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We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf lan-
guage, i. e., a condition on the sequence of leaves in the automaton’s computation tree. We study leaf languages either
taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class.
We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits.
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1 Introduction
Let M be a nondeterministic finite automaton andw be an input word. Usuallyw is said to be accepted
by M if and only if there is at least one possible computation path ofM which acceptsw. In this paper
we look at the treeTM(w) of all computations that automatonM on inputw can possibly perform. A node
v in this tree is labelled by a configurationC of M at a certain point during its computation on inputw,
where such a configuration is given by the state ofM and the portion of the input which is still unscanned.
The children ofv in the computation tree are associated with the successor configurations ofC, i. e., if
the transition function ofM has several entries for this particularC, then each of these will lead to a
successor configuration and a child ofv in the computation tree. The leaves in the tree are associated to
those configurations thatM reaches when all input symbols are consumed.

Now the acceptance criterion of nondeterministic automata can be rephrased as follows: An input word
w is accepted byM if and only if in the computation tree ofM on x there is at least one leaf labelled with
an accepting state.

Using the concept of computation trees, we will study modified acceptance criteria in this paper. Con-
sider for example the following question: If we say that a word is accepted byM if and only if the number
of accepting leaves in the computation tree is divisible by a fixed prime numberp, can non-regular lan-
guages be recognized in this way? The acceptance here is thus given by a more complicated condition on
the cardinality of the set of accepting paths in the computation tree. (For the definition of the class REG
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we just require that this cardinality is non-zero.) But we do not only consider such cardinality conditions
in the present paper.

If we attach certain symbols to the leaves inTM(w), e. g., the symbol 1 to an accepting leaf and 0
to a non-accepting leaf, then the computation tree ofM on input w defines a word, which we get by
concatenating the symbols attached to the leaves, read from left to right (in a natural order of the paths of
TM(w) we define below). We call this string theleaf wordof M on w. Observe that the length of the leaf
word can be exponential in the length ofw. Generally, an acceptance criterion is nothing other than the
set of those leaf words that makeM accept its input; that is, such a criterion is defined by a so calledleaf
language Lover the alphabet of the leaf symbols. By definition a word is accepted byM if and only if the
leaf word ofM on inputw is in L. In the example above we used as leaf language the setL of all binary
words with a number of 1’s divisible byp.

We now ask what class of languages such automata can accept given a particular class of leaf lan-
guages. E. g., what if we allow all regular languages as acceptance criteria, can non-regular languages
be recognized? The main result of this paper is a negative answer to this question. As another example,
if the criterion is given by a context-free language, then we see that non-regular, even non context-free
languages can be recognized. To mention a final example, if we allow leaf languages from the circuit
class NC1 (a class whose power is captured in a sense by the regular languages, since there are regular
languages complete for NC1 under uniform projections, a very strict reducibility [BIS90]), then we obtain
that even PSPACE-complete languages can be accepted by such finite automata.

In this paper we study in a systematic way the power of acceptance criteria given by leaf languages
which are (1) taken from a (complexity) class defined via space or time restrictions for Turing machines,
or (2) taken from a (formal language) class of the Chomsky hierarchy.

The power ofnondeterministic Turing machineswhose acceptance is given by a leaf language is well-
studied, see, e. g., [BCS92, Ver93, HLS+93, JMT96]. More recently the model has also been applied
to Boolean circuits, see [CMTV98]; formally, in this latter model so calledprograms over automata
were used as leaf string generators – in the case of language decision these programs are known to yield
exactly the power of the class NC1 [Bar89]. Programs over automata consist of (uniform) projections
whose outputs are fed into nondeterministic FAs. The power of finite automata per se, the probably most
basic type of machine, with acceptance defined by a leaf language, has not been considered so far in the
literature. The present paper closes this gap. In general, as had to be expected, our results differ quite
a lot from those obtained in the above cited papers. However, in the context of leaf languages taken
from a complexity class we will see that finite automata as underlying model are essentially as good as
polynomial-time Turing machines.

2 Preliminaries
We assume the reader is familiar with the basic automata and machine models from formal language
theory and complexity theory, see, e. g., [HU79, BDG95, BC94, Pap94]. For more background on the
models we use, we refer the reader to the different chapters in [RS97].

Our Turing machines are standard multi-tape machines, see [HU79]. For the definition of sublinear
time classes we useindexing machines, introduced in [Sip83]. These machines cannot directly access
their input tape, but instead have to write down a number in binary on a so called index tape. When they
enter a specified read state with bin(i) on the index tape, they are supplied with theith input symbol (or
a particular blank symbol, ifi exceeds the input length) in unit time. We use the so calledstandard(or,
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provisoU) modelwhich does not delete its index tape after a read operation, see [CC95, RV97]. This
means that, even with a logarithmic time-bound, such a machine may access logarithmically many bits of
its input; this fact allows it to determine the length of the input using one-sided binary search.

In our main proof we make use of a generalized model of automata, known as alternating finite automata
(AFA). They were introduced by Chandra, Kozen, and Stockmeyer in [CKS81] and work like the better
known alternating Turing machines. Although the model at first sight seems to be more powerful than
deterministic automata, it was shown that the class of languages they accept is REG [CKS81].

The following, somewhat intuitive, exposition is basically from [Yu97], for a more precise definition of
the model refer to [CKS81].

Let B = {0,1} andQ be a finite set. ThenBQ is the set of all mappings fromQ into B. Note that
u∈ BQ can be considered as a|Q|-dimensional vector with entries inB.

An alternating finite automaton (AFA)is a quintupleA= (Q,Σ,s,F,g) whereQ is the finite set of states,
Σ is the input alphabet,s∈Q is the starting state,F ⊆Q is the set of final states andg is a function from
Q into the set of all functions fromΣ×BQ into B.

Note thatg(q), for q∈Q, is a function fromΣ×BQ into B, denoted below bygq.
How does an AFA work? Inductively, we define the language accepted by a stateq∈Q as follows: A

stateq∈Q accepts the empty wordλ, if and only ifq∈ F . Having a nontrivial inputx = ay, a∈ Σ, y∈ Σ∗,
q reads the first lettera and calls all states to work on the resty of the input. The states working ony will
accept or reject and those results can be described by a vectoru∈ BQ. Now the valuegq(a,u) ∈ B shows
whetherq accepts or rejects. An AFAA accepts an input when the initial states accepts it.

One form to represent an alternating finite automatonA = (Q,Σ,s,F,g) is to give a system of equations,
for all q∈Q, of the form

Xq = ∑
a∈Σ

a·gq(a,X)+ εq, q∈Q.

Xq represents the stateq∈ Q andX is the vector of all variablesXq. The finalεq is used to denote ifq is
accepting: Ifεq = λ thenq is an accepting state; otherwise we setεq = 0. The reader may think of the
symbol 0 as used here in these equations by convention for “rejection”; we do not want to imply anything
else from its use – in particular, 0 need not be an alphabet letter. (This does not say, of course, that this is
an arbitrary convention; that there is good reason to use 0 here can be seen from the extensive treatment
of the equation calculus in [Yu97].)

In the equationXq = a ·Xr + b · (Xr ∧Xs) + c ·0, for example,q is not an accepting state. In this state
there is a deterministic transition intor when reading ana. Stateq definitely rejects when reading ac. If
ab is read thenq will accept if and only ifr accepts the rest of the input ands rejects it.

It is clear that one obtains a nondeterministic automaton with a system of equations in which only the∨
function occurs. A more detailed elaboration of this topic and a proof of the following statement is given
in [CKS81, Yu97].

Proposition 2.1 The class of languages accepted by alternating finite automata is REG.

3 Leaf Automata
In this section we will formally definefinite automata with generalized acceptance criterion.

The basic model we use is that of nondeterministic finite automata. On an input wordw such a device
defines a tree of possible computations. We want to consider this tree, but with a natural order on the
leaves. Therefore we make the following definition:
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A finite leaf automaton(leaf automaton for short) is a tupleM = (Q,Σ,δ,s,Γ,v), where

• Σ is an alphabet, theinput alphabet;

• Q is the finite set ofstates;

• δ : Q×Σ→Q+ is thetransition function;

• s∈Q is theinitial state;

• Γ is an alphabet, theleaf alphabet;

• v: Q→ Γ is a function that associates a stateq with its value v(q).

If we contrast this with the definition of nondeterministic finite automata, where we have thatδ(q,a) is
a setof states, we here additionally fix an ordering on the possible successor states by arranging them in
a string fromQ+. We explicitly remark that in leaf automata we allow the same state to appear more than
once as a successor inδ(q,a); an example is the automaton̂N in the proof of Theorem 4.1.

Let M be as above. The computation treeTM(w) of M on inputw is a labeled directed rooted tree
defined as follows:

1. The root ofTM(w) is labeled(s,w).

2. Let i be a node inTM(w) labeled by(q,x), wherex 6= λ, x = ay for a ∈ Σ, y ∈ Σ∗. Let δ(q,a) =
q1q2 · · ·qk. Theni hask children inTM(w), and these are labeled by(q1,y),(q2,y), . . . ,(qk,y) in this
order.

We now consider an extensionδ∗ : Q×Σ∗→Q+ of the transition functionδ as follows:

1. δ∗(q,λ) = q for all q∈Q.

2. δ∗(q,ay) = δ∗(q1,y)δ∗(q2,y) · · ·δ∗(qk,y), if q∈Q, a∈ Σ, y∈ Σ∗, andδ(q,a) = q1q2 · · ·qk.

Let v̂: Q+→ Γ+ be the homomorphic extension ofv. If now w∈ Σ∗, then leafstringM(w) =def v̂(δ∗(s,w))
is theleaf stringof M on inputw.

If we look at the treeTM(w) and attach the symbolv(q) to a leaf in this tree with label(q,ε), then
leafstringM(w) is the string of symbols attached to the leaves, read from left to right in the order induced
by δ.

As an example, supposeM = (Σ,Q,δ,s,F) is a usual non-deterministic finite automaton, whereF ⊆Q
is the set of accepting states. Define a leaf automatonM′ = (Q,Σ,δ′,s,Γ,v), whereΓ = {0,1}, v(q) =
1 if q ∈ F and v(q) = 0 else, andδ′(q,a) is concatenation of the elements of the setδ(q,a) ordered
arbitrarily. Then obviously,M accepts inputw if and only if leafstringM

′
(w) contains at least one letter 1,

i. e., leafstringM
′
(w) ∈ 0∗1(0+ 1)∗. Conversely, every leaf automaton withΓ = {0,1} may be thought of

as a non-deterministic finite automaton.
In the above example we used the language 0∗1(0+1)∗ as acceptance criterion. We want to use arbitrary

languages below. Therefore we define: LetM = (Σ,Q,δ,s,Γ,v) be a leaf automaton, and letA⊆ Γ∗. The
languageLeafM(A) =def

{
w∈ Σ∗

∣∣ leafstringM(w) ∈ A
}

is the language accepted byM with acceptance
criterion A. The classLeafFA(A) consists of all languagesB⊆ Σ∗, for which there is a leaf automaton
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M with input alphabetΣ and leaf alphabetΓ such thatB = LeafM(A). If C is a class of languages then
LeafFA(C ) =def

⋃
A∈C LeafFA(A).

Our example above shows thatLeafFA(0∗1(0+1)∗) = REG. It will be our aim in the upcoming section
to identifyLeafFA(C ) for different classesC .

We will also consider a more restricted form of leaf automata, defined as follows:
Let M = (Σ,Q,δ,s,Γ,v) be such that|δ(q,a)| ≤ 2 for all q ∈ Q anda ∈ Σ; that is, in every stepM

has at most two possible successor states. In terms of the computation treeTM(x) this means that leaves
trivially have no successors and inner nodes have either one or two successors. Observe that all paths
have length exactlyn. Thus a path is given by a wordp∈ {L,R}n, describing how one has to move from
the root to the leaf (L stands for left, R for right). Since there may be inner nodes inTM(x) with only
one successor (which, by definition, then is considered theleft successor), there maybe wordsq∈ {L,R}n
with no corresponding path. In this case we say thatthe path q is missing. We say that the computation
treeTM(x) is balanced, if the following holds: There is a pathp∈ {L,R}n in TM(x) such that to the left
of p no path is missing, and to the right ofp all paths are missing. Thusp is the rightmost path inTM(x),
andTM(x) informally is a complete binary tree with a missing subpart in the right.

ForA⊆ Γ∗, the classBLeafFA(A) consists of all languagesB⊆ Σ∗, for which there is a leaf automaton
M with input alphabetΣ and leaf alphabetΓ such that

1. For all input wordsw∈ Σ∗, the computation treeTM(w) is balanced; and

2. B = LeafM(A).

We will compare the classes(B)LeafFA(C ) with (B)LeafP(C ), (B)LeafL(C ), (B)LeafLOGT(C ) (the
classes of languages definable with leaf languages taken fromC as acceptance criterion for (balanced)
nondeterministic Turing machines operating respectively in polynomial time, logarithmic space, and log-

arithmic time), and(B)LeafNC1
(C ) (languages definable with leaf languages taken fromC as accep-

tance criterion for so called programs over automata, a model which corresponds to the circuit class

NC1 [BIS90]; our (B)LeafFA-model can be obtained from this latterLeafNC1
-model by omitting the

programs but taking only finite automata). For background on these models, we refer the reader to
[HLS+93, JMT96, CMTV98].

4 Acceptance Criteria Given by a Complexity Class
We first turn to leaf languages defined by time- or space-bounded Turing machines.

Theorem 4.1 Let t(n)≥ logn. ThenBLeaf FA(ATIME(t(n))
)

= ATIME
(
t(2n)

)
.

Proof. The proof uses standard padding arguments.
(⊇): Let A ∈ ATIME

(
t(2n)

)
via Turing machineM. Define the leaf automaton̂N = (Σ,Q,δ,s,Σ,v),

whereQ = {s} ∪ {qa |a∈ Σ}, v(qa) = a for all a∈ Σ, andδ is given as follows:

δ(s,a) = sqa for all a∈ Σ, and
δ(qb,a) = qbqb for all a,b∈ Σ.

The reader may check that, given inputx = x1 · · ·xn, N̂ produces the leaf word

v(s)xnx2
n−1x4

n−2x8
n−3 · · ·x2n−1

1 ;
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hence theith symbol ofx is equal to the 2n+1−i th symbol in leafstrinĝN(x). It is clear that the computation
tree ofN̂ is always balanced.

Now define the indexing machineM′ operating essentially asM, but whenM reads itsith input sym-
bol thenM′ reads its 2n+1−i th input symbol. To simulateM’s read operations,M′ on input of length
2m (corresponding to inputx1 · · ·xm of machineM) first initializes its index tape with the string 10m.
Now head movements ofM can easily be simulated by adjusting the index tape (movements to the
right correspond to deleting a 0, movements to the left to adding a 0).M′ thus accepts a leaf word
v(s)xmx2

m−1x4
m−2x8

m−3 · · ·x2m−1

1 of N̂ if and only if x1 · · ·xm ∈ A. MachineM′ operates in timet(2m) with

respect to input lengthn = 2m, henceA∈ BLeafFA(ATIME(t(n))
)
.

(⊆): Let A ∈ BLeafFA(ATIME(t(n))
)
; let N be the corresponding leaf automaton, and letM be the

Turing machine accepting the leaf language in timet. DefineM′ as follows:M′ works asM, but whenM
reads itsith input symbol,M′ guesses the input bit and then branches universally. On one of these branches
the simulation ofM is continued, on the other branchN on its ith path is simulated deterministically.
This is possible, since the computation tree is balanced, and hence the numberi written down in binary
immediately gives the nondeterministic choices ofN on the ith path. The time requirements for this
simulation are given by the time bound of machineM (i.e., t(2n) for an input ofM′ of lengthn) plustime
O(n) for a single simulation ofN. ❑

At this point, two remarks are in order. First, observe that, for the left-to-right inclusion, to obtain the
time boundt(2n) for machineM′ we make essential use of its ability to branch existentially and univer-
sally; hence this works only for alternating machines. Second, for the above simulation it is necessary
that the computation tree produced byN is balanced, because we have to find theith path ofN, given only
numberi. Next we want to examine what happens when these requirements no longer hold.

Let us first address the case of deterministic machines, i.e., we no longer have the power of alternation,
used above to guess and verify. We will see that, nevertheless, a statement similar to the above can be
proved if the resource bound class is closed under addition and multiplication.

Theorem 4.2 Let t(n)≥ logn. ThenBLeaf FA(DTIME
(
(t(n))O(1)))= DTIME

(
(t(2n))O(1)).

Proof. The proof is similar to the above one. For the right to left inclusion, just replace ATIME by DTIME
in the above argument.

For the left to right inclusion, letA ∈ BLeafFA(DTIME
(
(t(n))O(1))) via the leaf automatonN and

Turing machineM accepting the leaf language. As in the proof of Theorem 4.1 we defineM′ to work as
M, but this time, whenM reads itsith input symbol, we interrupt the simulation ofM, simulateN on its
ith path to compute the input symbol ofM, and then resume the simulation ofM. These subprograms for
simulations ofN will lead to an extra factor oft(n) w.r.t. the time requirements ofM′, which poses no
problem here. Note that above, in Theorem 4.1, we did not have this extra time available, hence the other
form of simulation there, making use of the power of alternation. ❑

Next we turn to non-balanced computation trees. Given the position of a symbol of the leaf string now
no longer enables us to immediately follow the corresponding path in the leaf automaton, because the
relation between the position and the nondeterministic choices on the corresponding path is not valid any
more. However, as soon ast is at least linear, this is no longer needed as we observe next.

Let us also consider the case of unbalanced trees where the automata we consider have the property
that|δ(q,a)| ≤ 2 for all q∈Q anda∈ Σ. Our notation for the obtained classes isLeafFA

2 (·).
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Theorem 4.3 Let t(n)≥ n. Then we have:

1. BLeaf FA(DTIME(t(n))
)

= Leaf FA
2

(
DTIME(t(n))

)
= DTIME

(
t(2n)

)
.

2. Leaf FA(DTIME(t(n))
)

= DTIME
(
t(2O(n))

)
.

Proof. Similar to the above.
To prove all of the inclusionsBLeafFA(DTIME(t(n))

)
⊆ DTIME

(
t(2n)

)
, LeafFA

2

(
DTIME(t(n))

)
⊆

DTIME
(
t(2n)

)
, andLeafFA(DTIME(t(n))

)
⊆ DTIME

(
t(2O(n))

)
, it is sufficient to observe that we now

have enough time to first compute the whole leaf word (for statement 1 in time 2n, note that we have at
most binary branches in the finite automaton; for statement 2 in time 2O(n)) and then simulateM (in time
t(2n), resp.,t(2O(n))).

The converse inclusions in statement 1, DTIME
(
t(2n)

)
⊆BLeafFA(DTIME(t(n))

)
and DTIME

(
t(2n)

)
⊆ LeafFA

2

(
DTIME(t(n))

)
, are proven exactly as before.

For the inclusion DTIME
(
t(2O(n))

)
⊆ LeafFA(DTIME(t(n))

)
we also proceed along the same line, but,

if necessary, we replace automatonN̂ from Theorem 4.1 by an automaton with a higher branching degree
to pad a lengthn input to a length 2cn string for suitablec∈ N. ❑

In fact the above result can be generalized to many familiar complexity measure. In particular, letΦ be
one of the measures DTIME,NTIME,DSPACE,NSPACE,ΣkTIME,

⊕
TIME, . . . . Let t(n)≥ n in case of

a time-restriction, andt(n)≥ logn in case of a space-restriction. The proof given for Theorem 4.3 remains
valid in the case of these measures and bounds; hence we conclude that

BLeafFA(Φ(t(n))
)

= Φ
(
t(2n)

)
,

LeafFA(Φ(t(n))
)

= Φ
(
t(2O(n))

)
.

More generally, using Hertrampf’s locally definable acceptance types [Her92, Her94], we conclude that

BLeafFA((F )TIME(t(n))
)

= (F )TIME
(
t(2n)

)
,

LeafFA((F )TIME(t(n))
)

= (F )TIME
(
t(2O(n))

)
,

for any locally definable acceptance typeF .
Hence we obtain in particular:

Corollary 4.4 1. BLeaf FA(POLYLOGTIME) = P.

2. BLeaf FA(NC1) = ALINTIME.

3. BLeaf FA(L) = Leaf FA(L) = LIN.

4. BLeaf FA(NL) = Leaf FA(NL) = NLIN.

5. BLeaf FA(POLYLOGSPACE) = Leaf FA(POLYLOGSPACE) = PSPACE.

6. BLeaf FA(P) = Leaf FA(P) = E.

7. BLeaf FA(NP) = Leaf FA(NP) = NE.
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The above proofs make use of fairly standard padding techniques. The main point is the definition
of an automaton which pads a given word of lengthn into a word of length 2n (or 2O(n) in the un-

balanced case). Turing machines and Boolean circuits can pad up to length 2nO(1)
, therefore similar

proofs show that, e. g., the classesLeafP(NC1), LeafL(NC1), LeafNC1
(NC1), LeafP(POLYLOGSPACE),

LeafL(POLYLOGSPACE), andLeafNC1
(POLYLOGSPACE) coincide with ATIME(nO(1)) = PSPACE,

see [HLS+93, JMT96, CMTV98]. Hence we see that here in the context of complexity classes as leaf lan-
guages, the ability to pad is the central point, and Turing machines, Boolean circuits, and finite automata
behave quite similarly.

5 Acceptance Criteria Given by a Formal Language Class
We now consider in turn the different classes that make up the Chomsky hierarchy of formal languages.

5.1 Regular Languages

One can easily see that REG is defined by the regular leaf language 0∗1(0+1)∗, but already the language
{1} overB = {0,1} defines REG as the following proof shows. Furthermore, we show next in our main
result that a regular leaf language cannot define a class containing nonregular languages.

Theorem 5.1 BLeaf FA(REG) = Leaf FA(REG) = REG.

Proof. The inclusionBLeafFA(REG) ⊆ LeafFA(REG) is trivial. To show REG⊆ BLeafFA(REG) we
define the leaf languageB = {1} ∈ REG overB = {0,1}. Let A ∈ REG be given. Then there exists a
DFA N which acceptsA. We useN as the leaf automaton producing the leaf string 1 or 0 when accepting
or rejecting. Thus we have:x ∈ A ⇐⇒ leafstringN(x) = 1 ⇐⇒ leafstringN(x) ∈ B. Of course, the
computation tree ofN is always balanced.

Finally we have to showLeafFA(REG) ⊆ REG. LetA ∈ LeafFA(REG) be a language over the al-
phabetΣ. Then there exist a DFAM and a leaf automatonN with the following property:x ∈ A ⇐⇒
M accepts leafstringN(x). Let the automataN and M be given byN = (Σ,QN,δN,sN,Γ,v) and M =
(Γ,QM,δM,sM,FM). For q ∈ QN anda ∈ Σ we denote the branching degree byr(q,a) = |δN(q,a)| and
write δN(q,a) = δN,1(q,a) . . .δN,r(q,a)(q,a).

We construct an AFAM̂ = (Σ,QM̂,sM̂,FM̂,g) which acceptsA. The set of states is defined byQM̂ =
{sM̂}∪ (QM ×QM ×QN). In the sequel we will denote a stateqM̂ ∈ QM̂ \ {sM̂} by a triple, e. g.,qM̂ =
(q0,qe,qN), with the following intuition: When starting inqM̂, M̂ will accept if and only if the leaf string
produced by the leaf automatonN starting inqN leadsM from q0 to qe. M̂ follows the computation of
N, while it guesses an accepting sequence of states ofM. At the endM̂ checks whether this sequence
coincides with the sequence of states one gets when followingM working on the leaf string. This will be
done by using the principle of “divide and conquer.”

We define the functiong as well as the set of final statesFM̂ by systems of equations as described in
Sect. 2 (note that ‘+’ and ‘·’ are parts of the equation formalism, while ‘∨’ and ‘∧’ are used to specify
Boolean functions):

sM̂ = ∑
x∈Σ

x ·gsM̂ ,x
+ εsM̂

with εsM̂
=

{
λ if δM

(
sM,v(sN)

)
∈ FM,

0 otherwise,
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gsM̂ ,x
=

∨
q1,...,qr−1∈QM ,qr∈FM

[ r∧
i=1

(
qi−1,qi ,δN,i(sN,x)

)]
,

q0 = sM, andr = r(sN,x).

Note that the branching degreer depends on the state and the letter of the input, so the value ofr might
differ for differentx in gsM̂ ,x

. Remember thatsM̂ ∈ FM̂ ⇐⇒ εsM̂
= λ. The “divide and conquer” approach

is directly reflected by the syntactic shape of the Boolean functionsgsM̂ ,x
(andgqM̂ ,x

below): Similar to,
e.g., the proof of Savitch’s Theorem [BDG95, Theorem 2.27] or the proof of the PSPACE-completeness of
QBF [BDG95, Theorem 3.29], the disjunctive normal-form expresses thatthere are“intermediate states”
q1, . . . ,qr−1 such thatfor all these states, the corresponding subcomputations are valid.

Next, forqM̂ = (q0,qe,qN) ∈QM̂ we define:

qM̂ = ∑
x∈Σ

x ·gqM̂ ,x
+ εqM̂

with εqM̂
=

{
λ if δM

(
q0,v(qN)

)
= qe,

0 otherwise,

gqM̂ ,x
=

∨
q1,...,qr−1∈QM

[ r−1∧
i=1

(
qi−1,qi ,δN,i(qN,x)

)
∧
(

qr−1,qe,δN,r(qN,x)
)]
,

andr = r(qN,x).

Again, r depends onqN andx, and we haveqM̂ ∈ FM̂ ⇐⇒ εqM̂
= λ.

Now we must show that the alternating automatonM̂ accepts the language L(M̂) = A. The stateqM̂ =
(q0,qe,qN)∈QM̂ has the following intuitive meaning: Starting NFAN in stateqN on the inputy we obtain
a leaf stringw. StartingM̂ in qM̂, the inputy will be accepted if and only if this leaf string leadsM from

stateq0 to qe, i. e., if δ̂(q0,w) = qe. We prove this by induction ony:
|y|= 0: Fory = λ the leaf string is the letterv(qN). Starting inqM̂ = (q0,qe,qN), y = λ will be accepted

if and only if εqM̂
= λ. This is true forδM

(
q0,v(qN)

)
= qe, i. e., the leaf stringv(qN) leadsM from q0 to

qe.
Assuming this to be correct for ally ∈ Σ∗, |y| < n, we now consider the case|y| = n: Let qM̂ =

(q0,qe,qN) be the current state of̂M and y = y1 · · ·yn. In stateqN, N branches intor = r(qN,y1) =
|δN(qN,y1)| subtrees when it readsy1. According to the equation forgqM̂ ,y1, M̂ in stateqM̂ acceptsy
if and only if there exists a sequence of statesq1, . . . ,qr−1 ∈ QM with the following property: In each
subtreei (r resp.),i = 1, . . . , r −1, the wordy2 · · ·yn will be accepted when starting respectively in state(

qi−1,qi ,δN,i(qN,y1)
)

or
(

qr−1,qe,δN,r(qN,y1)
)

. Following our induction assumption this is true if and

only if in each subtreeM is transduced fromqi−1 to qi (from qr−1 to qe resp.) by the corresponding leaf
string. ThusM̂ acceptsy starting inqM̂ if and only if M is lead fromq0 to qe by the whole leaf string.

Analogously,M̂ accepts the inputy, |y|> 0, starting fromsM̂ if there is additionally to the statesqi ∈QM

an accepting stateqr ∈ FM such thatδ∗M(sM, leafstringN(y)) = qr . If y= λ thenN produces the single letter
leaf stringv(sN), and we have:

λ ∈ A ⇐⇒ M acceptsv(sN) ⇐⇒ δM

(
sM,v(sN)

)
∈ FM ⇐⇒ εsM̂

= λ ⇐⇒ M̂acceptsy= λ. (1)

Thus we have L(M̂) = A. ❑
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The result just given is dramatically different from corresponding results for other models: It is known
thatLeafP(REG) = PSPACE andLeafL(REG) = P.

5.2 Contextfree Languages

We found REG to be closed under theLeafFA-operator, but it is well known that REG is closed under many
operations. What about the other classes in Chomsky’s hierarchy, e.g., CFL? First we show in Lemma 5.3
that every class defined via leaf languages is closed under intersection if the class of leaf languages is
closed under a certain type of concatenation. Then it will be easy to see that CFL is not closed under the
LeafFA-operator. Furthermore we give some arguments for an upper bound ofLeafFA(CFL).

First, however, we observe the following:

Lemma 5.2 CFL⊆ BLeaf FA(CFL).

Proof. It is known that for everyL ∈ CFL over some alphabetΣ and every $6∈ Σ, the languageL$ =
{a1$a2$a3$· · ·$an | a1, . . . ,an ∈ Σ∪{λ},a1 · · ·an ∈ L}, the so calledpadded versionof L, is in CFL.

By an easy modification of automaton̂N from the proof of Theorem 4.1 we obtain a leaf automaton
M that, given an inputa1 · · ·an, produces a full binary computation tree whose leaf string is of the form
$∗a1$∗ · · ·$∗an$∗. Hence,M with leaf languageL$ acceptsL. ❑

Lemma 5.3 Let C be a class of languages with the following properties:

1. L1,L2 ∈ C =⇒ L1#L2 ∈ C , where# is a new symbol and

2. L∈ C =⇒ L∪{λ} ∈ C .

ThenLeaf FA(C ) is closed under intersection.

Proof. Let A = LeafMA(LA) andB = LeafMB(LB) with the leaf automataMA,MB (where, w.l.o.g., we
assume that the state sets ofMA andMB are disjoint) and the leaf languagesLA,LB ∈ C over the alphabets
ΣA,ΣB. Construct a leaf automatonM′ with leafstringM

′
(x) = leafstringMA(x)#leafstringMB(x) for all x 6= λ

and the new symbol #/∈ ΣA∪ΣB in the following way: The set of states ofM′ consists of the states of
MA andMB, a new initial states with the valuev(s) = #, and a new statem producing the leaf string # on
every input. In states there is a nondeterministic transition intom and the successors of the initial states
of MA andMB, wherem is in the middle of these three states according to the order of the computation
tree. In all other statesM′ works just likeMA or MB, respectively. For allx 6= λ we obtain

x∈ A∩B ⇐⇒ leafstringMA(x) ∈ LA and leafstringMB(x) ∈ LB

⇐⇒ leafstringMA(x)#leafstringMB(x) ∈ LA#LB

⇐⇒ leafstringM
′
(x) ∈ LA#LB.

For the special case ofx = λ we now define:

L′A =

{
LA∪{λ} if λ ∈ A∩B and

LA else.

Analogously we defineL′B and we getλ ∈ A∩B ⇐⇒ leafstringM
′
(λ) = v(s) = #∈ L′A#L′B. Now we have

A∩B = LeafM
′
(L′A#L′B) ∈ LeafFA(C ). ❑
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The second assumption in Lemma 5.3 is just for some technical reasons concerning the empty word
and could be easily replaced e.g. byL ∈ C =⇒ L\{λ} ∈ C .

It is well known that CFL is not closed under intersection, but it fulfills the prerequisites of the previous
lemma. Thus we know thatLeafFA(CFL) contains all intersections of contextfree languages and CFL(

LeafFA(CFL). We also want to give some upper bounds forLeafFA(CFL): We know that CFL⊆ P and
CFL⊆ DSPACE(log2(n)). By monotonicity and our results in Sect. 4 we obtain

Theorem 5.4 CFL( Leaf FA(CFL) ⊆ DSPACE(n2)∩E.

The above proof makes convenient use of the well-known fact that CFL is not closed under intersection;
however it only works for unbalanced computation trees. But also in the balanced case it is easy to show
that non context-free languages can be accepted by leaf automata with context-free leaf language:

Say that a language classC is closed underweak intersectionif, wheneverL1,L2∈C , then ##(L1∩L2)∈
C , where # is a new symbol not occurring in the alphabets ofL1,L2.

Lemma 5.5 Let C be a class of languages with the following properties:

1. If L∈ C , L⊆ Σ∗, $ 6∈ Σ, then the language L$ is in C .

2. L1,L2 ∈ C =⇒ L1#∗L2 ∈ C , where# is a new symbol and

3. L∈ C =⇒ L∪{λ} ∈ C .

ThenBLeaf FA(C ) is closed under weak intersection.

Proof. We argue in a way similar to the proof of Lemma 5.3. LetA,B,MA,MB be as defined there.
Let M′A be asMA but producing a full binary computation tree for every input by inserting paths that
output the neutral letter $. We construct a leaf automatonM′ that on input ##x produces the leafstring
leafstringM

′
(x) = leafstringM

′
A(x)#2n+1

leafstringMB(x) for all x 6= λ. This can easily be achieved as fol-
lows: While reading the first two symbols ##, automatonM′ produces a full binary tree with four leaves
v1,v2,v3,v4. In v1 automatonM′A is started on the rest of the input, i.e., onx; in v4 automatonMB is
started. Belowv2 andv3 full binary trees that output the symbol # on every path are produced. LetL′A be
the padded version ofLA, and obtainL′′A andL′B from L′A andLB as in Lemma 5.3. Arguing as above we

then obtain that ##(A∩B) = LeafM
′
(L′′A#∗L′B) ∈ LeafFA(C ). ❑

Theorem 5.6 CFL( BLeaf FA(CFL).

Proof. Certainly CFL fulfills the assumptions of Lemma 5.5, henceBLeafFA(CFL) is closed under weak
intersection, but this property is not shared by CFL. ❑

All in all we thus obtain the inclusion chain

CFL( BLeafFA(CFL)⊆ LeafFA(CFL) ⊆ DSPACE(n2)∩E.

5.3 Context-sensitive and Recursively Enumerable Languages
The class of context-sensitive languages CSL has already been treated in Sect. 4, because it can be char-
acterized by linear bounded automata. Thus we have CSL= NLIN and together with the results from
Sect. 4 we obtain:
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Theorem 5.7 BLeaf FA(CSL) = NSPACE(2n) andLeaf FA(CSL) = NSPACE(2O(n)).

Our last result, that the leaf language class RE defines RE in the balanced as well as in the unbalanced
case, is not surprising:

Theorem 5.8 BLeaf FA(RE) = Leaf FA(RE) = RE.

Proof. BLeafFA(RE)⊆ LeafFA(RE) is trivial.
Next, we showLeafFA(RE) ⊆ RE: Let A = LeafM(B), whereB ∈ RE is given by the recursive and

onto function f : N→ B. The set of all inputsx for which M produces a given leaf stringw is also
enumerable: SimulateM on everyx∈ Σ∗ and if leafstringM(x) = w then outputx. Let g: N×Σ∗→ Σ∗ be
the corresponding recursive enumeration function. Now we use Cantor’s dovetailing method to enumerate
A, e.g., calculate in this order

g
(

1, f (1)
)
, g

(
2, f (1)

)
,g
(

1, f (2)
)
, g

(
3, f (1)

)
,g
(

2, f (2)
)
,g
(

1, f (3)
)
. . .

Finally, since RE is closed under padding with a neutral letter $, the proof of RE⊆ BLeafFA(RE) is the
same as for context-free languages. ❑

6 Conclusion
We examined the acceptance power of nondeterministic finite automata with different kinds of leaf lan-
guages. Comparing our results with those known for nondeterministic Turing machines with leaf language
acceptance, we saw that if the leaf language class is a formal language class then we obtain a huge dif-
ference in computational power, but in the case of a resource-bounded leaf language class the difference
between finite automata, Boolean circuits, and Turing machines (almost) disappears. This is due to the
fact that in all three cases only the power of the devices to pad out their given input to a long leaf string is
the central point.

It is known that the operatorLeafLOGT(·), i. e., leaf languages for nondeterministic logarithmic time-
bounded machines, is aclosure operator: LeafLOGT(C ) coincides with the closure of the classC under
DLOGTIME reductions [JMT96]. In the beginning the authors had the hope to be able to show that the
operatorLeafFA(·) is also some form of closure operator. However, the results from Sect. 4 prove that this
is not the case. IfC is a reasonably large enough complexity class, thenLeafFA(C )( LeafFA(LeafFA(C )

)
,

hence the operatorLeafFA(·) lacks the property of being closed. In this sense, theLeafFA-model is even
more complicated than theLeafLOGT-model.

The main remaining open question of course is if the upper and lower bounds obtained in this paper for
LeafFA(CFL) can be strengthened. Our results here leave a lot of room for improvement, and certainly
one would expect to be able to give stronger bounds. Nevertheless, we have been unable so far to do
so. An idea would be to follow the proof of Theorem 5.1. For each languageA ∈ LeafFA(CFL) one
can construct an alternating pushdown automaton which acceptsA. But unfortunately this yields not
more thanLeafFA(CFL)⊆ E, because in [CKS81] Chandra, Kozen, and Stockmeyer showed that the set
ALT-PDA of all languages accepted by such automata equals E. One might hope that the lower bound

PSPACE= LeafNC1
(CFL) could be transferred to our context – after all, there is a very strong connection

between the class NC1 and finite automata, since there are regular languages complete for NC1 under very
strict reductions such as uniform projections, see [BIS90]. However our Theorem 5.4 shows that this hope
is not justified; we have PSPACE6⊆ LeafFA(CFL).
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