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We consider the problem of constructing a multicast tree that connects a group of source nodes to a group of sink
nodes (receivers) and minimizes the maximum end-to-end delay between any pair of source/sink nodes. This is known
as theminimum eccentricity multicast treeproblem, and is directly related to the quality of service requirements of
real multipoint applications. We deal directly with the problem in its general form, meaning that the sets of source
and sink nodes need not be overlapping nor disjoint. The main contribution of this work is a polynomial algorithm
for this problem on general networks which is inspired by an innovative method that uses geometric relationships on
the xy-plane.
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1 Introduction
Multipoint applications are of growing importance in broadband communication networks and the Inter-
net. In a multipoint application, a number of participants, remotely located, wish to exchange data for a
duration of time. The simplest possible approach would be to have each dissemination take the form of
a broadcast from the originator of the data to a set of receivers. This approach suffers from the overhead
of setting up broadcast trees tailored to each use. An approach with less overhead is to construct a single
tree to be used by varying sets of senders and receivers during the multipoint application. The price paid
for this reduction in overhead is an increase in latencies and traffic concentration [2]. Shared trees have
been built as either exact or approximate centered trees in which some distance measure from a single
node is minimized [9, 1]. Generally, minimizing sums of distances leads to NP-complete problems such
as the Steiner tree problem [10], while minimizing worst-case distances leads to tractable problems. In
this paper, we address the problem of minimizing worst-case latencies in a general setting.

The network is modeled by a weighted undirected graph. Nodes represent locations of possible partici-
pants and the weights on the edges represent packet communication delays. We formulate the problem as
follows: at a certain time we assume that a number of the network nodes, identified as the participants of
a multipoint application, wish to establish a communication so that the maximum delay between any pair
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of participants is minimized. We further assume that the participants of the group are either sources of
information, either sinks (receivers), or both, meaning that the groups of source and sink nodes are neither
overlapping, nor disjoint. Only pairs of source and sink nodes contribute to the maximum end-to-end
delay.

This problem can be solved in polynomial time. McMahan and Proskurowski [7] have independently
established this via anO(|V|3 + |E||V|log|V|) algorithm. We present an algorithm with running time
O(|V|3 + |E||V|) which provides a solution to the problem on general networks. Our algorithm returns a
partial subtree of the network that includes at least all the participants of the multipoint group, such that
the maximum distance between any source node and any sink node is the minimum possible.

The construction of spanning trees, or even partial spanning trees on graphs with respect to different
constraints is an old problem and have been dealt with in different papers. Different measures of goodness
have been studied under various restrictions for the network or the source and sink sets. In its general form,
the construction of optimum communication spanning trees was initiated in [4]. In this paper, the problem
was defined on the complete graph with a length and a requirement on the edges. The cost measure that
had to be minimized was the sum of vertex distances weighted by the requirements between all vertices
of the network. By setting the requirements equal to zero and parameterizing the number of source nodes,
the problem was treated in [3] and was shown to be NP-complete. Some exact solutions were provided
for the 2-source problem on restricted classes of graphs, such as unicycles and cactuses. Furthermore, the
optimal solution to the 2-source problem on general graphs was approximated within a factor of 2. In an
other recent paper [12] an approximation algorithm was provided for the all source problem. In [8] some
heuristic algorithms were given for the minimum partial spanning trees taking into consideration the delay
between a single source node and a group of sink (destination) nodes, while trying to bound the maximum
difference in these delays.

The problem treated in this paper was proposed in [3] in the more restricted form, where the sink
nodes were all the nodes of the network and by parameterizing the number of source nodes only. In [3],
a pseudopolynomial algorithm was provided for this restricted version of the problem, and the weights
on the edges had to be bound by the size of the graph. The 2-source problem on general graphs was
efficiently approximated by a factor of 2. In this paper, we treat this problem in a much more general
form, where the number of sink nodes is also parameterized. Moreover, the sets of sources and sinks are
neither overlapping nor disjoint. We provided an innovative polynomial algorithm on general graphs. This
problem is related to the selection of a subset of vertices in the graph to minimize a given cost function,
or to the selection ofp-centers [5].

The remaining of this paper is organized as follows: In section 2, we give a formal definition of the
problem. In section 3, we show that an equivalent problem is to find a subdivision of a single edge that
yields a spanning tree that minimizes distances to the point of the cut. This makes it easy to construct a
minimum-eccentricity spanning tree once the correct edge has been identified. In section 4, we establish
formulas and properties that the algorithm depends upon. In section 5 the actual algorithm is presented in
detail and its complexity is analyzed. We conclude in section 6 with some suggestions for further research.

2 Network model and problem definition
In what follows the termsvertexandnodeare used interchangeably. Similarly for the termsedgeandlink.

A network is modeled as an undirected weighted graphG = (V,E), whereV is the set of network nodes
andE is the set of edges. An edge connecting two nodesv1 andv2, denoted by(v1,v2), has an associated
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weight`(v1,v2), which is a nonnegative real number, and represents the delay that data packets experience
on this edge.

Consider a multipoint application that requires a set of source nodesS1 to transmit data to a set of sink
(destination) nodesS2. In order for the communication to proceed, we need to establish paths between
each pair of source/sink nodes. In general, and for efficiency reasons, multicast packets are routed through
the links of amulticast treethat includes at least all nodes ofS1∪S2. Nodes that do not belong in the
multipoint application as sources or sinks can be used as relay nodes in the multicast tree. However, for
obvious reasons, these nodes are never leaf nodes of the tree.

Let us suppose thatT is the multicast tree ofGused in a certain multipoint application with source nodes
S1 and sink nodesS2. The total communication delay between a source nodev1 and a sink nodev2 using
T is denoted bydT(v1,v2), which is the weighted distance betweenv1 andv2 in T. One objective that has
to be taken into account during the construction of a multicast treeT is the maximum delay between any
source and any sink node. This objective is directly related to the quality of service requirements of the
multipoint application because packets delivered more than a certain number of time units later could be
of no value to the receiver. The most desirable objective is to construct a multicast tree that minimizes the
maximum source/sink delay. The maximum distance between any source and any sink node in a multicast
tree is theeccentricityof this tree. More formally, we express theMinimum Eccentricity Multicast Tree
problem as follows:

Problem: Given a network G= (V,E), a set of source nodes S1, a set of sink nodes S2, a link delay
`(v1,v2) for each edge(v1,v2). Assume thatT is the set of all multicast trees of G that include at least
the nodes S1∪S2. For each tree T∈ T we define its eccentricity

e(T) = max
s1∈S1,s2∈S2

dT(s1,s2) (1)

We wish to find the tree T∈ T that has the minimum eccentricity

e(G) = min
T∈T

e(T) (2)

In this paper, we show that this problem is polynomial and we describe an efficient algorithm that
constructs minimum eccentricity multicast trees on general networks.

Before we proceed to the description of the algorithms we need the following definitions and notation:

• For any subgraphH of G, dH(v1,v2) is the weighted distance betweenv1 andv2 in H.

• If P is a path betweenv1 andv2, then a vertexc of P is amidpointif DP(v1,c) = DP(v2,c).

• A minimum-distance spanning tree rooted atc is a spanning treeT in which dT(v,c) = dG(v,c) for
all v∈V.

• If T is a spanning tree, anSi-critical path (i = 1 or i = 2) is a path inT betweenv1 ∈ Si andv2 ∈ Si

such thatdT(v1,v2)≥ dT(v′1,v
′
2) for all v′1 ∈ Si andv′2 ∈ Si .

• A 1-refinement Rof a weighted graphG is obtained by replacing an edgeER = (u,w) by two edges
(u,cR) and(w,cR) wherecR 6∈V is a new vertex, with̀ (u,cR) + `(w,cR) = `(u,w). The resulting
graph is denotedGR. If T is a spanning tree ofG that containsER, then the 1-refinement can be
viewed also as a 1-refinementTR of T.
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• R is the set of all 1-refinements ofG.

• For any 1-refinementR∈ R ,

d(R) = max
s∈S1

dGR(s,cR)+max
s∈S2

dGR(s,cR) (3)

• d(G) = minR∈R d(R)

3 Characterizing the solutions
In this section we show that a minimum eccentricity multicast tree is a partial shortest path tree rooted at
some “point” in the network that includes at least all source and sink nodes. This point could be either a
vertex, in the ideal case, or a pointcR lying on an edge, produced by an 1-refinement of the graph. This
result will be used in the following section to derive a polynomial algorithm for this problem.

Lemma 1 Let R∈ R . Let T be a minimum-distance spanning tree rooted at cR. Then e(T)≤ d(R).

Proof

e(T) = max
s1∈S1,s2∈S2

dT(s1,s2)

≤ max
s1∈S1

dT(s1,cR))+ max
s2∈S2

dT(s2,cR)

≤ max
s1∈S1

dG(s1,cR))+ max
s2∈S2

dG(s2,cR)

= d(R)

2

Lemma 2 Let T∈ T . Let R be a 1-refinement of T such that cR is the midpoint of some Si-critical path
in T , for i = 1 or i = 2. Then d(R)≤ e(T).

Proof Assume w.l.o.g. thati = 1, and that theSi critical path connectss with s′. Let D = dT(s,cR) =
dT(s′,cR).

Claim (1): For anys1 ∈ S1, dG(s1,cR)≤ D. If not, then

dT(s1,s
′)≥ dT(s1,cR)+dT(cR,s

′)> 2D = dT(s,s′) (4)

if the path inT from s1 to s′ passes throughcR or

dT(s1,v)≥ dT(s1,cR)+dT(cR,s)> 2D = dT(s,s′) (5)

if the path inT from s1 to s passes throughcR. Either case contradicts the assumption that the
(s,s′)-path inT is anS1-critical path.
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Claim (2): For anys2 ∈ S2, dG(s2,cR)≤ e(T)−D. If not, then

dT(s2,s
′)≥ dT(s2,cR)+dT(cR,s

′)> e(T) (6)

if the path inT from s2 to s′ passes throughcR or

dT(s2,s)≥ dT(s2,cR)+dT(cR,s)> e(T) (7)

if the path inT from s2 to s passes throughcR. Either of these contradicts the definition ofe(T).

Combining claims (1) and (2) yieldsd(R)≤ D+(e(T)−D) = e(T). 2

Theorem 1 d(G) = e(G).

Proof Let T be such thate(T) = e(G) and letR′ be a 1-refinement ofT with cR′ the midpoint of some
Si-critical path inT. By Lemma 2,d(R′)≤ e(T). Thusd(G)≤ d(R′)≤ e(T) = e(G).
Let Rbe such thatd(R) = d(G) and letT ′ be a minimum-distance spanning tree rooted atcR. By Lemma
1, e(T ′)≤ d(R). Thuse(G)≤ e(T ′)≤ d(R) = d(G).
Combining these results yieldsd(G) = d(R′) = e(G) = e(T ′). 2

Based on the previous theorem, we provide an upper bound for eccentricity.

Corollary 1 e(G)≤ 2 radius(G), whereradius(G) = minc∈V maxv∈V dG(c,v).

Proof Let R∈ R be determined by a vertexcR for which maxv∈V dG(cR,v) = radius(G). Thene(G) =
d(G)≤ d(R)≤ 2 radius(G). 2

When an edge must be split into two nontrivial parts to obtain the minimum value ofd(R), e(G) will
be less than 2 radius(G). This is the case with the graph of Figure 2, where radius(G) = 25 (with w as
center) ande(G) = 42 (with (u,w) split and`(u,cR) = 3 and`(w,cR) = 9).

The customary approach to forming a tree is to root it at a vertex of the given graph, rather than at a
point created through the subdivision of an edge. The eccentricity of such a tree is bounded above by

d̂(G) = min
v∈V

(
max
s∈S1

dG(s,v)+max
s∈S2

dG(s,v)
)

(8)

Theorem 1 allows us to determine in general that such a rooted tree is within one edge weight of being
optimal:

Theorem 2 e(G)≤ d̂(G)≤ e(G)+max(u,w)∈E `(u,w).

Proof The first inequality is a consequence of the definitions. For the second, letcR define a 1-refinement
Rsuch thatd(R) = d(G). Let the edge divided bycR be(u,w) where`(u,cR)≤ `(w,cR).

Then by the triangle inequality, for allv∈V, dG(u,v)≤ `(u,cR) + dGR(v,cR), and thus for anys1 ∈ S1

ands2 ∈ S2,
dG(s1,u)+dG(s2,u)≤ dGR(s1,cR)+dGR(s2,cR)+2`(u,cR). (9)

This impliesdG(s1,u)+dG(s2,u)≤ d(G)+ `(u,w). 2
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Fig. 1: The optimal edge-rooted tree has eccentricity 2L +
2ε. The optimal vertex-rooted tree has eccentricity 3L− ε.

The upper bound is tight, as the graph in Figure
1 illustrates, whereS1 comprises the two degree-
1 vertices andS2 the two degree-2 vertices. There
are only eight possible spanning trees, so it is
not difficult to find the optimal trees by exhaus-
tive checking. The optimal vertex-rooted tree is
rooted at one of the degree-4 vertices, uses at
least one edge weightedL− ε, and has eccentric-
ity 3L− ε. The optimal edge-rooted tree is based
on bisecting the edge in the middle of the dia-
gram, does not use either edge weightedL− ε,
and has eccentricity 2L +2ε.

4 Basis for an algorithm
The algorithm focuses on identifying the appropriate edge(u,w) that can be cut to create a “center”cR

from which to construct a minimum-distance spanning tree. This edge is found by examining for each
edge(u,w) the longest weighted distances fromu andw to members ofS1 andS2. The constructions in
this section will be illustrated using the example in Figure 2.

t
p1

t
q1

t
r1

t
s1

tu tw

tp2 tq2 tr2

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

6

12
��
��
��
�
��
�
��

�
��
��
��
�
��
��

��
�
��
�
��
�
��
�

13 Q
Q
Q
Q
Q

Q
Q
QQ

Q
Q
Q
Q
Q

Q
Q
QQ

Q
Q
Q

Q
Q
Q

Q
QQ

11 �
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

11 PP
PP

PP
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

17
@

@
@
@

@
@

@
@
@

@
@
@

@
@
@
@

@
@

7

12

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

18

PPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPPPP

25
�

�
�

�
�
�

�
�
�
�
�
�

�
�

�
�
�
�

23 @
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

21 �
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�

�
�

16

12 14

S1 = {p1,q1, r1,s1}

S2 = {p2,q2, r2}

Fig. 2: An example problem graph.

The algorithm is mostly easily understand with reference to some geometric relationships in thexy-
plane. If (a,b) is a point in thexy-plane, denote byQ(a,b) the open quarter plane to the upper-right
of (a,b); i.e., Q(a,b) = {(x,y) | x > a andy > b}. Given a fixed reference point(a0,b0), denote by
L(a0,b0)(a,b) the closed rectangle to the lower left of(a,b); i.e.,

L(a0,b0)(a,b) = {(x,y) | a0≤ x≤ a andb0≤ y≤ b}. (10)

If a0 > a or b0 > b, L(a0,b0)(a,b) is empty.
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Given an edge(u,w), for anyv ∈ V, the point(dG(v,u),dG(v,w)) lies in the first quadrant of thexy-
plane. Fori = 1 or i = 2, consider the sets of such pointsDuw

i = {(dG(s,u),dG(s,w)) | s∈ Si}. In the
example,

Duw
1 = {(6,18),(12,13),(11,11),(17,7)}

Duw
2 = {(18,25),(23,21),(28,16)} .

For a given edge(u,w) and setSi , the fixed reference point(auw
i0 ,b

uw
i0 ) is used, where

auw
i0 = max

s∈Si
dG(s,w)− `(u,w) (11)

buw
i0 = max

s∈Si
dG(s,u)− `(u,w) (12)

In the example,(auw
10 ,b

uw
10) = (6,5). Denote byLuw

i the union of all the closed rectangles determined by
points inDuw

i ; that is,

Luw
i =

⋃
(a,b)∈Duw

i

L(auw
i0 ,b

uw
i0 )(a,b) (13)

Denote byQuw
i the complement ofLuw

i with respect to the upper-right quarter planeQ(auw
i0 ,b

uw
i0 ), that is,

Quw
i = Q(auw

i0 ,b
uw
i0 )\Luw

i (14)

Figure 3 illustrates these constructions in the case of the graph from Figure 1, for edge(u,w) andS1.
The points ofDuw

1 are marked asp1,q1, r1,s1. Although it does not happen in this example, in general
auw

i0 and/orbuw
i0 may be negative, and some rectangles inDuw

i may be empty. The rectangles for vertices
at maximum distance fromu or w are always nonempty.

The essential property ofQuw
i is described in the following lemma.

Lemma 3 Q(a,b)⊆Quw
i if and only if for every vertex v∈ Si , either dG(v,u)≤ a or dG(v,w)≤ b.

Proof If dG(v,u) > a and dG(v,w) > b, then (dG(v,u),dG(v,w)) ∈ Q(a,b). But from the definition,
(dG(v,u),dG(v,w)) ∈ Luw

i . This is impossible sinceQuw
i
⋂

Luw
i = /0. 2

SinceLuw
i is the union of a finite number of closed rectangles all of which have(auw

i0 ,b
uw
i0 ) as lower

left corner, the regionQuw
i is the union of a finite number of upper-right quarter planes. LetQ uw

i be the
collection of quarter planesQ(a,b) that are maximal inQuw

i . Clearly,Q uw
i comprise a minimal finite set

of upper-right quarter planes whose union isQuw
i , and ifQ(a,b) ⊆ Quw

i , thenQ(a,b) is a subset of some
member ofQ uw

i . It is relatively easy to see from Figure 3 that for our example a minimal set of upper-right
quarter planes whose union isQuw

1 is the following

Q uw
1 = {Q(a1,b1),Q(a2,b2),Q(a3,b3)}. (15)

An essential property ofQ uw
i is the following:

Lemma 4 Let Q(a,b)∈Q uw
i . If a 6= auw

i0 and b6= buw
i0 , then for some u′ ∈V, dG(u′,u) = a and dG(u′,w)>

b, and for some w′ ∈V, dG(w′,w) = b and dG(w′,u)> a.
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Fig. 3: The geometric interpretation for edge(u,w) andS1.

Proof Consider all verticesu′ for whichdG(u′,w)>b. This set is nonempty because otherwiseQ(auw
i0 ,b)⊆

Quw
i which is impossible becauseQ(a,b) is maximal anda 6= auw

i0 . For all suchu′, dG(u′,u)≤ a by Lemma
3. Now chooseu′ to maximizedG(u′,u). If thendG(u′,u) = a′ < a, Q(a′,b)⊆Quw

i contradicting the max-
imality of Q(a,b). ThusdG(u′,u) = a. The proof forw′ is analogous. 2

Let the members ofQ uw
i be

Q(auw
i1 ,b

uw
i1 ),Q(auw

i2 ,b
uw
i2 ), . . . ,Q(auw

iNuw
i
,buw

iNuw
i

) (16)

arranged so that
auw

i1 < auw
i2 < · · ·< auw

iNuw
i
. (17)

Since no member ofQuw
i can contain any other, all the valuesauw

ik are distinct, all the valuesbuw
i j are

distinct, and it must be the case that

buw
i1 > buw

i2 > · · ·> buw
iNuw

i
. (18)

Geometrically, these properties reflect that fact that the points(auw
ik ,b

uw
ik ) are the lower-left-hand corners

that occur on the boundary betweenLuw
i andQuw

i . In our example (see Figure 3),

Q uw
1 = {Q(a1,b1),Q(a2,b2),Q(a3,b3)}= {Q(6,13),Q(12,7),Q(17,5)} . (19)

The lower-left-hand corners that occur on the boundary betweenLuw
i andQuw

i have the property de-
scribed in lemma 4. Intuitively, this property can be explained as follows: for a certain edge(u,w) of the
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graph and for a subset of nodesS1, a point(auw
1k ,b

uw
1k ) means that the nodes ofS1 are at maximum distance

auw
1k from u or at maximum distancebuw

1k from w. Furthermore, there is at least one node at distanceauw
1k

from u whose distance fromw is at leastbuw
1k , and the other way around (there is a node at distancebuw

1k
from w whose distance fromu is at leastauw

1k ).
The algorithm is based on a linear scan of the values(auw

ik ,b
uw
ik ). The following lemmas establish the

properties that enable this.

Lemma 5

(a) auw
i1 = auw

i0 ;

(b) buw
i1 ≤maxv∈Si dG(v,w);

(c) auw
iNuw

i
≤maxv∈Si dG(v,u);

(d) buw
iNuw

i
= buw

i0 .

Proof

(a) ObviouslyQ(auw
i0 ,maxv∈Si dG(v,w))⊆Quw

i . Sinceauw
i0 ≤ auw

i1 < auw
i2 < · · ·< auw

iNuw
i

, the member ofQ uw
i

that containsQ(auw
i0 ,maxv∈Si dG(v,w)) must beQ(auw

i1 ,b
uw
i1 ) and this impliesauw

i1 = auw
i0 .

(b) Let b′ be the maximum ofdG(v,w) for all verticesv such thatdG(v,u)> auw
i0 . ThenQ(auw

i0 ,b
′)⊆Quw

i
impliesQ(auw

i0 ,b
′)⊆Q(auw

i1 ,b
uw
i1 ) and thusbuw

i1 ≤ b′ which implies the result.

(c) and (d) are analogous to (a) and (b) respectively. 2

Lemma 6 For any(u,w), i ∈ {1,2}, and0≤ k≤ Nuw
i ,
∣∣auw

ik −buw
ik

∣∣≤ `(u,w).

Proof By symmetry, assume thatbuw
ik ≥ auw

ik .
Fork = 0, the result follows from the definitions and the fact that a path tou or w can be extended using

the edge(u,w).
Fork = 1, Lemma 5 implies

buw
i1 −auw

i1 ≤max
v∈Si

dG(v,w)−auw
i0 = `(u,w). (20)

Fork = Nuw
i ,

buw
iNuw

i
−auw

iNuw
i
≤ buw

i0 −auw
i0 ≤ `(u,w), (21)

by Lemma 5 and the fact thatauw
ik is an increasing function ofk.

For 1< k< Nuw
i , suppose by way of contradiction thatbuw

ik −auw
ik > `(u,w). Let u′ be as in Lemma 4.

Then
dG(u′,w)−dG(u′,u)≥ buw

ik −auw
ik > `(u,w) (22)

contradicting the existence of a path fromu′ throughu to w of lengthdG(u′,u)+ `(u,w).
2



166 David W. Krumme and Paraskevi Fragopoulou

Lemma 7 Let (u,w) be any edge and let1≤ k≤Nuw
1 and1≤ j ≤Nuw

2 . Then there exists a spanning tree
T such that

e(T)≤max(auw
1k + `(u,w)+buw

2 j ,a
uw
2 j + `(u,w)+buw

1k ) (23)

Proof Consider the line in thexy-plane through(auw
1k ,b

uw
1k ) with slope 1. It intersects the boundary ofQuw

2
in a point(a,b) = (auw

1k + λ,buw
1k + λ). Since the line has slope 1,b−a = buw

1k −auw
1k . SinceQ(a,b)⊆Quw

2 ,
dG(v,u) ≤ a or dG(v,w) ≤ b for everyv∈ S2. Let the 1-refinementR be determined by replacing(u,w)
with (u,cR) and(w,cR), where

`(u,cR) =
1
2
`(u,w)− 1

2
(auw

1k −buw
1k )

`(w,cR) =
1
2
`(u,w)+

1
2

(auw
1k −buw

1k ) (24)

Note that Lemma 6 ensures that`(u,cR) and`(w,cR) are nonnegative.
Let s∈ S1. If dG(s,u)≤ auw

1k , then

dGR(s,cR) ≤ dG(s,u)+dGR(u,cR)

≤ 1
2
`(u,w)+

1
2

auw
1k +

1
2

buw
1k . (25)

Otherwise,dG(s,w)≤ buw
1k which yields

dGR(s,cR) ≤ dG(s,w)+dGR(w,cR)

≤ 1
2
`(u,w)+

1
2

auw
1k +

1
2

buw
1k . (26)

Similarly, for v∈ S2, if dG(v,u)≤ a, then

dGR(v,cR) ≤ dG(v,u)+dGR(u,cR)

≤ a+
1
2
`(u,w)+

1
2

(buw
1k −auw

1k ) (27)

= a+
1
2
`(u,w)+

1
2

(b−a).

Otherwise,dG(v,w)≤ b, so that

dGR(v,cR) ≤ dG(v,w)+dGR(w,cR)

≤ b+
1
2
`(u,w)− 1

2
(buw

1k −auw
1k ) (28)

= b+
1
2
`(u,w)− 1

2
(b−a).

Combining these results gives

d(R) ≤ 1
2

(auw
1k +buw

1k )+ `(u,w)+
1
2

(a+b) (29)

= `(u,w)+auw
1k +buw

1k + λ.
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The boundary ofQuw
2 is such that for(a,b) and (auw

2 j ,b
uw
2 j ), as for any two points on the boundary, if

auw
2 j < a, thenbuw

2 j ≥ b. If auw
2 j ≥ a, thenauw

1k + λ ≤ auw
2 j and d(R) ≤ `(u,w) + auw

2 j + buw
1k . Otherwise,

buw
2 j ≥ b, so thatbuw

1k + λ≤ buw
2 j andd(R)≤ `(u,w)+auw

1k +buw
2 j . Thus

d(R)≤max(auw
1k + `(u,w)+buw

2 j ,a
uw
2 j + `(u,w)+buw

1k ). (30)

The result now follows from Lemma 1. 2

Lemma 8 Let T be a minimum-eccentricity spanning tree. Let u′,w′ be the endpoints of any Si-critical
path in T , and let(u,w) be an edge in that path such that dT(u′,u) ≤ 1

2dT(u′,w′) and dT(w,w′) ≤
1
2dT(u′,w′). (There are either one or two such edges.) Then for some Q(auw

1k ,b
uw
1k )∈Q uw

1 and Q(auw
2 j ,b

uw
2 j )∈

Q uw
2 ,

e(T)≥max(auw
1k + `(u,w)+buw

2 j ,a
uw
2 j + `(u,w)+buw

1k ) (31)

Proof Without loss of generality, assumei = 1. If the edge(u,w) is deleted fromT, two trees are
produced; denote byTu the one containingu and byTw the one containingw. Because(u,w) lies in an
S1-critical path, bothS1

⋂
Tu andS1

⋂
Tw are nonempty. Letu1 ∈ S1∩Tu be chosen to maximize the value

dG(u1,u). Let w1 ∈ S1∩Tw be chosen to maximize the valuedG(w1,w). Then for everyv∈ S1, either

dG(v,u)≤ dG(u1,u)≤ dT(u1,u) (32)

or
dG(v,w)≤ dG(w1,w)≤ dT(w1,w). (33)

This means thatQ(dT(u1,u),dT(w1,w))⊆Quw
1 . Thus

Q(dT(u1,u),dT(w1,w))⊆Q(auw
1k ,b

uw
1k ) ∈ Q uw

1 (34)

for somek, which meansauw
1k ≤ dT(u1,u) andbuw

1k ≤ dT(w1,w).
Now suppose bothS2∩Tu andS2∩Tw are nonempty. Proceeding in the same fashion, we select vertices

u2 ∈ S2∩Tu andw2 ∈ S2∩Tw such that

Q(dT(u2,u),dT(w2,w))⊆Q(auw
2 j ,b

uw
2 j ) ∈ Q uw

2 (35)

for somej, so thatauw
2 j ≤ dT(u2,u) andbuw

2 j ≤ dT(w2,w). Then

e(T) ≥ dT(u1,w2) = dT(u1,u)+ `(u,w)+dT(w,w2)
≥ auw

1k + `(u,w)+buw
2 j . (36)

Similarly,

e(T) ≥ dT(u2,w1) = dT(u2,u)+ `(u,w)+dT(w,w1)
≥ auw

2 j + `(u,w)+buw
1k . (37)

This establishes the lemma in this case.
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For the case whenS2∩Tu = /0, selectu1, w1, andw2 and before, letj = 1, and note in this case that
dG(w,w2) = maxv∈S2 dG(w,v)≥ buw

21 . As before,

e(T) ≥ dT(u1,w2) = dT(u1,u)+ `(u,w)+dT(w,w2)
≥ auw

1k + `(u,w)+buw
21 . (38)

Now the hypothesis thatdT(w,w1)≤ 1
2dT(u1,w1) impliesdT(u1,w)≥ dT(w,w1). Thus

e(T) ≥ dT(u1,w2) = dT(u1,w)+dT(w,w2)
≥ dT(w,w1)+dT(w,w2)
≥ buw

1k +dG(w,w2) (39)

= buw
1k + `(u,w)+auw

20

= buw
1k + `(u,w)+auw

21 .

The case whenS2∩Tw = /0 is similar, with j = Nuw
2 , in light of the symmetrical relationship betweena

andb. 2

Theorem 3
e(G) = min

(u,w),k, j
max(auw

1k + `(u,w)+buw
2 j ,a

uw
2 j + `(u,w)+buw

1k ) (40)

Proof The proof is immediate from Lemmas 7 and 8. 2

5 The algorithm
Moving from Theorem 3 to an explicit algorithm is mostly straightforward. One fine point is that instead
of evaluatingauw

1k + buw
2 j andauw

2 j + buw
1k for all combinations ofk and j, a single pass can be made from

k = 1, j = 1 tok = Nuw
1 , j = Nuw

2 since the coordinates are ordered. Calculating the valuesauw
ik andbuw

ik is
most easily understood in terms of finding the lower-left-hand corners in the boundary betweenLuw

i and
Quw

i , which is formed from horizontal and vertical line segments. The method used in Figure 5 is but one
of several possible ways to solve this geometric problem.

The algorithm is shown in Figures 4 and 5. First, the weighted distances between all pairs of points are
calculated. Second, for each vertexv, a listH0[v] is created of all vertices in order of increasing distance
from v. Third, by selecting just members ofSi from H0[v], lists H1[v] andH2[v] are created in which the
members ofS1 andS2, respectively, are listed in order of increasing distance fromv. Fourth, for each edge
(u,w), arraysAi andBi are created such thatAi [k] = auw

ik andBi [k] = buw
ik for 1≤ k≤Nuw

i andi = 1,2. The
sizes of these arrays are also recorded inNi . Finally, the arraysAi andBi are scanned in one pass to seek
the minimum described in Theorem 3.

The first two steps rely only on the edge weights in the graph, and not onS1 and S2. In practice,
the network topology can be considered fixed, so the first two steps can be precomputed. These two
offline steps can be accomplished inO(|V|3) steps using Dijkstra’s algorithm [11]. The running time of
step 3 isO(|V|2). The running time of steps 5.1 and 5.3 are eachO(|S1 +S2|), so the time for step 5 is
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0. Initially, L[x][y] is the weight of edge(x,y) andZi is the size ofSi .

1. ConstructD so thatD[x][y] = dG(x,y).

2. For each vertexv, constructH0[v] so thatH0[v][k] for k = 1,2,3, . . . is a list of all vertices in order of
increasing distance fromv.

3. For each vertexv and for i = 1,2, constructHi [v] so thatHi [v][k] for k = 1,2,3, . . . is a list of the
members ofSi in order of increasing distance fromv.

4. e← ∞.

5. For each edge(u,w):

5.1. CalculateA1, B1, A2, andB2. (See Figure 5.)

5.2. k← 1; j ← 1;

5.3. While (k≤ N1 and j ≤ N2):

5.3.1. c← A1[k]+L[u][w]+B2[ j];
5.3.2. d← A2[ j]+L[u][w]+B1[k];
5.3.3. If (c> d):

5.3.3.1. If (c< e) thene← c ;

5.3.3.2. j ← j +1;

5.3.4. Else:

5.3.4.1. If (d< e) thene← d ;

5.3.4.2. k← k+1;

5.3.4.3. If (c = d) then j ← j +1;

Fig. 4: The algorithm.

O(|E| |S1 +S2|). Thus the offline portion of the algorithm has time complexityO(|V|3) and the online
portionO(|E| |S1 +S2|)≤O(|V| |E|)≤O(|V|3).

Except for steps 5.1 and 5.3, the correctness of the algorithm should be patently clear. It is a relatively
straightforward problem to scan the sorted arraysAi andBi in parallel seeking the minimum value of
max(A1[k]+B2[ j],A2[ j]+B1[k]); a detailed argument is presented below that step 5.3 correctly finds this
minimum. It is also a relatively straightforward problem to find the lower-left-hand corners of a nonin-
creasing curve in thexy-plane composed of horizontal and vertical line segments; a detailed argument is
presented below that step 5.1 correctly finds these corners.

Step 5.3 makes a single pass in parallel throughAi and Bi , rather than checking all possible pairs.
This is possible becauseauw

ik is an increasing function ofk andbuw
i j is a decreasing function ofj. It is

straightforward to verify the loop invariant property that at statement 5.3,e≤min j ′< j or k′<k max(A1[k′]+
B2[ j ′],A2[ j ′]+B1[k′].

Step 5.1 is the heart of the algorithm. It searches the boundary betweenLuw
i andQuw

i working from
upper left to lower right. Step 5.1.2 stores a large number inBi [0] just to ensure that the condition is true
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5.1.1. Ai [0]← D[Hi [w][Zi ]][w]−L[u][w];

5.1.2. Bi [0]← D[Hi [w][Zi ]][w]+1;

5.1.3. k← 0;

5.1.4. Ai [1]← Ai [0];

5.1.5. p← Zi ;

5.1.6. While (p≥ 1):

5.1.6.1. v← Hi [w][p];

5.1.6.2. If (D[v][u]> Ai [k+1]):

5.1.6.2.1.If (D[v][w]< Bi [k]) then{k← k+1; Bi [k]← D[v][w]}
5.1.6.2.2.Ai [k+1]← D[v][u];

5.1.6.3. p← p−1;

5.1.7. Bi [0]← D[Hi [u][Zi ]][u]−L[u][w];

5.1.8. If (k = 0 or Bi [k]> Bi [0]) then{k← k+1; Bi [k]← Bi [0]}

5.1.9. Ni ← k;

Fig. 5: CalculatingAi andBi .

in the first execution of 5.1.6.2.1, thus simplifying the organization of the loop. Final values are assigned
to Ai [0], Ai [1], andBi [0], in steps 5.1.1, 5.1.4, and 5.1.7, respectively.

Loop 5.1.6 works through the members ofSi in order of decreasing distance fromw. Within the loop,
Ai [k] andBi [k] (except forBi [0]) have been given their final values andAi [k+ 1] andBi [k+ 1] are being
updated. Since the vertices are visited in order of decreasing distance fromw, and since they are all
within Luw

i , vertexv satisfies one of three conditions: (i)v lies on the horizontal line through(auw
ik ,b

uw
ik );

(ii) otherwise,v lies on or to the left of the vertical line through(auw
i,k+1,b

uw
i,k+1); (iii) otherwise,v lies on the

horizontal line segment to the right of(auw
i,k+1,b

uw
i,k+1). In the first case, step 5.1.6.2.2 responds to the fact

thatauw
i,k+1 ≥ dG(v,u). In the third case, steps 5.1.6.2.1 and 5.1.6.2.2 finalize the value ofbuw

i,k+1, initialize
auw

i,k+2, and movek forward. It is easy to see that for every lower-left corner point(auw
ik ,b

uw
ik ), condition

(iii) will occur exactly once and (i) and (iii) together will occur once for each vertex on the line segment
buw

ik = y,auw
ik ≤ x.

Thus the coordinates of all lower left corners will be left inAi andBi by the time the loop terminates,
with the possible exception ofk = 1 andk = Nuw

i which depend on the entry and exit conditions of the
loop. It is easy to see thatk = 1 is handled properly and thatk = Nuw

i is handled properly when there is
a vertexv with dG(v,w) = buw

i0 . Step 5.1.8 tests for this last situation, adding the final lower-left corner
when necessary.
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6 Conclusions
We presented an algorithm for the construction of a minimum eccentricity multicast tree on general net-
works. Further work would naturally include a distributed version of the algorithm. Furthermore, it would
be interesting to incorporate other measures of goodness such as the minimization of the total cost of the
multicast tree. This would turn our problem into an NP-complete problem that requires special treatment
though heuristic/approximation algorithms.
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