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Fix positive integerk andl. Consider a randork-partite graph om vertices obtained by partitioning the vertex set
intoVj, (i=1,...,k) each having siz€(n) and choosing each possible edge with probabgitfonsider any vertex
x in anyV; and any vertey. We show that the expected number of simple paths of even lénggtweenx andy
differ significantly depending on whethgibelongs to the samé (asx does) or not. A similar phenomenon occurs
whenl is odd. This result holds even whén vary slowly withn. This fact has implications to coloring random
graphs. The proof is based on establishing bijections between sets of paths.
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1 Motivation

This problem arose in the analysis of algorithms for coloring randarolorable graphs(Z] 3]. Consider

a random graph drawn as explained in the abstract. To separate a color class, we fix & rettex
largest (or smallest); and and compute the numberlgbaths (paths of length), n(x,y,|), betweerxand

an arbitrary vertey. Depending on whethearbelongs to the same class»belongs to, the expectation

of this quantity differs significantly. If we can show thafx,y,!) is close to its expected value almost
surely, this gives us a way of separating the class containgepeating thik — 2 times, one gets a
k-coloring. The expectation af(x,y,1) is N(x,y,1)p', whereN(x,y, ) is the total number df-paths in the
completek-partite graph formed by;s. The result stated in the abstract shows that the expectations differ
significantly as required.

We do not discuss the algorithmic issues here since they have been outlined in [2]. We only prove the
results stated in the abstract using only counting arguments. Even though the results are obviously true
for bipartite graphs, fok > 3, it is not so straightforward. We believe the arguments used here would be
of interest to know. The basic idea is to partition (for each pair of start-end vertices) the corresponding
set ofl-paths into groups (based on the color classes of intermediate vertices). Then, for two different
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pairs, we establish an (almost) bijection between the corresponding groups. For any such mapped pair of
groups, we also establish an (almost) bijection betweeh-giaths in them. This establishes the required
statement.

2 Paths of specified length

Definition 2.1 By an I-path between two vertices x and y, we meaimgle pathof length | between x

and y. A simple path is one in which no vertex appears more than once. An |-path is represented as a
(I+1)-tuple(x,v1,...,v|_1,y) of vertices such that successive vertices in this sequence belong to different
partite sets \

Notations : G is acomplete kpartite graph on the partite séfs, ..., Vk with each|V;| > n/C for some
constantC > k. For each, n; denotes the sizp/|. For each, letW=ViU...UW. Foralli(1<i <k-1),
for all x € V4, for all y € W such thaty £ x, let N(x,y,1,i) denote the number dfpaths betweer andy
involving only vertices from\M. Given a tuples with integral component values and an integes(a, j)
denotes the number of timgsappears iro.

We obtain the following results.

Theorem 2.1 Assume thatn< ... < ng. Let | be any fixe@gveninteger> 2. Foralli, 1 <i <k-—1, for
all x,y € \;, for all ze W — Vi, we have

N(x,zl,i) = N Y)ifi<k—2
N YLD, NOGy L) =N(xz Li) = o(n'Y)
Proof: Consider any(i = 1,...,k—1) and anyx,y € Vi andz € V,,r > i and fix these parameters. We use
the factorial functions defined as follow$n)o = 1. (n)y =n(n—1)...(n—1+1),1 > 1. LetP(x,y) denote

the set of all-paths betweer andy involving only vertices from thé&—i + 1 partite set¥; (i < j <Kk).
P(x,z) is defined similarly. That is,

P(x,y) = { (X,v1,...,Vi_1,Y) | the sequence is drpath betweex andy}.
P(x,z) = { (X,v1,...,Vi_1,2) | the sequence is drpath betweex andz}.

Clearly, we haveP(x,y)| = O(n'~1) and|P(x,z)| = O(n'~1). Also if i = k— 1, then there are only two
partite sets, namelyj_1 andVk and hencéd(x,z) = 0 andN(x, z1,i) = 0. Define

B ={(01,...,01-1) |01 #1, 01_1 #1,1 < 0) <K, 0} #0j11Vj}

Bl = {(01,...,01_1) |01 £, 01_1 #1,i1 <0} <k 0] £ 0j1V]}
In the above, the superscrigior d) is a short notation for the word “same” (or “different”). We have
1Bl Bf | < K.

Now f : P(x,y) — B} is a mapping which identifies eattpath(x, v1, . ..,vi_1,y) with the unique(l —1)-
tuple(oy,. .., 01_1) in BS where ifvm € Vj thenom = j. Similarly, we can define a mapping P(x,z) — Bf

which identifies eacl-path inP(x, z) with a unique(l — 1)-tuple in Bf‘. We use the elements & ( or
B,d) to partition the seP(x,y) (or P(x,2)) as follows.

P(X,y) = Uoeps Ps WherePs = {t € P(xy) | f(1) = 0}.
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P(x,z) = UO.EBld Ps whereP; = {1 € P(x,2) | 9(1) = a}.

Now, for eacho € BSUBY, |Po| = (i< j<k(Nj)co.j)) = (MMi<j<k(Nj)%®) - [1—0(1)]. As aresult, for each
0 € BSUBY, |Ps| = ©(n'~1). The[1-o(1)] factor arises not only because of factorials, but also because
X,y andz have to be excluded from consideration.

Also B} is non-empty and it contains at least one element, namely, the tuplei,...,r). Hence
N(xy,1,i) = |P(x,y)| = ©(n'"~1). Also, if i < k—2, then there are at least 3 partite sets to be considered
and henc&{ is non-empty. Henchl(x,z,1,i) = |P(x,2)| = ©(n'~1) ifi <k-—2.

We need to prove thdP(x,y)| — |P(x,z)| = ©(n'~1). In order to prove this, it is enough to prove that the
following two assertions are true.

1. |Bf| > |Bf|+1 and

2. There exists ane-to-onemappingh : B! — B such that for each € Bf, we have P > [Pel[1—

o(1)].
We prove that the two assertions are true as follows. Now, par@foB! into
BF =By U...UB}_jUBP
d_ pgd d d
B =Bf,u...UB|_; UB,
where
Bl ={0eB}|ol_1#i,0_1#T}.
B = {0 B[ o1 #i. 011},
Bf, ={0€B|0j_1#i,0/_1#T Om=1,rform> j},for2<j<I-1.
Bldj ={0€B!| 0j_1#i,0j_1#T,Om=i,rform> j},for2<j<I-1.
Bﬁlz{(r,hr,i,...,r}}

Now B, cannot be defined similarly sindds even. It is easy to see that the definitions form a well-

defined partition o8} andBld. In other words, for eactr € B, there exists a unique value pbetween 1
andl such thao € Blsj. Similarly, for eachr € Bld, there exists a unique value pbetween 2 andl such

thatt € Bf!,.

Now we claim that for allj such that 2< j <1, [B};| = |Bﬂj |. For j =1, this follows fromB}, = Bd,. For
J <, consider the mappinig; : Bﬂj — Bﬁj defined as follows. Let € Bf{j be any tuple. Therhj(t) =0
whereo is defined as

e Foralm(1<m< j—1),0m=Tm.

e Forallmsuchthatf <m<I|—-1,0n=iif tn=randon=rif tnh=1.
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Clearlyo € Bﬁj. Also it can be verified thét; is a one-to-one and onto mapping. Sileg and Bﬂj are

finite sets, it follows thaiB}; | = [Bf!|.

Thus, we haveéB| > [Bf| + 1 and the first assertion is true.

To prove the second assertion, define the mappin@}j — B} to be as follows. For eache BY, define
h(t) = hj(t) wherej is such that € Bﬁj. Clearly,his a one-to-one mapping since edghs a one-to-one
mapping.

We prove that for each < BY, we have| Phyl > [P|[1—0(1)]. Lett Bf be any tuple and le denote
the tupleh(t). We knowrt € Bﬂj forsomej, 2< j <I.

If j =1, then we haves = T and hencéPs| > |P|[1—0(1)].

If j=1-21-4,...,2, then clearlyc(t,m) = c(a,m) for all values ofm (i < m < k) and hencéP;| >
|Px|[1—o(1)].
If j=1-211-3,...,3, then clearlyc(t,m) = c(o,m) for all values ofm (i < m< k) such tham#1,

m+#r. Also, ¢(o,r) =c(t,r)+ 1 andc(t,i) = c(0,i) + 1. Sincen; < n; (r > i) by assumption, we have
IPs| = |Px[[1—o(1)].

Thus, we have

N(x,y,1,i) =N(x,z1,i) = [P(xy)|—P(x,2)
= |JPRl-I Pl
GEBls '[EBF

= IPs| | + Ps| | + |Ps|
jzlg,....s (O'EZBH j:I,IZZw.,Z oeBy. o=(I,i,....T)

]

_ jlzl‘”'3( Zd lPT') B lzz_..z( Zd |PT|)

> |Ps|—0o(|Ps|) wherea = {r,i,...,r). 1)

Thus,
N(X7ya|7i)_N(X7Za|7i> = @((nr)l/Z(ni)VZ—l)
= orn™
Hence,
N(x,zl,i) = onY)ifi<k-2
N(xY,1i) NGy L) =Nz 1) = o(n'Y).

This completes the proof of the theorem. =

Using similar arguments, we can prove the following theorem also.
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Theorem 2.2 Assume thatn> ... > n. Let| be any fixedbddinteger> 3. For all i (1 <i <k-1), for
all x,y e M, for all ze W —Vj;, we have

N(xyli) = onYifi<k—2
N(x,z1,i), N(x,z1,i) = N(x,y,1,i) o'

3 Conclusions

1. The main result of the paper is that the numbek-péths joining a vertex (in the largest or smallest

V; depending on the parity ¢j and a vertey differs significantly depending on wheyeomes from. A

close look at the proof (particularly, derivation of (1)) shows that this holds even if we &lloandC to

vary with n, providedlk'C' = o(n).

2. It would be interesting to extend these results to structures other than simple paths. Such results can be
applied to the design and analysis of efficient algorithms for random graphgi(see [1] for a survey).
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