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Cubic Cayley graphs with small diameter
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In this paper we apply #ya’s Theorem to the problem of enumerating Cayley graphs on permutation groups up to
isomorphisms induced by conjugacy in the symmetric group. We report the results of a search of all three-regular
Cayley graphs on permutation groups of degree at most nine for small diameter graphs. We explore several methods
of constructing covering graphs of these Cayley graphs. Examples of large graphs with small diameter are obtained.
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1 Introduction

The (A, D) problem asks for the largest valnesuch that a graph amvertices exists with diamet& and
maximum vertex degrefs. The Moore bound for the diametBrof a graph withn vertices and maximum
vertex degreé > 3 givesn < 1+ A+ (A—1)A+ (A—1)?A+---+ (A—1)P~1A. Very few graphs satisfy
equality in the Moore bound. The evaluationrgf\, D), the largest integer such that a graphnga, D)

vertices with maximum vertex degréeand diameteD exists, appears to be an intractable problem

in general. Even the more modest goal of proving the existence of a family of graphs sat3fging
logs_41(n)+0O(1) seems difficult in the cage= 3. For random regular grapBs=log,_4(nlogn) +O(1),

and similar results have been obtained for constructions with random components. For detailsS See [BC66]
and [BV82]. Jerrum and Skyum [JS84] have obtained the best non-random constructive results known
for an infinite family of cubic graphs. Their constructions yield graphs which satisfy approximately
D = 1.47 log, n. Kantor [Kan9?] has shown the existence of cubic Cayley graphs with dia@étegn),
however the constartt such thatD < clog,n implicit in his estimate is very large. In addition to the
random graph results and the constructions of infinite families, there is much interest in the construction
of specific large graphs with small diameters. For a table of the largest known graphs<f@f and

D < 10, seel[Exc00]. These graphs establish lower bounds(foiD).

We examine all three-regular Cayley graphs on permutation groups of degree at most nine. While the
graphs obtained with < 10 are not as large as those in the table, these Cayley graphs form the building
block for constructing larger graphs which can easily be analyzed. By forming covering graphs of the
Cayley graphs in various ways we obtain graphBaf 21 which give good lower bounds fa(3,D) for
11 <D < 21. Moreover several examples of bipartite graphs with low degree and diameter are obtained.

We consider only undirected graphs, so the generatoh sétour Cayley graphs will have three ele-
ments, andA = A~! whereA~1 = {a~!|a € A}. We refer to such sets as Cayley sets. For three-regular
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graphs the Cayley sets will have the fon= {o,071,1} for someo andt wheret has order two and

has order at least three, Ar= {11,12,73} wheret; has order two for each If a € S, let af =p-1ap

be the conjugate af by B, and ifAC S, let A® = {aP|a € A}. If A andB are Cayley sets it$, and

AP = B for somep € S,, then the Cayley graphs generatedAwndB are isomorphic. Isomorphism of
Cayley graphs from non-conjugate Cayley sets is difficult to determine from the Cayley sets alone. Thus
in searching three-regular Cayley graphs we first address the problem of enumerating the possible Cayley
sets up to conjugation. Although we are primarily interested in the sets generating cubic graphs, we tackle
this problem in the more general setting.

2 Enumeration of Cayley Sets up to Conjugacy

Any Cayley graph of vertex degreehas a generator set of the form
S={01,...,0k,07 % ...,0, 1, Ta,..., 1|}

where eaclw; has order at least three, eaghs an involution, and B+ 1 = m. We will call such a set a
Cayley set of typék, ). Let X, be the set of equivalence classeSirunder the equivalence relatiar y

if and only if x=y orx=y~1. We will denote these equivalence classes by any appropriate representative.
There is a one-to-one correspondence between Cayley sets gkiypand the subsets of, the form
{01,...,0k,T1,...,T1 }. We will call these subsets of, Cayley sets of typék, ) also.

The action ofS, on S, by conjugation induces an action §f on X,. Enumerating the Cayley graphs
of vertex degreen on S, up to isomorphisms induced by conjugationdhis equivalent to enumerating
the sets of typék, 1) in X, with 2k+1 = mup to the action of5, by conjugation. To accomplish this we
compute the cycle index of the action®f by conjugation ork,. We first recall some notation and basic
facts. We refer tol[PR73] for background on cycle indices ablgld®s Theorem.

If Gis a permutation group acting on a ¥etvith n elements and € G then the we denote the cycle type
of g by the monomiam(g) = |'|2x1-°i, whereg hasc; cycles of length in its disjoint cycle decomposition.
The cycle index ofs is defined aZ (G) = ﬁ ¥ gecM(g) and the cycle sum bYSG) = ¥4 m(g). We
useZ(G;wi,Ws ..., Wy) to denoteZ(G) with w; substituted fok; for eachi. We denot& (G; X, Xar ..., Xnr)
by 7, (G).

Let P, be the set of partitions ai. We also denote the elements®f by monomials[]]x* where
y1ici = n. Leth(a) be the number of permutations Sawith cycle typea.

noe n! 1
h([1x") = ==———= and Z(S)) == § h(a)a 1
(il:l i ) |—|in:1Ci!|Ci (Sn) 'an’n ( ) 1)
Let C, andDy, be the cyclic and dihedral groups of degreeThen regardin@, andD,, as permutation
groups on{1,2,...,n} in the usual manner we have

1
2(Cn) = ;m(d)xz/ ’ 2)
djn
and
1 Ixpxy /2 if n is odd
Z(Dp) = 2Z(Cr) +4 2% 3
(Bn) = 32(Co) { 10872 +52/%) it niis even )
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where@ denotes the Euler Phi function.

For each permutation € S, we will need the cycle index of the centralizéfa) = {B € Sy|aP = a}
and the cycle index of the pseudo-centrali2&(a) = C(a) UF (a), whereF (a) = {B € S, |aP = a~1}.
Since these cycle indices will depend only on the cycle type) we will sometimes use the notations
Z(C(m(a))) andZ(PC(m(at))). If a is a permutation of cycle typg) in S thenC(a) = S([Cj], the

wreath product of with C;. Polya [Fhi37] showed that cycle index of the wreath prod&ff] is given
by Z(A[B]) = Z(A; Z1(B),Z2(B),...) and thus

Z(C(a)) = Z(C(K)) = Z(Sa Z4(C)), Z2(Cy), - ). (4)

The centralizer of a permutatianof cycle type[]7x; X" is isomorphic to the product of the centralizers of
permutations; of typexcl in S¢;, hence

C(_|£|xim)) = _|£|Z(Sbi;Zl(Ci),Zz(Ci), ). -

To obtain the cycle index of the pseudo-centrali2€(a), we need to consider separately theSat).
Let Fy = D —C, for n > 3 andF, = C,, for n < 2. We identify R, with the set of permutations i,
mapping am-cycle to its inverse under conjugation. Althoughis not a group fon > 3 we may consider
its cycle index, an& (F,) = Z(C,) for n <2 andZ(F,) = 2Z(Dy) — Z(Cy) for n> 3. By equation§]2 and 3
we obtain explicitly that

2(Fy) { xlx('Fl)/2 if n is odd

6
3(X n/2+x1x(2n 2/2) if nis even. ©)

Now considefF (a) wherea € S has cycle type(‘j(. Denote the cycle-index & (a) by Z(F(x'j‘)) as it
depends only on the cycle type. Note thay & F(a) theng determines a permutatiofig) € S of thek
j-cycleswy, wo, ..., wi of a. If (W, W, ..., W, ) is in anr-cycle ofy(g) theng” determines a permutation
of the elements of eaal,. Thusg" determines an element Bf (r odd) orC; (r even) when we consider
its action on the elements @,. Eachl cycle of F; or C; determined byy" determines aml cycle of
g. Moreover there ar¢'~1 possible permutations of thg elements of the j-cyclesw,, W, ..., W,
determining the same-cycle (W, ,W,,...,W,) andf in Fj or C;. Therefore the contribution of each
X in the cycle-sunZS &) to the cycle sun“ZS(F(xﬂ()) is given by j""1ZS(Fj) = |"Z(Fj) (r odd) or

I"1ZS(Cj) = §'Z(Cy) (r even). ThusZSF(x)) = ZS(Sc iZ1(F)), i?Z2(C)), 3Z2(F)), *Za(Cy), - ),
and dividing both sides bj‘k! yields

Z(F(4)) = Z(Sc Za(F}), Z2(C; ), Za(Fy), Za(Cy), .- ()

Now if a has cycle typeﬂ’l1 , there is an isomorphism betwep}j PC(a;) and a subgroup &, map-
ping the produc]}F(aj) to F( ), Wherea; € S¢; has typeq’. This glvesZ( (NI =M1Z(F ),
so by[b and]7 we obtain the cycle index of the pseudo-centralizer:

=]
S
=]

Z(PC([ X)) =

2(%:21(G), 2(C),...) + 2(%;,21(F), 22(Gi), Z3(F), Z24(G),...).  (8)

NI
W

r\m—\
[
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If Gis any subgroup df, andbis a cycle type, we usé.b to denotes regarded as a permutation group
acting on the elements &, of cycle typeb by conjugation. We will identify a cycle typewith the set of
permutations ir§, having that cycle type. Recall from equatidn 1 thét) is the number of permutations
in S, with cycle typeb. We useo(p3) for the order of a permutatiof € S,, and as this depends only on
cycle type we use(b) for the order of any element of cycle typeWe uselt]|Q to denote the coefficient

of a monomiat in a polynomialQ. Also if a has cycle typa = |‘|2xiCi then the cycle type ai? is given
by 1 Ic} : 3 where(i,d) is the greatest common divisor ioindd. We may denote this cycle type a¥§
asit depends only cmandd. We denote the Kbius function by With these preliminaries, we are now

in a position to calculate the cycle index of the actior§pby conjugation ork.

1 c(m(g).k.b)
Z(G.hb) = = X
G| gé k\lo_<|g)

d‘ku (k/d)w ), andw(a,b) = % [a]Z(PC(b)).

Enumeration Theorem:

where
c(a,k,b) =

XII—\

Proof:
If a; € S, andb is a cycle-type, lef (ag,b) = |{B € b|B%* = B or B~1}|. Now f(a1,b) depends only
on the cycle typa of a1, thus for any; € b

h(@)f(az,b) =|{(a,B) €axb|p*=porp~t}
= [{(a,B) caxbla e PC(B)}| )
= h(b) |an PC(B4)|

= h(b) [a]ZSPC(P1))-

Now letw(a, b) denote the number of elementsXf of cycle typeb fixed under conjugation by. If
o(b) < 2 thenw(a,b) = f(a,b) and|PC(B1)| = |C(B1)| = n!/h(b) for any3; of typeb. If o(b) > 3 then
w(a,b) = (1/2) f(a,b) and|PC(B1)| = 2|C(B1)| = 2(n!)/h(b) for any 1 of cycle typeb. In either case
substitution into equatiof 9 yields

n!
h(a)
Note thatw(a, b) depends only on the cycle tyeof a, so we definev(a,b) by equatior{ 70 for cycle-

typesa andb. If c(a,k, b) is the number ok-cycles of the action of ang of cycle typea by conjugation
on the elements of, of cycle typeb, then

w(aK w(ak,b) = ;dc (a,d,b) and c(akb)= %;u(k/d)w(ad,b)) (11)
dlk

w(a,b) = [aZ(PC(b)). (20)

The terms on the right hand side of equatioh 11 can therefore be evaluated using eqfiation§ 8 and 10.
Thus we obtain the monomiah(a,b) for the action of anya of cycle typea by conjugation orb by

m(a,b) = Mkjo(a) akb) . Therefore giverz(G) = ﬁdeG m(g) we obtain

1 c(m(g) k,b)
Z(Gb) = = xCm@k (12)
Gl gé k\lo_<|g)
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as claimedl

In considering the cycle index of the action of subgroupS,ain X, by conjugation we use a different
set of variables for each transitivity detWe letx;) denote an-cycle of elements of typk, so that now

m(a, b) = Mkjo(a) x‘féal;')"b), andm(a, Xn) = [per, M(a, b) is the monomial of the action of a permutation of

cycle typea on X,. Now if G is any subgroup 08, we obtain the cycle-indeX(G.X,) for the action of

G on X, by conjugation by replacing each monomaaby m(a, X,). In particular forG = S, we obtain

Z(S %) = n—l| Y acr, h(@) m(a, Xn). LetFy(x,y) be the polynomial obtained fro@(S,.X) by substituting
(1+x), (1+Y') or 1 for eachxy,) according to wheneves(b) > 3, o(b) = 2 oro(b) = 1. By Folya’s
Theorem the coefficient ofy' in F(x,y) will give the number of inequivalerik, | ) subsets oK,. Thus

these polynomials are the generating functions for the numbge, bf subsets oK,. We give the terms

of Fa(x,y) in Table 1 below up t@(y’) for 3 < n < 10, considering asO(y?). We have investigated the
three-regular Cayley graphs on subgroup&pfWe see fronfy(x,y) that there are 2641 of these with
generating set of type (1,1) and 12022 of type (0,3) for a total of 14,663 Cayley sets. When generating
a complete list of 14,663 inequivalent Cayley sets it is desirable to know how many there are with each
possible set of cycle-types for the generators. This information is contained in the polyZg&yia{,).

For example the substitution ¢t +y') for Xodiy» (14 Z) for X(xdi) @nd 1 for every other variable in

Z(Sy.Xg) enables us to read the number of inequivalent Cayley sets with three generators@kgme
x1%3 in . Alternatively we could use the above techniques to compute the actid(ogfon the set of
permutations of types;x3 or x;x3 in Xg by conjugation, where has typecxs.

One further approach to enumeration of the Cayley sets with a specified set of cycle types for the
generators is worthy of note. Let us consider the case of counting the number of CayleySeitstin
three permutations of typex3. The typex;x3 may be identified with an unlabeled grapton 9 points
with 4 disjoint edges. Any permutatiam of type x;x3 may be identified with a labeling of the graph
with numbers{1,2,...,9}. Equivalence up to relabeling in the graph context corresponds to equivalence
up to conjugation with permutations. The number of unlabeled superpositiamsliierently colored
copies ofl” gives the number of inequivalent ordeneduples of permutations of typqx‘z‘. If we regard
the colors as interchangeable then the number of unlabeled superpositiodifefently colored copies
of I gives the number of inequivalentmultisets of permutations of typexs. We wish to count the
number of three-sets. The three-multisets which do not have three distinct elements are in one-to-one
correspondence with ordered pairs. Palmer and Roberisonl[PR73] show how to count superpositions
of colored graphs. Their techniques cover the cases of interchangeable and non-interchangeable colors.
There are 548 superpositions of three differently colored copiEsdfere the colors are interchangeable,
and 12 superpositions of two copieslofvhere the colors are not interchangeable. Therefore we obtain
548— 12 = 536 inequivalent Cayley sets with three permutations of tp@ in S. The graph analogy
needs some modification for permutations which are not involutions, however the same technique remains
applicable.
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Table 1: Generating Functions for Number of (k,|)-Subsets of X.

Fa(X,y) = 14+X+Y+Xy+y2+xy¥2+y34+xy°

Fa(Xy) = 1+42x43x2+5x3+2y+ 7xy+ 15x2y + 5y? + 20xy? 4 47x2y? + 10y° + 41xy°
+12y* +56xy* + 12y° + 10y° + O(y’)

Fs(X,y) = 1+4x+26x2+215x3 + 2y + 24xy+ 315x%y + 8y? 4 173xy? 4 3070x°y? + 37y*
+1077xy3 + 149y* + 5404xy* 4 535y° + 1658y° + O(y’)

Fo(X,y) = 147X+ 166x%+9090x3 4 3y+ 95xy+ 668232y + 20y? + 1781xy? + 2113592 y?
+197y3 + 339573 + 2245y* + 564974 y* + 26616y° + 290929/ + O(y”)

Fr(xy) = 1+ 11x+1011x% 4480924 + 3y + 267xy+ 143355y + 29y? 4 15316y
+154327732y? + 676y° + 1004405y + 25948/* + 5558202k y*

110714595 4 394949935 + O(y’)

Fe(X,y) = 1+ 17x+ 703224 32374554 + 4y + 909xy+ 3841393y + 60y? + 163651y
+14169133932y2 + 3094y® 4 36907736 Y3 + 380762/ + 689579451 y*
+53589180° + 668379644§° + O(y’)

Fo(X,y) = 1+ 25X+ 54952 +2692273145%° + 4y + 2641xy+ 11864092%%y + 83y? + 182570%y?
+15350222833%y? + 12022° + 1497261258 y* 4 5667310/
1+97215205848%y* + 284058852%° + 122969353715¢° + O(y’)

Fio(X,y) = 14 36x+505742¢ 4 272445118862 + 5y + 8969 y+ 43117300982y + 151y?
+23565356 Y + 20353301123668 y? 4 559122 + 71501074475 y° + 96948583/
+168911533776760y" + 17799226458¢° + 28025225621829% + O(y’)

3 Graphs of Small Diameter.

We refer to a Cayley graph with generator set of type3) or type (1,1) in Xg as aG(3,9) graph.
We examined every possible generating setG¢8,9) up to equivalence under conjugation, using the
enumeration results as a check on the correctness of the lists obtained. We performed an exhaustive
examination of these graphs and tabulated below examples of graphs of dinseteln that no larger
G(3,9) graph of diameteD exists. For most values d the largestG(3,9) graph of diameteD is
not unique, and for each suéhwe have selected one example rather that listing them all. While the
G(3,9) graphs do not yield any new lower bounds f¢8,D) with D < 10, it is natural to explore further
with the examples which have relatively low diameter. Given a generatdioget; } for a G(3,9) we
may consider generator s€fls102, 1112} whereo, andt, are permutations fixing1,2,...,9}, andt,
has order at most 2. The resulting graph will be a covering graph of the original graph. Taking
be ak-cycle andt, to be the identity yields a-fold cover of the initial graph for somd dividing k.
There are many examples where this leads to a larger graph with little or no corresponding increase in the
diameter. Taking; = 12 = (n+ 1 n+ 2) yields a bipartite double cover of the initial graph, assuming
it was not bipartite to begin with. The girth calculations were performed by comparing the sequence of
sphere sizes about the identity in the initial graph and comparing it to the corresponding sequence for
the bipartite double cover. We also pursued taking combinafions,, 1112} where both{o1,1:} and
{02,12} generated low diameter graphs.

Likewise we investigated covering graphs @f3,9) graphs with generating sefs1,12,13} where
eachrt; is an involution for 1< i < 3 by graphs with generating seffs; 14,1215, 1376}, Where each; is
an involution or the identity for & j < 6. The best examples obtained are in Table 3 below. We include
only examples which improve over the degree nine results.
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Delorme [Dei85] defineb(A,D) as the largest integer such that a bipartite grapb(@)D) vertices
with maximum vertex degreA and diameteD exists. The diameter 7 graph on 168 vertices and the
diameter 12 graph on 2160 vertices in Table 3 are bipartite. Other large bipartite graphs found include a
diameter 10 graph on 672 vertices of girth 8 and generatdi($&)(34)(56)(910), (13)(57)(68)(910),
(14)(25)(38)(67)(910)} and a diameter 9 graph on 360 vertices with girth 10 and generat(Isey,
(2678(345)}. The resulting bounds(3,9) > 360 andb(3,10) > 672 match those obtained in[BD88],
and the bount(3,7) > 168 improves the bound given there. However the cubic symmetric graphs F364E
and F720C of the Foster Censis [Ray01] improve these bouriif8,1®) > 364 andb(3,10) > 720. The
Foster Census includes a complete listing of the cubic symmetric graphs of up to 768 vertices, so all of
our smaller graphs have isomorphic copies on this list. None of the examples supersede the records for
the smallest cubic graphs of given girth. The most notable example for girth was the bipartite graph with
generator sef(12)(34)(56), (13254678(91011}, which has 1008 points, diameter 12 and girth 16.
The smallest known graph of girth 16 has 990 points. See [Big98] for a survey of girth results. In Tables
2 and 3 below diameter is denoted Dy the order of the graph by, and the girth byg. We indicate in
theb column whether or not each graph is bipartite.

The calculations pertaining to this paper were performed udiathematicgdWol99]. Searches of the
GAP [GroY9] small group and transitive permutation group libraries did not yield any larger cubic graphs
of given diameter. However we emphasize that these searches were not exhaustive.
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Table 2. Largest (3,9

~—

Graphs of Given Diameter.

D n g | b | Generators |
1 4 3 n {(12), (34),(12)(34)}

2 8 4 n {(13572468,(12)(34)(56)(78)}

3 14 6 | vy | {(12(34)(56),(13)(25(47), (14)(36)(57)}

4 24 | 6 |y | {(12,(13),(14)}

5 60 9 n {(12)(34),(2348(567)}

6 72 8 n {(12), (13)(45), (14)(25)(36)}

7 144 8 y {(12345678,(12)(36)(49)}

8 240 | 12 | n | {(12),(13)(45),(24)(67)}

9 504 12 n {(12)(34)(56)(7 8),(12)(35)(47)(69), (14)(38)(57)(69)}
10 720 8 n {(12)(3 13)(56), (14)(35)(78)}

11 1080 12 n {(12345(678)( 2)(39)}

12 1512 9 n {(123456789,(12)(36)(49)(58)}

13 2880 | 16 | n | {(12)(34)(56)(78),(13)(29)(57), (19)(58)}

14 5040 10 n {(12)(34), (13)(25), (14)(26)(37)}

15 10080 | 12 n {(12)(34)(56)(78), (12)(34)(59), (17)(29)(58)}

16 10080 | 10 | y | {(12)(34)(56)(78),(12)(34)(57)(69),(12)(36)(58)}
17 20160 14 n {(12)(34),(156)(23478}

18 40320 10 n {(12)(34), (35)(24678}

19 40320 8 y {(12345678,(12)(35)(46)}

20 181440 9 n {(123456789,(13)(26)(49)(58)}

21 362880 | 14 n {(12)(34)(56)(78), (12)(35)(47)(69), (13)(26)(57)}

Table 3. Large Covers of G3,9) Graphs with Given Diameter.

D n g b Generators |
7 168 | 12 | y | {(12)(34)(56)(89), (13)(25)(47)(810), (14)(36)(57)(811)}

10 864 | 12 | n | {(12)(34)(56)(78),(23)(468(57)(9101112131415161F

11 1344 | 12 | n | {(1234567%(89)(1011121314151617(12)(36)}

12 2160 | 14 | y | {(12345678(101112131% (12)(35)(89)}

13 4032 | 12 | n | {(12)(34)(56)(910), (13)(25)(47)(911),

(16)(27)(35)(48)(910)(1112)}
14 6048 | 15 | n | {(123456789(10111213, (12)(36)(49)(58)}

15 12096 | 18

>

{
{(12)(34)(56)(78)(1011(1213), (12)(35)(47)(69)(1012),
(13)(28)(49)(56)(1011}

16 | 20160 | 16 | n | {(1234(567)(89)(1011121314151617(12)(35)}
17 | 35280 | 16 | n | {(12345(67)(89)(10111213141516(12)(36)
18 | 60480 | 15 | n | {(12345(678)(91011, (16)(78)}

19 | 120960 | 15 | n | {(12345(678) (91011, (12)(36)(48)}
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