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We consider the problem of constructing a multicast tree that connects a group of source nodes to a group of sink
nodes (receivers) and minimizes the maximum end-to-end delay between any pair of source/sink nodes. This is known
as theminimum eccentricity multicast trggoblem, and is directly related to the quality of service requirements of

real multipoint applications. We deal directly with the problem in its general form, meaning that the sets of source
and sink nodes need not be overlapping nor disjoint. The main contribution of this work is a polynomial algorithm
for this problem on general networks which is inspired by an innovative method that uses geometric relationships on
the xy-plane.
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1 Introduction

Multipoint applications are of growing importance in broadband communication networks and the Inter-
net. In a multipoint application, a number of participants, remotely located, wish to exchange data for a
duration of time. The simplest possible approach would be to have each dissemination take the form of
a broadcast from the originator of the data to a set of receivers. This approach suffers from the overhead
of setting up broadcast trees tailored to each use. An approach with less overhead is to construct a single
tree to be used by varying sets of senders and receivers during the multipoint application. The price paid
for this reduction in overhead is an increase in latencies and traffic concentiation [2]. Shared trees have
been built as either exact or approximate centered trees in which some distance measure from a single
node is minimized9;11]. Generally, minimizing sums of distances leads to NP-complete problems such
as the Steiner tree problem[10], while minimizing worst-case distances leads to tractable problems. In
this paper, we address the problem of minimizing worst-case latencies in a general setting.

The network is modeled by a weighted undirected graph. Nodes represent locations of possible partici-
pants and the weights on the edges represent packet communication delays. We formulate the problem as
follows: at a certain time we assume that a number of the network nodes, identified as the participants of
a multipoint application, wish to establish a communication so that the maximum delay between any pair

1365-8050%C) 2001 Maison de I'Informatique et des Mé&tiatiques Disates (MIMD), Paris, France



158 David W. Krumme and Paraskevi Fragopoulou

of participants is minimized. We further assume that the participants of the group are either sources of
information, either sinks (receivers), or both, meaning that the groups of source and sink nodes are neither
overlapping, nor disjoint. Only pairs of source and sink nodes contribute to the maximum end-to-end
delay.

This problem can be solved in polynomial time. McMahan and Proskurowski [7] have independently
established this via a®(|V|3 + |E||V|log|V|) algorithm. We present an algorithm with running time
O(|V[® +|EJ|V]) which provides a solution to the problem on general networks. Our algorithm returns a
partial subtree of the network that includes at least all the participants of the multipoint group, such that
the maximum distance between any source node and any sink node is the minimum possible.

The construction of spanning trees, or even partial spanning trees on graphs with respect to different
constraints is an old problem and have been dealt with in different papers. Different measures of goodness
have been studied under various restrictions for the network or the source and sink sets. Inits general form,
the construction of optimum communication spanning trees was initiatéd in [4]. In this paper, the problem
was defined on the complete graph with a length and a requirement on the edges. The cost measure that
had to be minimized was the sum of vertex distances weighted by the requirements between all vertices
of the network. By setting the requirements equal to zero and parameterizing the number of source nodes,
the problem was treated ifl [3] and was shown to be NP-complete. Some exact solutions were provided
for the 2-source problem on restricted classes of graphs, such as unicycles and cactuses. Furthermore, the
optimal solution to the 2-source problem on general graphs was approximated within a factor of 2. In an
other recent papefrl2] an approximation algorithm was provided for the all source probléim. In [8] some
heuristic algorithms were given for the minimum partial spanning trees taking into consideration the delay
between a single source node and a group of sink (destination) nodes, while trying to bound the maximum
difference in these delays.

The problem treated in this paper was proposedlin [3] in the more restricted form, where the sink
nodes were all the nodes of the network and by parameterizing the number of source nodes anly. In [3],
a pseudopolynomial algorithm was provided for this restricted version of the problem, and the weights
on the edges had to be bound by the size of the graph. The 2-source problem on general graphs was
efficiently approximated by a factor of 2. In this paper, we treat this problem in a much more general
form, where the number of sink nodes is also parameterized. Moreover, the sets of sources and sinks are
neither overlapping nor disjoint. We provided an innovative polynomial algorithm on general graphs. This
problem is related to the selection of a subset of vertices in the graph to minimize a given cost function,
or to the selection op-centers(b].

The remaining of this paper is organized as follows: In sedfion 2, we give a formal definition of the
problem. In sectiofi 3, we show that an equivalent problem is to find a subdivision of a single edge that
yields a spanning tree that minimizes distances to the point of the cut. This makes it easy to construct a
minimum-eccentricity spanning tree once the correct edge has been identified. In Bection 4, we establish
formulas and properties that the algorithm depends upon. In s¢ttion 5 the actual algorithm is presented in
detail and its complexity is analyzed. We conclude in seglion 6 with some suggestions for further research.

2 Network model and problem definition

In what follows the termsgertexandnodeare used interchangeably. Similarly for the terdgeandlink.
A network is modeled as an undirected weighted gi@ph(V,E), whereV is the set of network nodes
andE is the set of edges. An edge connecting two nodemdv,, denoted by(vi, v»2), has an associated
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weight/(v1, Vo), which is a nonnegative real number, and represents the delay that data packets experience
on this edge.

Consider a multipoint application that requires a set of source rgdestransmit data to a set of sink
(destination) node$,. In order for the communication to proceed, we need to establish paths between
each pair of source/sink nodes. In general, and for efficiency reasons, multicast packets are routed through
the links of amulticast treethat includes at least all nodes 8fUS,. Nodes that do not belong in the
multipoint application as sources or sinks can be used as relay nodes in the multicast tree. However, for
obvious reasons, these nodes are never leaf nodes of the tree.

Let us suppose thatis the multicast tree db used in a certain multipoint application with source nodes
S and sink node$,. The total communication delay between a source ne@ad a sink node, using
T is denoted byl (v1,Vv2), which is the weighted distance betwagrandv, in T. One objective that has
to be taken into account during the construction of a multicastRrisethe maximum delay between any
source and any sink node. This objective is directly related to the quality of service requirements of the
multipoint application because packets delivered more than a certain number of time units later could be
of no value to the receiver. The most desirable objective is to construct a multicast tree that minimizes the
maximum source/sink delay. The maximum distance between any source and any sink node in a multicast
tree is theeccentricityof this tree. More formally, we express thMinimum Eccentricity Multicast Tree
problem as follows:

Problem: Given a network G= (V,E), a set of source nodes,Sa set of sink nodes,Sa link delay
£(v1,Vv2) for each edgévy,v,). Assume thaf is the set of all multicast trees of G that include at least
the nodes 8JS,. For each tree Te 7 we define its eccentricity

e(T)= max dy(s, 1
(T) qemax T (s1.%2) 1)

We wish to find the tree & 7 that has the minimum eccentricity

e(G) = peige(T) @)

In this paper, we show that this problem is polynomial and we describe an efficient algorithm that
constructs minimum eccentricity multicast trees on general networks.
Before we proceed to the description of the algorithms we need the following definitions and notation:

e For any subgraph of G, dy(v1,V2) is the weighted distance betweenandv, in H.
e If Pis a path betweew andv,, then a vertex of P is amidpointif Dp(v1,c) = Dp(vy,C).

e A minimum-distance spanning tree rootectd a spanning tre& in which dy (v,c) = dg(v,c) for
allveV.

e If T is a spanning tree, &f-critical path { =1 ori = 2) is a path iril betweernv; € § andv; € §
such thatr (v1,v2) > dr (v}, V,) forall v; € S andv,, € S.

e A 1-refinement Rf a weighted grapks is obtained by replacing an edgg = (u,w) by two edges
(u,cr) and(w,cr) wherecg ¢ V is a new vertex, witi(u,cr) + £(w, cr) = ¢(u,w). The resulting
graph is denote@g. If T is a spanning tree db that containgg, then the 1-refinement can be
viewed also as a 1-refinemeRiof T.
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e R isthe set of all 1-refinements &.

e For any 1-refinemerR e R,

d(R) = gneglxdGR(s, Cr) + rSr;zéZXdGR(s, CR) ?3)
e d(G) = mingeg d(R)

3 Characterizing the solutions

In this section we show that a minimum eccentricity multicast tree is a partial shortest path tree rooted at
some “point” in the network that includes at least all source and sink nodes. This point could be either a
vertex, in the ideal case, or a pouy lying on an edge, produced by an 1-refinement of the graph. This
result will be used in the following section to derive a polynomial algorithm for this problem.

Lemmal Let Re R. Let T be a minimum-distance spanning tree rooteckaflthien ¢T) < d(R).

Proof

e(T) max dr(s1,s)

S1€5,9€S

maxdr (s1,CRr)) + maxdr (S, Cr)
$€S KES

maxdg(sy,Cr)) + maxdg (s, Cr)
$1€S RES
d(R)

IN A

Lemma?2 Let T e 7. Let R be a 1-refinement of T such thatis the midpoint of some-8ritical path
inT,fori=1ori=2. ThendR) < ¢(T).

Proof Assume w.l.o.g. that= 1, and that the§ critical path connects with S'. LetD = dy(s,cr) =
dT (S/7CR)'

Claim (1): Foranys; € S, dg(s1,¢r) < D. If not, then
dr(s1,8) > dr(s1,CR) +dr(cRr,S) > 2D =dr (s,S) 4)
if the path inT from s; to ' passes througtk or
dr(s1,V) > dr(s1,Cr) + dr(Cr,S) > 2D = dr (S, 9) (5)

if the path inT from s, to s passes throughg. Either case contradicts the assumption that the
(s,§)-path inT is anS;-critical path.
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Claim (2): Foranys; € S, dg(s2,¢cr) < €(T) —D. If not, then
dr(s2,S) > dr(s,CR) +dr(CR,S) > &(T) (6)
if the path inT from s, to ' passes througtk or
dr(s2,8) > dr(s2,CR) +dr(CR,S) > €(T) ()
if the path inT from s, to s passes througtr. Either of these contradicts the definitionegT ).
Combining claims (1) and (2) yield¥R) <D+ (e(T) —D) = &(T). O

Theorem 1 d(G) = &(G).

Proof LetT be such thag(T) = e(G) and letR be a 1-refinement of with cy the midpoint of some
S-critical path inT. By Lemma 2d(R) < g(T). Thusd(G) < d(R) < &(T) = &G).

Let Rbe such thatl(R) = d(G) and letT’ be a minimum-distance spanning tree rooteckaBy Lemma
1,e(T") <d(R). Thuse(G) < &(T’) < d(R) =d(G).

Combining these results yield§G) = d(R) = e(G) = ¢(T'). O

Based on the previous theorem, we provide an upper bound for eccentricity.

Corollary 1 e(G) < 2radiugG), whereradiugG) = mincey maxev dg(C, V).

Proof LetRe R be determined by a verteg for which maxey dg(cr,V) = radiugG). Thene(G)
d(G) < d(R) < 2 radiugG).

o

When an edge must be split into two nontrivial parts to obtain the minimum valdéRf e(G) will
be less than 2 radig§). This is the case with the graph of Figdie 2, where ra@ys= 25 (withw as
center) ana(G) = 42 (with (u,w) split and¢(u,cr) = 3 and{(w,cr) = 9).

The customary approach to forming a tree is to root it at a vertex of the given graph, rather than at a
point created through the subdivision of an edge. The eccentricity of such a tree is bounded above by

d(G) = min (g]egxdg(s, V) + r;wegzxde(s, v)) (8)
TheorenTIl allows us to determine in general that such a rooted tree is within one edge weight of being
optimal:
Theorem 2 &(G) < d(G) < &(G) + Maxywce £(U,W).
Proof The first inequality is a consequence of the definitions. For the secomng,define a 1-refinement
Rsuch thatd(R) = d(G). Let the edge divided bgr be (u,w) wheref(u,cgr) < ¢(w,Cr).

Then by the triangle inequality, for alle V, dg(u,v) < £(u,cRr) + dgg(V, Cr), and thus for ang; € §
ands; € S,

dg(s1,U) +da(S2,U) < dag(S1,CR) + dog(S2, CR) + 26(U, CR). )
This impliesdg(s1, u) + dg(s2, u) < d(G) + £(u,w). 0
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The upper bound is tight, as the graph in Figure
[0 illustrates, wher&, comprises the two degree-
1 vertices an&; the two degree-2 vertices. There L
are only eight possible spanning trees, so it is .
not difficult to find the optimal trees by exhaus-
tive checking. The optimal vertex-rooted tree is
rooted at one of the degree-4 vertices, uses at
least one edge weightéd— €, and has eccentric-
ity 3L —¢&. The optimal edge-rooted tree is basedg. 1: The optimal edge-rooted tree has eccentriclty+2
on bisecting the edge in the middle of the diaee. The optimal vertex-rooted tree has eccentricity-3e.
gram, does not use either edge weighted €,
and has eccentricityl2+ 2¢.

4 Basis for an algorithm

The algorithm focuses on identifying the appropriate eige) that can be cut to create a “centeg

from which to construct a minimum-distance spanning tree. This edge is found by examining for each
edge(u,w) the longest weighted distances franandw to members of; andS,. The constructions in

this section will be illustrated using the example in Figgre 2.

S ={p2, 02,12}

P2 7] rz
25

12 14

13 11
P1 01 ra

St ={p1,01,r1, 81}

17

Fig. 2: An example problem graph.

The algorithm is mostly easily understand with reference to some geometric relationshipscjp the
plane. If(a,b) is a point in thexy-plane, denote by(a,b) the open quarter plane to the upper-right
of (a,b); i.e., Q(a,b) = {(x,y) | x> aandy > b}. Given a fixed reference poiritg,bo), denote by
L(2:b0) (a, b) the closed rectangle to the lower left(@ b); i.e.,

L(20:50) (3 b) = {(x,y) | ap < x < aandbg <y < b}. (10)
If ag > aorbp > b, L) (a b) is empty.
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Given an edgéu,w), for anyv € V, the point(dg(v,u),dg(v,w)) lies in the first quadrant of they-
plane. Fori =1 ori = 2, consider the sets of such poirf8" = {(dg(s,u),dz(s,w)) | s€ S}. In the
example,

DI = {(6,18),(12,13),(11,11),(17,7)}
DI = {(18,25),(23,21),(28,16)} .

For a given edgéu,w) and set5, the fixed reference poirigy", bip") is used, where

ay = m%xdG(s,w)—e(u,w) (11)
se

0. = maxdg(s,u) —£(u,w) (12)
s€§

In the example(aiy, biy) = (6,5). Denote byl " the union of all the closed rectangles determined by
points inDMY; that is,

uw bLIW

L= |J L@d"b)(a D) (13)
(ab)eDW

Denote byQi" the complement of 'Y with respect to the upper-right quarter pla@g;y’, biy"), that is,

= Q(ajp", big") \ L™ (14)

Figure[3 illustrates these constructions in the case of the graph from Figure 1, fofuedgand$S; .
The points of D" are marked ag1,qs,r1,S1. Although it does not happen in this example, in general
ajy’ and/orbig’ may be negative, and some rectangleji’ may be empty. The rectangles for vertices
at maximum distance from or w are always nonempty.

The essential property @' is described in the following lemma.

Lemma 3 Q(a,b) C Q" if and only if for every vertex g S, either ds(v,u) < a or dg(v,w) < b.

Proof If dg(v,u) > a anddg(v,w) > b, then (dg(v,u),ds(v,w)) € Q(a,b). But from the definition,
(da(v,u),ds(v,w)) € Li". This is impossible sinc@"NL" = 0. O

SinceL{"" is the union of a finite number of closed rectangles all of which Hai, biy") as lower
left corner, the regio®"" is the union of a finite number of upper-right quarter planes. @&t be the
collection of quarter planeQ(a, b) that are maximal irQ{"". Clearly, " comprise a minimal finite set
of upper-right quarter planes whose unior@Q$", and if Q(a,b) C Q"¥, thenQ(a, b) is a subset of some
member ofQ"". Itis relatively easy to see from Figufe 3 that for our example a minimal set of upper-right
quarter planes whose union@" is the following

"' = {Q(a1,b1),Q(az, b2),Q(as, bs)}. (15)

An essential property a"" is the following:

Lemma 4 LetQ(a,b) € Q". If a# af* and b+ by, then for some’ue V, dg(U',u) = a and & (U, w) >
b, and for some (e V, ds(W,w) = b and ¢(w,u) > a.



164 David W. Krumme and Paraskevi Fragopoulou

T
P1 uw

1

a1

(ag,by)
r ‘

uw
Ll

(az,b2)

(ap,bo) @

Fig. 3: The geometric interpretation for edge w) ands;.

Proof Consider all verticed' for whichdg (U, w) > b. This set is nonempty because othervigel", b) C
Q" which is impossible becau§ga, b) is maximal andx# ai)'. For all such/, dg(u',u) <aby Lemma
B. Now chooser to maximizedg (U, u). If thendg(u',u) =& < a, Q(a,b) C Q" contradicting the max-
imality of Q(a, b). Thusdg(u',u) = a. The proof forw is analogous. O

Let the members o be
Q(a", "), Q(aly", bi"). ... Q(alihw. bilt) (16)

arranged so that
ap’ <ap' < <ayiw. a7

Since no member of" can contain any other, all the valuag" are distinct, all the valuejj" are
distinct, and it must be the case that

i1 > big’ > - > biiw. (18)

Geometrically, these properties reflect that fact that the pcajts b") are the lower-left-hand corners
that occur on the boundary betwelgf’ andQ;'". In our example (see Figufg 3),

Q"™ ={Q(a1, b1),Q(a2, b2),Q(as, ba) } = {Q(6,13),Q(12,7),Q(17,5)} . (19)

The lower-left-hand corners that occur on the boundary betwg¥mnd Q" have the property de-
scribed in lemma]4. Intuitively, this property can be explained as follows: for a certain(edgeof the
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graph and for a subset of nodss a point(aﬁ", 1) means that the nodes §f are at maximum distance
ajy from u or at maximum distanchky}’ from w. Furthermore, there is at least one node at distakj'e
from u whose distance frorw is at Ieas ¢, and the other way around (there is a node at distakfe
from w whose distance fromis at leasg}}).

The algorithm is based on a linear scan of the valag$, by"). The following lemmas establish the
properties that enable this.

Lemma5

(@) &y =ag";

(b) bYY < maxes do(V,W);
(©) aiw < maxes da(V;U);
(d) b = b3

Proof

(a) ObviouslyQ(ai",max.cs da(v,w

)) € Q™. Sinceajg” < ajy” < aj" < -+ < &, the member o™
that containg(aly", max,cg d(

v,w)) must beQ(al}", b)) and this implies}" = aig".

(b) Letb' be the maximum ofig(v,w) for all verticesv such thatlg(v,u) > ai’. ThenQ(ajy",b’) € Q'
impliesQ(ay", b') C Q(a}y", b)) and thushi}" < b’ which implies the result.

(c) and (d) are analogous to (a) and (b) respectively. O

Lemma 6 For any(u,w), i€ {1,2}, and0 < k < N, |ai¥ — bi¥| < £(u,w).

Proof By symmetry, assume thb§" > ap".

Fork = 0, the result follows from the definitions and the fact that a pathdow can be extended using
the edggu,w).

Fork =1, Lemmdp implies

—ay <maxdG(vw) aig’ = L(u,w). (20)

Fork=N"Y,
inow — aiNiw < big’ —ajp” < £(u,w), (21)

by Lemmé[p and the fact thag" is an increasing function d{.
For 1< k < N"%, suppose by way of contradiction tHa$" — ai¥ > ¢(u,w). Letu be as in Lemmg 4.
Then
de (U, w) —dg(U',u) > b’ — a > £(u,w) (22)

contradicting the existence of a path frafrthroughu to w of lengthdg (U, u) + £(u, w).
O
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Lemma 7 Let(u,w) be any edge and ldt< k < Ny and1 < j < N3V, Then there exists a spanning tree
T such that
e(T) < max(ag,’ + £(u,w) + by’ a5} -+ £(u,w) + by) (23)

Proof Consider the line in they-plane throughaj)’, bj)’) with slope 1. It intersects the boundary@f"
in a point(a,b) = (aj' + A, b}’ +A). Since the line has slope - a= b}’ — aj. SinceQ(a,b) C QY%,
de(v,u) < aordg(v,w) < b for everyv € S. Let the 1-refinemenR be determined by replacing, w)
with (u,cr) and(w, cr), where

1 1
oo = Siuw) (@b
1 1
fwor) = 00.w)+ 5 (@b (24

Note that Lemm&|6 ensures tHat, cr) and{(w, cr) are nonnegative.
Letse S. If dg(s,u) < aj}y, then

der(S,Cr) < dg(S,U)+dagp(U,CR)
1 1 1
Otherwisedg(s,w) < b}’ which yields
dor(S,Cr) < da(S,W)+der(WCr)
1 1 1

Similarly, forv e &, if dg(v,u) < a, then

deg(Vicr) < dg(VU)+dcg(U,CR)

1 1
< a+t Eé(u,w) + 5( 1K — ) (27)
1 1
= a+ éé(u,w) + Q(b_ a).
Otherwiseds(v,w) < b, so that
der(VCr) < dg(V,W)+deg(W,CR)
1 1
< b+ Eé(u,w) - 5( 1K — ) (28)
1 1
= b+ éé(u,w) - é(b—a).
Combining these results gives
1 1
dR) < §<ang+ )+ £(u,w) + 5(@+b) (29)

= {(u,w)+af +bi+A.
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The boundary ofQ}" is such that for(a, b) and (a3}, b5}"), as for any two points on the boundary, if
ay)' < a, thenby' > b. If aj¥ > a, thenajy’ + A < a3’ andd(R) < £(u,w) + a3}’ + bi. Otherwise,
b3 > b, so thatb k A < by} andd(R) < £(u,w) + a3’ + by". Thus

d(R) < max(@jy' -+ £(u,w) + b5}", ;" + £(u,w) + biy). (30)

The result now follows from Lemma 1. |

Lemma 8 Let T be a minimum-eccentricity spanning tree. L'etibe the endpoints of any-Eritical
path in T, and let(u,w) be an edge in that path such that@/,u) < 1dT(u’ w) and dr(w, V\/)
%%Tw(u’,vx/) (There are either one or two such edges.) Then for so(a@ ) € ™ and Qayj’, by}') €
",

e(T) > max(ag,’ + £(u,w) + by’ a5} -+ £(u,w) + by) (32)
Proof Without loss of generality, assunie= 1. If the edge(u,w) is deleted fromT, two trees are
produced; denote by, the one containing and byT, the one containingv. Becausgu,w) lies in an
S -critical path, botls; N T, and$; (N Ty are nonempty. Laty € S N'T, be chosen to maximize the value
ds(ug,u). Letw; € S N Ty be chosen to maximize the valdg(wz,w). Then for every € S, either

ds(v,u) < dg(ug,u) < dr(ug,u) (32)
or
do(v, W) < dg(wi,w) < dr(wy,W). (33)
This means tha®(dr (uz, u), dr (wg,w)) € Q™. Thus
Q(dT(U]_,U),dT (Wla )) - Q(alkv 1k) € Q1UW (34)

for somek, which meansy)¥ < dr(ug,u) andbjly < dr(wz,w).
Now suppose botB, N T, andS; N Ty, are nonempty. Proceeding in the same fashion, we select vertices
u € SNT,andw, € SN Ty such that

Q(dr (uz,u),dr (w2, w)) € Q(ag’, by}") € Q™ (35)

for somej, so thataQ”‘j’V < dr(ug,u) andbg‘j“’ < dr(wz,w). Then

e(T) > dy(u,we)=dr(ug,u)+2(u,w)+ dr(w,wy)
> afy'+£(u,w) + by}, (36)
Similarly,
e(T) > dy(uz,wi)=dr(up,u)+£(u,w)+ dr(w,wi)
> ap)’+£(u,w) + by (37)

This establishes the lemma in this case.
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For the case whe8, N T, = 0, selectus, wy, andw, and before, lef = 1, and note in this case that
dg(W,W2) = max.s, dg(W,v) > bYY. As before,

e(T) dr (ug,Wz) = dr (ug,u) + £(u,w) + dy (W, wy)

>
> all+£(u,w)+ b3y (38)

Now the hypothesis thatr (w,wy) < %dT(ul,wl) impliesdr (U1, w) > dr(w,wy). Thus

e(T) dT(Ul,Wz) = dT(Ul,W) +d (W, Wz)

dr (W, wa) + dr (W, Wa)
1k + da(w,wa) (39)
W £(u,w) + aly

I+ £(u, w) + agy.

AVARAVARLV]

The case whe N Ty = 0 is similar, with j = N5V, in light of the symmetrical relationship betwean

andb. O
Theorem 3
e(G) = ( m)ink - max(@jy’ + £(u,w) + by}, a5+ £(u,w) + by (40)
u7W ) ) l
Proof The proof is immediate from Lemmgs 7 did 8. O

5 The algorithm

Moving from Theoreni]3 to an explicit algorithm is mostly straightforward. One fine point is that instead
of evaluatingaj)’ + b5 and agdvu by’ for all combinations ok and j, a single pass can be made from
k=1,j=1tok=N;" j=Nj"since the coordinates are ordered. Calculating the valffeandby" is

most easily understood in terms of finding the lower-left-hand corners in the boundary bét\Wesmd

", which is formed from horizontal and vertical line segments. The method used in Figure 5 is but one
of several possible ways to solve this geometric problem.

The algorithm is shown in Figurés 4 afid 5. First, the weighted distances between all pairs of points are
calculated. Second, for each vertgxa listHg|v] is created of all vertices in order of increasing distance
from v. Third, by selecting just members &ffrom Hp[v], lists H1[v] andHa[v] are created in which the
members o5, andS,, respectively, are listed in order of increasing distance fvoFourth, for each edge
(u,w), arraysA; andB; are created such thaf[k] = a andB;j[k] = by for 1 <k < N"Wandi =1,2. The
sizes of these arrays are also recordeljinFinally, the array#\ andB; are scanned in one pass to seek
the minimum described in Theordin 3.

The first two steps rely only on the edge weights in the graph, and n& @md S,. In practice,
the network topology can be considered fixed, so the first two steps can be precomputed. These two
offline steps can be accomplished@ﬁ\VP) steps using Dijkstra’s algorithmd1]. The running time of
step 3 isO(|V[?). The running time of steps 5.1 and 5.3 are e@¢I§; + $|), so the time for step 5 is
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0. Initially, L[X][y] is the weight of edgéx,y) andZz; is the size ofS.
1. ConstructD so thatD[X][y] = dg(X,Y).

2. For each vertex, constructHo[v] so thatHp[Vv][K] for k=1,2,3,... is a list of all vertices in order of
increasing distance from

3. For each vertex and fori = 1,2, constructH;[v] so thatH;[v][k] for k =1,2,3,... is a list of the
members ofj in order of increasing distance from

4. e oo,
5. For each edgéu,w):

5.1. CalculateAs, B1, Ay, andB;. (See Figuré]5.)
52. k«1;j<1;
5.3. While (k< Nj and j <Ny):
5.3.1. ¢« Aq[K] + L[u][w] + Bg[j];
5.3.2. d — Ag[j] + L[u][w] + B1[K];
5.33.If (c>d):
5.3.3.1.1f (c<e)thene—c;
5332 )« j+1;
5.3.4. Else:
5.3.4.1.1f (d < e)thene—d;
5.3.4.2. k«—k+1;
5.3.4.3.1f (c=d) thenj « j+1;

Fig. 4: The algorithm.

O(|E||S1+S|). Thus the offline portion of the algorithm has time complexat}V|*) and the online
portionO(|E||S; + S|) < O(|V|[E]) < O(IV[).

Except for steps 5.1 and 5.3, the correctness of the algorithm should be patently clear. It is a relatively
straightforward problem to scan the sorted arrAysnd B; in parallel seeking the minimum value of
max(A1 K] + Bz[]j],A2[j] + B1[K]); a detailed argument is presented below that step 5.3 correctly finds this
minimum. It is also a relatively straightforward problem to find the lower-left-hand corners of a nonin-
creasing curve in they-plane composed of horizontal and vertical line segments; a detailed argument is
presented below that step 5.1 correctly finds these corners.

Step 5.3 makes a single pass in parallel throdgland B;, rather than checking all possible pairs.
This is possible becausg” is an increasing function dt andbjj" is a decreasing function gt It is
straightforward to verify the loop invariant property that at statementes3min;:j or <k Max(A [K'] +
Ba[j'], A2[j'] + Ba[K].

Step 5.1 is the heart of the algorithm. It searches the boundary betW&emd Q}"Y working from
upper left to lower right. Step 5.1.2 stores a large numb& [i@] just to ensure that the condition is true
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5.1.1. A[0] < D[Hi[w][Z]][w] — L[u][w];

5.1.2. Bi[0] < D[Hi[w][Z]][w] +1;

5.1.3. k< 0;

5.1.4. A[1] — A[0];

5.1.5. p— Z;

5.1.6. While (p > 1):

5.1.6.1.v— Hi[w][p];

5.1.6.2.1f (D|V][u] > Ai[k+1]):
5.1.6.2.1.If (D[v][w] < Bi[K]) then{k « k+1; Bj[K] < D[v][w]}
5.1.6.2.2.Ai[k+1] < D[v][u];

5163.p—p-—-1;

5.1.7. Bj[0] < D[H;[u][Z]][u] — L[u][w];
5.1.8.If (k: Oor B; [k] > B; [0]) then{ke k+1; B [k] — Bj [0]}
5.1.9. N «k;

Fig. 5: CalculatingA; andB;.

in the first execution of 5.1.6.2.1, thus simplifying the organization of the loop. Final values are assigned
to Ai[0], Ai[1], andB;[0], in steps 5.1.1, 5.1.4, and 5.1.7, respectively.

Loop 5.1.6 works through the membersSin order of decreasing distance from Within the loop,
A;i[k] andB;[k] (except forB;[0]) have been given their final values aAdk + 1] andB;[k+ 1] are being
updated. Since the vertices are visited in order of decreasing distancerramd since they are all
within L', vertexv satisfies one of three conditions: (i)ies on the horizontal line througtay", bi");
(if) otherwise v lies on or to the left of the vertical line throudg’y', ;. b\, ;); (iii) otherwise,v lies on the
horizontal line segment to the right G&'y’, ;. b\, ;). In the first case, step 5.1.6.2.2 responds to the fact
thatafy, ; > dg(v,u). In the third case, steps 5.1.6.2.1 and 5.1.6.2.2 finalize the vahj§'df, initialize
ai%‘ﬂé and movek forward. It is easy to see that for every lower-left corner poay’, bi"), condition
(iif) will occur exactly once and (i) and (iii) together will occur once for each vertex on the line segment

Y~ g < x.

Thus the coordinates of all lower left corners will be leftAnandB; by the time the loop terminates,
with the possible exception &= 1 andk = N*"Y which depend on the entry and exit conditions of the
loop. It is easy to see th&t= 1 is handled properly and thiat= NV is handled properly when there is
a vertexv with dg(v,w) = bjp¥. Step 5.1.8 tests for this last situation, adding the final lower-left corner
when necessary.
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6 Conclusions

We presented an algorithm for the construction of a minimum eccentricity multicast tree on general net-
works. Further work would naturally include a distributed version of the algorithm. Furthermore, it would
be interesting to incorporate other measures of goodness such as the minimization of the total cost of the
multicast tree. This would turn our problem into an NP-complete problem that requires special treatment
though heuristic/approximation algorithms.
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