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Fix positive integersk andl . Consider a randomk-partite graph onn vertices obtained by partitioning the vertex set
into Vi ,(i = 1, . . . ,k) each having sizeΩ(n) and choosing each possible edge with probabilityp. Consider any vertex
x in anyVi and any vertexy. We show that the expected number of simple paths of even lengthl betweenx andy
differ significantly depending on whethery belongs to the sameVi (asx does) or not. A similar phenomenon occurs
when l is odd. This result holds even whenk, l vary slowly with n. This fact has implications to coloring random
graphs. The proof is based on establishing bijections between sets of paths.
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1 Motivation
This problem arose in the analysis of algorithms for coloring randomk-colorable graphs [2, 3]. Consider
a random graph drawn as explained in the abstract. To separate a color class, we fix a vertexx in the
largest (or smallest)Vi and and compute the number ofl -paths (paths of lengthl ), n(x,y, l), betweenx and
an arbitrary vertexy. Depending on whethery belongs to the same class asx belongs to, the expectation
of this quantity differs significantly. If we can show thatn(x,y, l) is close to its expected value almost
surely, this gives us a way of separating the class containingx. Repeating thisk− 2 times, one gets a
k-coloring. The expectation ofn(x,y, l) is N(x,y, l)pl , whereN(x,y, l) is the total number ofl -paths in the
completek-partite graph formed byVis. The result stated in the abstract shows that the expectations differ
significantly as required.

We do not discuss the algorithmic issues here since they have been outlined in [2]. We only prove the
results stated in the abstract using only counting arguments. Even though the results are obviously true
for bipartite graphs, fork≥ 3, it is not so straightforward. We believe the arguments used here would be
of interest to know. The basic idea is to partition (for each pair of start-end vertices) the corresponding
set of l -paths into groups (based on the color classes of intermediate vertices). Then, for two different
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pairs, we establish an (almost) bijection between the corresponding groups. For any such mapped pair of
groups, we also establish an (almost) bijection between thel -paths in them. This establishes the required
statement.

2 Paths of specified length
Definition 2.1 By an l-path between two vertices x and y, we mean asimple pathof length l between x
and y. A simple path is one in which no vertex appears more than once. An l-path is represented as a
(l +1)-tuple〈x,v1, . . . ,vl−1,y〉 of vertices such that successive vertices in this sequence belong to different
partite sets Vi .

Notations : G is acomplete k-partite graph on the partite setsV1, . . . ,Vk with each|Vi | ≥ n/C for some
constantC≥ k. For eachi, ni denotes the size|Vi |. For eachi, letWi=̇Vi ∪ . . .∪Vk. For all i(1≤ i ≤ k−1),
for all x∈Vi , for all y∈Wi such thaty 6= x, let N(x,y, l , i) denote the number ofl -paths betweenx andy
involving only vertices fromWi . Given a tupleσ with integral component values and an integerj, c(σ, j)
denotes the number of timesj appears inσ.

We obtain the following results.

Theorem 2.1 Assume that n1 ≤ . . .≤ nk. Let l be any fixedeveninteger≥ 2. For all i, 1≤ i ≤ k−1, for
all x,y∈Vi , for all z∈Wi−Vi , we have

N(x,z, l , i) = Θ(nl−1) if i ≤ k−2

N(x,y, l , i), N(x,y, l , i)−N(x,z, l , i) = Θ(nl−1)

Proof: Consider anyi(i = 1, . . . ,k−1) and anyx,y∈Vi andz∈Vr , r > i and fix these parameters. We use
the factorial functions defined as follows :(n)0 = 1. (n)l = n(n−1) . . .(n− l +1), l ≥ 1. LetP(x,y) denote
the set of alll -paths betweenx andy involving only vertices from thek− i + 1 partite setsVj (i ≤ j ≤ k).
P(x,z) is defined similarly. That is,

P(x,y) = { 〈x,v1, . . . ,vl−1,y〉 | the sequence is anl -path betweenx andy}.

P(x,z) = { 〈x,v1, . . . ,vl−1,z〉 | the sequence is anl -path betweenx andz}.

Clearly, we have|P(x,y)| = O(nl−1) and|P(x,z)| = O(nl−1). Also if i = k−1, then there are only two
partite sets, namely,Vk−1 andVk and henceP(x,z) = /0 andN(x,z, l , i) = 0. Define

Bs
l = { 〈σ1, . . . ,σl−1〉 |σ1 6= i, σl−1 6= i, i ≤ σ j ≤ k,σ j 6= σ j+1∀ j}

Bd
l = { 〈σ1, . . . ,σl−1〉 |σ1 6= i, σl−1 6= r, i ≤ σ j ≤ k,σ j 6= σ j+1∀ j}

In the above, the superscripts (or d) is a short notation for the word “same” (or “different”). We have
|Bs

l |, |Bd
l | ≤ kl−1.

Now f : P(x,y)→ Bs
l is a mapping which identifies eachl -path〈x,v1, . . . ,vl−1,y〉 with the unique(l−1)-

tuple〈σ1, . . . ,σl−1〉 in Bs
l where ifvm∈Vj thenσm = j. Similarly, we can define a mappingg : P(x,z)→Bd

l
which identifies eachl -path inP(x,z) with a unique(l −1)-tuple inBd

l . We use the elements ofBs
l ( or

Bd
l ) to partition the setP(x,y) ( or P(x,z) ) as follows.

P(x,y) =
⋃

σ∈Bs
l
Pσ wherePσ = {τ ∈ P(x,y) | f (τ) = σ}.
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P(x,z) =
⋃

σ∈Bd
l
Pσ wherePσ = {τ ∈ P(x,z) |g(τ) = σ}.

Now, for eachσ∈Bs
l ∪Bd

l , |Pσ|= (∏i≤ j≤k(n j)c(σ, j)) = (∏i≤ j≤k(n j)c(σ, j)) · [1−o(1)]. As a result, for each
σ ∈ Bs

l ∪Bd
l , |Pσ|= Θ(nl−1). The[1−o(1)] factor arises not only because of factorials, but also because

x,y andz have to be excluded from consideration.
Also Bs

l is non-empty and it contains at least one element, namely, the tuple〈r, i, r, i, . . . , r〉. Hence
N(x,y, l , i) = |P(x,y)| = Θ(nl−1). Also, if i ≤ k−2, then there are at least 3 partite sets to be considered
and henceBd

l is non-empty. HenceN(x,z, l , i) = |P(x,z)|= Θ(nl−1) if i ≤ k−2.
We need to prove that|P(x,y)|− |P(x,z)|= Θ(nl−1). In order to prove this, it is enough to prove that the
following two assertions are true.

1. |Bs
l | ≥ |Bd

l |+1 and

2. There exists aone-to-onemappingh : Bd
l → Bs

l such that for eachτ ∈ Bd
l , we have|Ph(τ)| ≥ |Pτ|[1−

o(1)].

We prove that the two assertions are true as follows. Now, partitionBs
l ,B

d
l into

Bs
l = Bs

l ,1∪ . . .∪Bs
l ,l−1∪Bs

l ,l

Bd
l = Bd

l ,2∪ . . .∪Bd
l ,l−1∪Bd

l ,l

where

Bs
l ,l = {σ ∈ Bs

l | σl−1 6= i,σl−1 6= r}.

Bd
l ,l = {σ ∈ Bd

l | σl−1 6= i,σl−1 6= r}.

Bs
l , j = {σ ∈ Bs

l | σ j−1 6= i,σ j−1 6= r, σm = i, r f or m≥ j}, for 2≤ j ≤ l −1.

Bd
l , j = {σ ∈ Bd

l | σ j−1 6= i,σ j−1 6= r, σm = i, r f or m≥ j}, for 2≤ j ≤ l −1.

Bs
l ,1 = {〈r, i, r, i, . . . , r〉}

Now Bd
l ,1 cannot be defined similarly sincel is even. It is easy to see that the definitions form a well-

defined partition ofBs
l andBd

l . In other words, for eachσ ∈ Bs
l , there exists a unique value ofj between 1

andl such thatσ ∈ Bs
l , j . Similarly, for eachτ ∈ Bd

l , there exists a unique value ofj between 2 andl such

thatτ ∈ Bd
l , j .

Now we claim that for allj such that 2≤ j ≤ l , |Bs
l , j |= |Bd

l , j |. For j = l , this follows fromBs
l ,l = Bd

l ,l . For

j < l , consider the mappingh j : Bd
l , j → Bs

l , j defined as follows. Letτ ∈ Bd
l , j be any tuple. Then,h j(τ) = σ

whereσ is defined as

• For allm (1≤m≤ j−1), σm = τm.

• For allm such thatj ≤m≤ l −1, σm = i if τm = r andσm = r if τm = i.
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Clearlyσ ∈ Bs
l , j . Also it can be verified thath j is a one-to-one and onto mapping. SinceBs

l , j andBd
l , j are

finite sets, it follows that|Bs
l , j |= |Bd

l , j |.
Thus, we have|Bs

l | ≥ |Bd
l |+1 and the first assertion is true.

To prove the second assertion, define the mappingh : Bd
l → Bs

l to be as follows. For eachτ ∈ Bd
l , define

h(τ) = h j(τ) where j is such thatτ∈Bd
l , j . Clearly,h is a one-to-one mapping since eachh j is a one-to-one

mapping.
We prove that for eachτ ∈ Bd

l , we have|Ph(τ)| ≥ |Pτ|[1−o(1)]. Let τ ∈ Bd
l be any tuple and letσ denote

the tupleh(τ). We knowτ ∈ Bd
l , j for somej, 2≤ j ≤ l .

If j = l , then we haveσ = τ and hence|Pσ| ≥ |Pτ|[1−o(1)].
If j = l −2, l −4, . . . ,2, then clearly,c(τ,m) = c(σ,m) for all values ofm (i ≤m≤ k) and hence|Pσ| ≥
|Pτ|[1−o(1)].
If j = l −1, l −3, . . . ,3, then clearly,c(τ,m) = c(σ,m) for all values ofm (i ≤ m≤ k) such thatm 6= i,
m 6= r. Also, c(σ, r) = c(τ, r) + 1 andc(τ, i) = c(σ, i) + 1. Sinceni ≤ nr (r > i) by assumption, we have
|Pσ| ≥ |Pτ|[1−o(1)].

Thus, we have

N(x,y, l , i)−N(x,z, l , i) = |P(x,y)|−P(x,z)|

= |
⋃

σ∈Bs
l

Pσ|− |
⋃

τ∈Bd
l

Pτ|

= ∑
j=l−1,...,3

 ∑
σ∈Bs

l , j

|Pσ|

+ ∑
j=l ,l−2,...,2

 ∑
σ∈Bs

l , j

|Pσ|

+ ∑
σ=〈r,i,...,r〉

|Pσ|

− ∑
j=l−1,...,3

 ∑
τ∈Bd

l , j

|Pτ|

− ∑
j=l ,l−2,...,2

 ∑
τ∈Bd

l , j

|Pτ|


≥ |Pσ|−o(|Pσ|) whereσ = 〈r, i, . . . , r〉. (1)

Thus,

N(x,y, l , i)−N(x,z, l , i) = Θ((nr)l/2(ni)l/2−1)

= Θ(nl−1)

Hence,

N(x,z, l , i) = Θ(nl−1) if i ≤ k−2

N(x,y, l , i), N(x,y, l , i)−N(x,z, l , i) = Θ(nl−1).

This completes the proof of the theorem.

Using similar arguments, we can prove the following theorem also.
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Theorem 2.2 Assume that n1≥ . . .≥ nk. Let l be any fixedodd integer≥ 3. For all i (1≤ i ≤ k−1), for
all x,y∈Vi , for all z∈Wi−Vi , we have

N(x,y, l , i) = Θ(nl−1) if i ≤ k−2

N(x,z, l , i), N(x,z, l , i)−N(x,y, l , i) = Θ(nl−1)

3 Conclusions
1. The main result of the paper is that the number ofl -paths joining a vertexx (in the largest or smallest
Vi depending on the parity ofl ) and a vertexy differs significantly depending on wherey comes from. A
close look at the proof (particularly, derivation of (1)) shows that this holds even if we allowk, l andC to
vary withn, providedlklCl = o(n).
2. It would be interesting to extend these results to structures other than simple paths. Such results can be
applied to the design and analysis of efficient algorithms for random graphs (see [1] for a survey).
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