLYLOGTIME = P.
2. BLeaf ™(NC') = ALINTIME.
3. BLeaf™(L) = Leaf™(L) = LIN.
4. BLeaf (NL) = Leaf ™(NL) = NLIN.
5. BLeaf ™ (POLYLOGSPACE= Leaf ™(POLYLOGSPACE= PSPACE.
6. BLeaf ™ (P) = Leaf ™(P) = E.
(

7. BLeaf ™ (NP) = Leaf ™(NP) = NE.

186 Timo Peichl and Heribert Vollmer

The above proofs make use of fairly standard padding techniques. The main point is the definition
of an automaton which pads a given word of lengtinto a word of length 2 (or 2°(" in the un-

balanced case). Turing machines and Boolean circuits can pad up to Iéﬁ&fh therefore similar
proofs show that, e. g., the classesaf"(NC?), Leaf- (NCY), Leaf ' (NCL), Leaf”(POLYLOGSPACE,

Leaf- (POLYLOGSPACH, andLeaf"®' (POLYLOGSPACE coincide with ATIME(n°Y)) = PSPACE,

see [HL.S93,[IMT96,[CMTV9I8]. Hence we see that here in the context of complexity classes as leaf lan-
guages, the ability to pad is the central point, and Turing machines, Boolean circuits, and finite automata
behave quite similarly.

5 Acceptance Criteria Given by a Formal Language Class

We now consider in turn the different classes that make up the Chomsky hierarchy of formal languages.

5.1 Regular Languages

One can easily see that REG is defined by the regular leaf langtiag®401)*, but already the language
{1} over B = {0,1} defines REG as the following proof shows. Furthermore, we show next in our main
result that a regular leaf language cannot define a class containing nonregular languages.

Theorem 5.1 BLeaf ™ (REG) = Leaf ™(REG) = REG.

Proof. The inclusionBLeaf™ (REG) C Leaf™ (REG) is trivial. To show REGC BLeaf™ (REG) we
define the leaf languag® = {1} € REG overB = {0,1}. Let A € REG be given. Then there exists a
DFA N which accept®\. We useN as the leaf automaton producing the leaf string 1 or 0 when accepting
or rejecting. Thus we havex € A <= leafstrind'(x) = 1 <= leafstring'(x) € B. Of course, the
computation tree ofl is always balanced.

Finally we have to showeaf(REG) C REG. LetA e Leaf*(REG) be a language over the al-
phabet>. Then there exist a DFM and a leaf automatoN with the following property:x € A «<—

M accepts leafstrifyx). Let the automat& andM be given byN = (Z,Qu,dn,sn,T,v) andM =
(F',Qm,0Mm,Sm,Fv). Forqge Qn anda € = we denote the branching degreeifg,a) = |dn(q,a)| and
write dn (g, @) = 0n,1(, @) - - - On r(q,a) (T, @)-

We construct an AFAVl = (Z,Qi>Sii» Fii-9) which acceptsA. The set of states is defined R; =
{8} U (Qm x Qu x Qn). In the sequel we will denote a stag < Qg \ {s;} by a triple, e. 9.0 =
(do, Ge; An), with the following intuition: When starting iy, M will accept if and only if the leaf string
produced by the leaf automatdhstarting ingy leadsM from g to Qe. M follows the computation of
N, while it guesses an accepting sequence of statds. oht the endM checks whether this sequence
coincides with the sequence of states one gets when folloMimgrking on the leaf string. This will be
done by using the principle of “divide and conquer.”

We define the functiog as well as the set of final statég by systems of equations as described in
Sect.[R (note thaty’ and ‘-’ are parts of the equation formalism, while’*and ‘A’ are used to specify
Boolean functions):

A if By (sM,v(sN)) € Fu,

G = » X'Os.x+&. With & =
i xgz M i {0 otherwise,

Finite Automata with Generalized Acceptance Criteria 187

r
g%,x: \/ |:/\(qi1aqi76N7i(sNaX)>:|7
Q1--,0r—1€Qm, Or€Ry Hi=1
Jo = Sm, andr = r(sy, X).
Note that the branching degree@lepends on the state and the letter of the input, so the valuenafht
differ for differentxin gs. x. Remember thag; € Fy <= &5, =A. The “divide and conquer” approach
is directly reflected by the syntactic shape of the Boolean functj%g (and g x below): Similar to,
e.g., the proof of Savitch’'s Theorem [BDG95, Theorem 2.27] or the proof of the PSPACE-completeness of
QBF [BDGY95, Theorem 3.29], the disjunctive normal-form expresseshbed are‘intermediate states”
di,--.,0—1 such thafor all these states, the corresponding subcomputations are valid.
Next, forqg = (Qo,0e, On) € Qg We define:

A i & (do,V(an)) = e,

= sz'ngXJrqu Wi e = {0 otherwise

Xe

r—1
ng’X = \/ |:/\ <Qi—17 QiaéN,i(QMX)) A\ <Qr71, q&éNJ (QN,X)>:| ,
d1,--0r—1€Qm “i=1

andr =r(gn;,X).

Again,r depends omy andx, and we have; € Fg <= €gy = A

Now we must show that the alternating automa%accepts the Ianguage(lﬂ) = A. The stateg; =
(do, Ge; ON) € Qg has the following intuitive meaning: Starting Nfin stateqy on the inputy we obtain
a leaf stringw. StartingM in 0yi» the inputy will be accepted if and only if this leaf string leal¥sfrom
stateqp to qe, i. €., if d(qo, W) = ge. We prove this by induction oy

ly| = 0: Fory = A the leaf string is the letteu(qn). Starting indg = (0o, de,dN), Y = A Will be accepted
if and only if &g, = A. This is true fordy (qo,v(qN)) = Qg, i. €., the leaf string/(gn) leadsM from gp to

Qe
Assuming this to be correct for ajl € =¥, |y| < n, we now consider the cagg| = n. Let g =

(0o, 0e,qn) be the current state o andy =vy;---yn. In stategqy, N branches inta = r(qn,y1) =

|On (AN, Y1)| subtrees when it readg. According to the equation fagg, y,, M in stateqg acceptsy

if and only if there exists a sequence of statgs..,q—1 € Qu with the following property: In each

subtree (r resp.),i=1,...,r —1, the wordy,- - -y, will be accepted when starting respectively in state
0i—1,Gi,0N,i(ON,Y1)) OF (Gr—1,0e, 0Ny (ON, Y1)). Following our induction assumption this is true if and

only if in each subtre is transduced frong;_1 to g; (from g,_1 to ge resp.) by the corresponding leaf

string. Thusv acceptsy starting inqy; if and only if M is lead fromqg to ge by the whole leaf string.
AnalogouslyM accepts the inpu, ly| > 0O, starting fromsy; if there is additionally to the statepe Qu

an accepting statg € Fy such tha;, (su, leafstrind'(y)) = ;. If y= A thenN produces the single letter

leaf stringv(sy), and we have:

AeA <— M accepts/(sy) < Om (sM,v(sN)> €EFhu = &, =N — Macceptsy= A. (1)

Thus we have (M) = A. O

188 Timo Peichl and Heribert Vollmer

The result just given is dramatically different from corresponding results for other models: It is known
thatLeaf” (REG) = PSPACE and eaf" (REG) =

5.2 Contextfree Languages

We found REG to be closed underﬂmaf':A-operator, but it is well known that REG is closed under many
operations. What about the other classes in Chomsky’s hierarchy, e.g., CFL? First we show in[Cdmma 5.3
that every class defined via leaf languages is closed under intersection if the class of leaf languages is
closed under a certain type of concatenation. Then it will be easy to see that CFL is not closed under the
LeafFA-operator. Furthermore we give some arguments for an upper bommifﬁA(CFL).

First, however, we observe the following:

Lemma 5.2 CFL C BLeaf ™(CFL).

Proof. It is known that for everyL. € CFL over some alphabét and every $£ =, the languagé.® =
{a1$a%a3$---$an | a1,...,an € ZU{A}, a8 € L }, the so calleghadded versionf L, is in CFL.

By an easy modification of automatdhfrom the proof of Theorerh 4.1 we obtain a leaf automaton
M that, given an inpud; - - - an, produces a full binary computation tree whose leaf string is of the form
ray* - a*. HenceM with leaf languagé.® acceptd.. O

Lemma 5.3 Let C be a class of languages with the following properties:
1. L1,Lr € C = Li#l, € C, where# is a new symbol and
2. LeC = LU{A} e

ThenLeaf™(() is closed under intersection.

Proof. Let A = LeafA(La) andB = Leaf"®(Lg) with the leaf automataia, Mg (where, w.l.0.g., we
assume that the state setdvf andMg are disjoint) and the leaf languagesg Lg € C over the alphabets

S, Zg. Construct a leaf automatd with leafstrind® (x) = leafstrind"a (x)#leafstrind® (x) for all x £ A

and the new symbol # ~5 U Zg in the following way: The set of states &’ consists of the states of

Ma andMg, a new initial states with the valuev(s) = #, and a new state producing the leaf string # on
every input. In statsthere is a nondeterministic transition imoand the successors of the initial states

of Ma andMg, wherem is in the middle of these three states according to the order of the computation
tree. In all other statelgl” works just likeMa or Mg, respectively. For ak # A we obtain

xeANB — leafstrind’» (x) € La and leafstrin®(x) € Lg
— leafstring™s (x)#leafstrind® (x) € La#lp
— leafstrind” (x) € La#s.

For the special case &= A we now define:

L, = LaU{A} ifAe AnBand
La else.

Analogously we definég and we geh € ANB <~ leafstrind (A) = v(s) = #¢ L#Lg. Now we have
ANB = Leaf™ (L,#L}) € Leaf™((). 0

Finite Automata with Generalized Acceptance Criteria 189

The second assumption in Lemia) 5.3 is just for some technical reasons concerning the empty word
and could be easily replaced e.g.bg ¢ = L\ {A} € C.

It is well known that CFL is not closed under intersection, but it fulfills the prerequisites of the previous
lemma. Thus we know thateaf™ (CFL) contains all intersections of contextfree languages and CFL
Leaf™(CFL). We also want to give some upper boundslfeaf™(CFL): We know that CFLC P and
CFL C DSPACHIlog?(n)). By monotonicity and our results in Seft. 4 we obtain

Theorem 5.4 CFL C Leaf™(CFL) C DSPACENR?)NE.

The above proof makes convenient use of the well-known fact that CFL is not closed under intersection;
however it only works for unbalanced computation trees. But also in the balanced case it is easy to show
that non context-free languages can be accepted by leaf automata with context-free leaf language:

Say that a language clagss closed undeweak intersectioif, whenevelq, L, € C, then ##L;1NL;) €
C, where # is a new symbol not occurring in the alphabets of ».

Lemma 5.5 Let C be a class of languages with the following properties:
1. IfLe ¢, LCZ*, $¢ 3, then the languagetis in C.
2. Lh,Lr € C = Li#*Ly € C, where# is a new symbol and
3. LeC = LU{A} €.

ThenBLeaf™(() is closed under weak intersection.

Proof. We argue in a way similar to the proof of Lemria]5.3. 1£eB,Ma, Mg be as defined there.
Let M, be asMa but producing a full binary computation tree for every input by inserting paths that
output the neutral letter $. We construct a leaf automaéthat on input ## produces the leafstring
leafstrind” (x) = leafstrind® (x)#2" " leafstrind"® (x) for all x £ A. This can easily be achieved as fol-
lows: While reading the first two symbols ##, automakthproduces a full binary tree with four leaves
V1,V2,V3,Va. In vi automatonM, is started on the rest of the input, i.e., ®nin v4 automatonMg is
started. Belows, andvsz full binary trees that output the symbol # on every path are produced.lle¢

the padded version dfa, and obtairL; andLg from L), andLg as in Lemmd5]3. Arguing as above we

then obtain that #ANB) = Leaf" (L/# L) € Leaf™(C). O
Theorem 5.6 CFL C BLeaf ™(CFL).

Proof. Certainly CFL fulfills the assumptions of Lemrhal5.5, heBteaf™ (CFL) is closed under weak
intersection, but this property is not shared by CFL. O

All in all we thus obtain the inclusion chain

CFL C BLeaf™(CFL) C Leaf™(CFL) C DSPACEN?)NE.

5.3 Context-sensitive and Recursively Enumerable Languages

The class of context-sensitive languages CSL has already been treated [Sect. 4, because it can be char-
acterized by linear bounded automata. Thus we have €8ILIN and together with the results from
Sect we obtain:

190 Timo Peichl and Heribert Vollmer

Theorem 5.7 BLeaf ™ (CSL) = NSPACE2") and Leaf ™(CSL) = NSPACE2°(").

Our last result, that the leaf language class RE defines RE in the balanced as well as in the unbalanced
case, is not surprising:

Theorem 5.8 BLeaf ™ (RE) = Leaf ™(RE) = RE.

Proof. BLeaf™ (RE) C Leaf™(RE) is trivial.

Next, we showLeaf™ (RE) C RE: LetA = Leaf"(B), whereB ¢ RE is given by the recursive and
onto functionf: N — B. The set of all inputs for which M produces a given leaf string is also
enumerable: Simulaté on everyx € =* and if leafstrind! (x) = w then outpuk. Letg: N x =* — 3* be
the corresponding recursive enumeration function. Now we use Cantor’s dovetailing method to enumerate
A, e.g., calculate in this order

g(l,f(l)), g(2,f(1)),g(1,f(2)), g(s,f(l)),g(z,f(Z)),g(l,f(S))...

Finally, since RE is closed under padding with a neutral letter $, the proof af REeaf™ (RE) is the
same as for context-free languages. O

6 Conclusion

We examined the acceptance power of nondeterministic finite automata with different kinds of leaf lan-
guages. Comparing our results with those known for nondeterministic Turing machines with leaf language
acceptance, we saw that if the leaf language class is a formal language class then we obtain a huge dif-
ference in computational power, but in the case of a resource-bounded leaf language class the difference
between finite automata, Boolean circuits, and Turing machines (almost) disappears. This is due to the
fact that in all three cases only the power of the devices to pad out their given input to a long leaf string is
the central point.

It is known that the operatdreaf"OGT(-), i. e., leaf languages for nondeterministic logarithmic time-
bounded machines, is@osure operatar Leaf-°®T(() coincides with the closure of the clagsunder
DLOGTIME reductions [OJMTY6]. In the beginning the authors had the hope to be able to show that the
operatorLeafFA(-) is also some form of closure operator. However, the results from|$ect. 4 prove that this
is notthe case. If is a reasonably large enough complexity class, mmfFA(C) C Leaf (LeafFA(C)),
hence the operatdreaf™|(-) lacks the property of being closed. In this sense Ltiaf-model is even
more complicated than tHeeaf-°T-model.

The main remaining open question of course is if the upper and lower bounds obtained in this paper for
LeafFA(CFL) can be strengthened. Our results here leave a lot of room for improvement, and certainly
one would expect to be able to give stronger bounds. Nevertheless, we have been unable so far to do
so. An idea would be to follow the proof of Theordm|5.1. For each langéagd eaf™(CFL) one
can construct an alternating pushdown automaton which acgepBut unfortunately this yields not

ALT-PDA of all languages accepted by such automata equals E. One might hope that the lower bound

PSPACE= LeafNCl(CFL) could be transferred to our context — after all, there is a very strong connection
between the class NGnd finite automata, since there are regular languages complete fardér very

strict reductions such as uniform projections, see [BIS90]. However our Th¢ofiem 5.4 shows that this hope
is not justified; we have PSPAGE Leaf™ (CFL).

Finite Automata with Generalized Acceptance Criteria 191

Acknowledgment. We are grateful to Klaus W. Wagner (#zburg) and Ulrich Hertrampf (Stuttgart) for
helpful discussions. We also acknowledge helpful comments by the anonymous referees.

References

[Bar89] D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize ex-
actly those languages in NCJournal of Computer and System Scien@8s150-164, 1989.

[BC94] D. P. Bovet and P. Crescenintroduction to the Theory of Complexitinternational Series
in Computer Science. Prentice Hall, London, 1994.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Scienct04:263—-283, 1992.

[BDG95] J. L. Bald@zar, J. Daz, and J. Gabar Structural Complexity.l Texts in Theoretical Com-
puter Science. Springer Verlag, Berlin Heidelberg, 2nd edition, 1995.

[BIS90] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity withinNGournal
of Computer and System Scienc&k274-306, 1990.

[CC95] L. Cai and J. Chen. On input read-modes of alternating Turing machihegretical Com-
puter Sciencgl48:33-55, 1995.

[CKS81] A.K.Chandra, D. Kozen, and L. J. Stockmeyer. Alternatidournal of the Association for
Computing Machinery28:114-133, 1981.

[CMTV98] H. Caussinus, P. McKenzie, D. &hien, and H. Vollmer. Nondeterministic NGomputation.
Journal of Computer and System Scien&@s200-212, 1998.

[Her92] U. Hertrampf. Locally definable acceptance types for polynomial time maching2toin
ceedings 9th Symposium on Theoretical Aspects of Computer Saielwree 577 of_ecture
Notes in Computer Sciengeages 199-207. Springer Verlag, 1992.

[Her94] U. Hertrampf. Complexity classes defined kigalued functions. IfProceedings 9th Struc-
ture in Complexity Theorpages 224-234. IEEE Computer Society Press, 1994,

[HLST93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. IRroceedings 8th Structure in Complexity Theqages
200-207, 1993.

[HU79] J. E. Hopcroft and J. D. Ulimarintroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading, MA, 1979.

[JMT96] B. Jenner, P. McKenzie, and D. @itien. Logspace and logtime leaf languagesormation

[Pap94]

and Computation129:21-33, 1996.

C. H. PapadimitrioulComputational ComplexityAddison-Wesley, Reading, MA, 1994,

192

[RS97]

[RV97]

[Sip83]

[Ver9o3]

[Yu97]

Timo Peichl and Heribert Vollmer

R. Rozenberg and A. Salomaa, editétandbook of Formal Languaggegolume I. Springer
Verlag, 1997.

K. Regan and H. Vollmer. Gap-languages and log-time complexity clas§hsoretical
Computer Sciencd 88:101-116, 1997.

M. Sipser. Borel sets and circuit complexity. Pnoceedings of the 15th Symposium on
Theory of Computingpages 61-69. ACM Press, 1983.

N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms.lzvestija Rossijskoj Akademii Nguk7:51-90, 1993. In Russian.

S. Yu. Regular languages. In R. Rozenberg and A. Salomaa, editansibook of Formal
Languagesvolume I, chapter 2, pages 41-110. Springer Verlag, Berlin Heidelberg, 1997.

