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In this paper we apply Ṕolya’s Theorem to the problem of enumerating Cayley graphs on permutation groups up to
isomorphisms induced by conjugacy in the symmetric group. We report the results of a search of all three-regular
Cayley graphs on permutation groups of degree at most nine for small diameter graphs. We explore several methods
of constructing covering graphs of these Cayley graphs. Examples of large graphs with small diameter are obtained.
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1 Introduction
The(∆,D) problem asks for the largest valuen such that a graph onn vertices exists with diameterD and
maximum vertex degree∆. The Moore bound for the diameterD of a graph withn vertices and maximum
vertex degree∆≥ 3 givesn≤ 1+∆+(∆−1)∆+(∆−1)2∆+ · · ·+(∆−1)D−1∆. Very few graphs satisfy
equality in the Moore bound. The evaluation ofn(∆,D), the largest integer such that a graph onn(∆,D)
vertices with maximum vertex degree∆ and diameterD exists, appears to be an intractable problem
in general. Even the more modest goal of proving the existence of a family of graphs satisfyingD ≤
log∆−1(n)+O(1) seems difficult in the case∆ = 3. For random regular graphsD = log∆−1(nlogn)+O(1),
and similar results have been obtained for constructions with random components. For details see [BC66]
and [BV82]. Jerrum and Skyum [JS84] have obtained the best non-random constructive results known
for an infinite family of cubic graphs. Their constructions yield graphs which satisfy approximately
D = 1.47 log2n. Kantor [Kan92] has shown the existence of cubic Cayley graphs with diameterO(logn),
however the constantc such thatD ≤ c log2n implicit in his estimate is very large. In addition to the
random graph results and the constructions of infinite families, there is much interest in the construction
of specific large graphs with small diameters. For a table of the largest known graphs for∆ ≤ 10 and
D≤ 10, see [Exc00]. These graphs establish lower bounds forn(∆,D).

We examine all three-regular Cayley graphs on permutation groups of degree at most nine. While the
graphs obtained withD≤ 10 are not as large as those in the table, these Cayley graphs form the building
block for constructing larger graphs which can easily be analyzed. By forming covering graphs of the
Cayley graphs in various ways we obtain graphs ofD≤ 21 which give good lower bounds forn(3,D) for
11≤ D≤ 21. Moreover several examples of bipartite graphs with low degree and diameter are obtained.

We consider only undirected graphs, so the generator setA of our Cayley graphs will have three ele-
ments, andA = A−1 whereA−1 = {α−1 |α ∈ A}. We refer to such sets as Cayley sets. For three-regular
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graphs the Cayley sets will have the formA = {σ,σ−1,τ} for someσ andτ whereτ has order two andσ
has order at least three, orA = {τ1,τ2,τ3} whereτi has order two for eachi. If α ∈ Sn let αβ = β−1αβ
be the conjugate ofα by β, and if A⊂ Sn let Aβ = {αβ |α ∈ A}. If A andB are Cayley sets inSn and
Aβ = B for someβ ∈ Sn, then the Cayley graphs generated byA andB are isomorphic. Isomorphism of
Cayley graphs from non-conjugate Cayley sets is difficult to determine from the Cayley sets alone. Thus
in searching three-regular Cayley graphs we first address the problem of enumerating the possible Cayley
sets up to conjugation. Although we are primarily interested in the sets generating cubic graphs, we tackle
this problem in the more general setting.

2 Enumeration of Cayley Sets up to Conjugacy
Any Cayley graph of vertex degreemhas a generator set of the form

S= {σ1, . . . ,σk,σ−1
1 , . . . ,σ−1

k ,τ1, . . . ,τl}

where eachσi has order at least three, eachτ j is an involution, and 2k+ l = m. We will call such a set a
Cayley set of type(k, l). LetXn be the set of equivalence classes inSn under the equivalence relationx∼= y
if and only if x= y or x= y−1. We will denote these equivalence classes by any appropriate representative.
There is a one-to-one correspondence between Cayley sets of type(k, l) and the subsets ofXn the form
{σ1, . . . ,σk,τ1, . . . ,τl}. We will call these subsets ofXn Cayley sets of type(k, l) also.

The action ofSn on Sn by conjugation induces an action ofSn on Xn. Enumerating the Cayley graphs
of vertex degreem on Sn up to isomorphisms induced by conjugation inSn is equivalent to enumerating
the sets of type(k, l) in Xn with 2k+ l = m up to the action ofSn by conjugation. To accomplish this we
compute the cycle index of the action ofSn by conjugation onXn. We first recall some notation and basic
facts. We refer to [PR73] for background on cycle indices and Pólya’s Theorem.

If G is a permutation group acting on a setX with n elements andg∈G then the we denote the cycle type
of g by the monomialm(g) = ∏n

1xci
i , whereg hasci cycles of lengthi in its disjoint cycle decomposition.

The cycle index ofG is defined asZ(G) = 1
|G| ∑g∈Gm(g) and the cycle sum byZS(G) = ∑g∈Gm(g). We

useZ(G;w1,w2 . . . ,wn) to denoteZ(G) with wi substituted forxi for eachi. We denoteZ(G;xr ,x2r . . . ,xnr)
by Zr(G).

Let Pn be the set of partitions ofn. We also denote the elements ofPn by monomials∏n
1xci

i where
∑n

1 ici = n. Let h(a) be the number of permutations onSn with cycle typea.

h(
n

∏
i=1

xci
i ) =

n!

∏n
i=1ci ! ici

and Z(Sn) =
1
n! ∑

a∈Pn

h(a)a. (1)

Let Cn andDn be the cyclic and dihedral groups of degreen. Then regardingCn andDn as permutation
groups on{1,2, . . . ,n} in the usual manner we have

Z(Cn) =
1
n ∑

d|n
φ(d)xn/d

d (2)

and

Z(Dn) =
1
2

Z(Cn)+

{
1
2x1x(n−1)/2

2 if n is odd
1
4(xn/2

2 +x2
1x(n−2)/2

2 ) if n is even
(3)
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whereφ denotes the Euler Phi function.
For each permutationα ∈ Sn we will need the cycle index of the centralizerC(α) = {β ∈ Sn |αβ = α}

and the cycle index of the pseudo-centralizerPC(α) = C(α)∪F(α), whereF(α) = {β ∈ Sn |αβ = α−1}.
Since these cycle indices will depend only on the cycle typem(α) we will sometimes use the notations
Z(C(m(α))) andZ(PC(m(α))). If α is a permutation of cycle typex j

k in Sk j thenC(α) ∼= Sk[Cj ], the
wreath product ofSk with Cj . Pólya [Pól37] showed that cycle index of the wreath productA[B] is given
by Z(A[B]) = Z(A;Z1(B),Z2(B), . . .) and thus

Z(C(α)) = Z(C(xk
j )) = Z(Sk;Z1(Cj),Z2(Cj), . . .). (4)

The centralizer of a permutationα of cycle type∏n
1xci

i is isomorphic to the product of the centralizers of
permutationsαi of typexci

i in Sici , hence

Z(C(
n

∏
i=1

xci
i )) =

n

∏
i=1

Z(Sci ;Z1(Ci),Z2(Ci), . . .). (5)

To obtain the cycle index of the pseudo-centralizerPC(α), we need to consider separately the setF(α).
Let Fn = Dn−Cn for n≥ 3 andFn = Cn for n≤ 2. We identifyFn with the set of permutations inSn

mapping ann-cycle to its inverse under conjugation. AlthoughFn is not a group forn≥ 3 we may consider
its cycle index, andZ(Fn) = Z(Cn) for n≤ 2 andZ(Fn) = 2Z(Dn)−Z(Cn) for n≥ 3. By equations 2 and 3
we obtain explicitly that

Z(Fn) =

{
x1x(n−1)/2

2 if n is odd
1
2(xn/2

2 +x2
1x(n−2)/2

2 ) if n is even.
(6)

Now considerF(α) whereα ∈ Sk j has cycle typexk
j . Denote the cycle-index ofF(α) by Z(F(xk

j )) as it
depends only on the cycle type. Note that ifg∈ F(α) theng determines a permutationγ(g) ∈ Sk of thek
j-cyclesw1,w2, . . . ,wk of α. If (wt1,wt2, . . . ,wtr ) is in anr-cycle ofγ(g) thengr determines a permutation
of the elements of eachwts. Thusgr determines an element ofFj (r odd) orCj (r even) when we consider
its action on the elements ofwt1. Eachl cycle of Fj or Cj determined bygr determines anrl cycle of
g. Moreover there arej r−1 possible permutations of ther j elements of ther j -cycleswt1,wt2, . . . ,wtr
determining the samer-cycle (wt1,wt2, . . . ,wtr ) and β in Fj or Cj . Therefore the contribution of each
xr in the cycle-sumZS(Sk) to the cycle sumZS(F(x j

k)) is given by j r−1ZSr(Fj) = j rZr(Fj) (r odd) or

j r−1ZSr(Cj) = j rZr(Cj) (r even). ThusZS(F(x j
k)) = ZS(Sk; jZ1(Fj), j2Z2(Cj), j3Z2(Fj), j4Z4(Cj), . . .),

and dividing both sides byjkk! yields

Z(F(x j
k)) = Z(Sk;Z1(Fj),Z2(Cj),Z3(Fj),Z4(Cj), . . .). (7)

Now if α has cycle type∏n
1xci

i , there is an isomorphism between∏n
1PC(αi) and a subgroup ofSn map-

ping the product∏n
1F(αi) to F(α), whereαi ∈ Sici has typexci

i . This givesZ(F(∏n
1xci

i )) = ∏n
1Z(F(xci

i )),
so by 5 and 7 we obtain the cycle index of the pseudo-centralizer:

Z(PC(
n

∏
i=1

xci
i )) =

1
2

n

∏
i=1

Z(Sci ;Z1(Ci),Z2(Ci), . . .)+
1
2

n

∏
i=1

Z(Sci ;Z1(Fi),Z2(Ci),Z3(Fi),Z4(Ci), . . .). (8)
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If G is any subgroup ofSn andb is a cycle type, we useG.b to denoteG regarded as a permutation group
acting on the elements ofXn of cycle typeb by conjugation. We will identify a cycle typeb with the set of
permutations inSn having that cycle type. Recall from equation 1 thath(b) is the number of permutations
in Sn with cycle typeb. We useo(β) for the order of a permutationβ ∈ Sn, and as this depends only on
cycle type we useo(b) for the order of any element of cycle typeb. We use[t]Q to denote the coefficient
of a monomialt in a polynomialQ. Also if α has cycle typea = ∏n

1xci
i then the cycle type ofαd is given

by ∏n
1xci(i,d)

i/(i,d), where(i,d) is the greatest common divisor ofi andd. We may denote this cycle type asad,
as it depends only ona andd. We denote the M̈obius function byµ. With these preliminaries, we are now
in a position to calculate the cycle index of the action ofSn by conjugation onXn.

Enumeration Theorem:

Z(G.b) =
1
|G| ∑

g∈G
∏

k|o(g)
xc(m(g),k,b)

k

where

c(a,k,b) =
1
k ∑

d|k
µ(k/d)w(ad,b), andw(a,b) =

n!
h(a)

[a]Z(PC(b)).

Proof:
If α1 ∈ Sn andb is a cycle-type, letf (α1,b) = |{β ∈ b|βα1 = β or β−1}|. Now f (α1,b) depends only

on the cycle typea of α1, thus for anyβ1 ∈ b

h(a) f (α1,b) = |{(α,β) ∈ a×b|βα = β or β−1}|
= |{(α,β) ∈ a×b|α ∈ PC(β)}|
= h(b) |a∩PC(β1)|
= h(b) [a]ZS(PC(β1)).

(9)

Now let w(α,b) denote the number of elements ofXn of cycle typeb fixed under conjugation byα. If
o(b)≤ 2 thenw(α,b) = f (α,b) and|PC(β1)|= |C(β1)|= n!/h(b) for anyβ1 of typeb. If o(b)≥ 3 then
w(α,b) = (1/2) f (α,b) and|PC(β1)| = 2|C(β1)| = 2(n!)/h(b) for anyβ1 of cycle typeb. In either case
substitution into equation 9 yields

w(α,b) =
n!

h(a)
[a]Z(PC(b)). (10)

Note thatw(α,b) depends only on the cycle typea of α, so we definew(a,b) by equation 10 for cycle-
typesa andb. If c(a,k,b) is the number ofk-cycles of the action of anyα of cycle typea by conjugation
on the elements ofXn of cycle typeb, then

w(αk,b) = w(ak,b) = ∑
d|k

d c(a,d,b) and c(a,k,b) =
1
k ∑

d|k
µ(k/d)w(ad,b)) (11)

The terms on the right hand side of equation 11 can therefore be evaluated using equations 8 and 10.
Thus we obtain the monomialm(a,b) for the action of anyα of cycle typea by conjugation onb by

m(a,b) = ∏k|o(a) xc(a,k,b)
k . Therefore givenZ(G) = 1

|G| ∑g∈Gm(g) we obtain

Z(G.b) =
1
|G| ∑

g∈G
∏

k|o(g)
xc(m(g),k,b)

k (12)



Cubic Cayley graphs with small diameter 127

as claimed.2

In considering the cycle index of the action of subgroups ofSn onXn by conjugation we use a different
set of variables for each transitivity setb. We letx(b,i) denote ani-cycle of elements of typeb, so that now

m(a,b) = ∏k|o(a) xc(a,k,b)
(b,k) , andm(a,Xn) = ∏b∈Pn m(a,b) is the monomial of the action of a permutation of

cycle typea on Xn. Now if G is any subgroup ofSn we obtain the cycle-indexZ(G.Xn) for the action of
G on Xn by conjugation by replacing each monomiala by m(a,Xn). In particular forG = Sn we obtain
Z(Sn.Xn) = 1

n! ∑a∈Pn h(a)m(a,Xn). Let Fn(x,y) be the polynomial obtained fromZ(Sn.Xn) by substituting
(1+ xi), (1+ yi) or 1 for eachx(b,i) according to whenevero(b) ≥ 3, o(b) = 2 or o(b) = 1. By Ṕolya’s
Theorem the coefficient ofxkyl in Fn(x,y) will give the number of inequivalent(k, l) subsets ofXn. Thus
these polynomials are the generating functions for the number of(k, l) subsets ofXn. We give the terms
of Fn(x,y) in Table 1 below up toO(y7) for 3≤ n≤ 10, consideringx asO(y2). We have investigated the
three-regular Cayley graphs on subgroups ofS9. We see fromF9(x,y) that there are 2641 of these with
generating set of type (1,1) and 12022 of type (0,3) for a total of 14,663 Cayley sets. When generating
a complete list of 14,663 inequivalent Cayley sets it is desirable to know how many there are with each
possible set of cycle-types for the generators. This information is contained in the polynomialZ(Sn.Xn).
For example the substitution of(1+ yi) for x(x3

1x3
2,i)

, (1+ zi) for x(x1x4
2,i)

and 1 for every other variable in

Z(S9.X9) enables us to read the number of inequivalent Cayley sets with three generators of typex3
1x3

2 or
x1x4

2 in S9. Alternatively we could use the above techniques to compute the action ofC(α) on the set of
permutations of typesx3

1x3
2 or x1x4

2 in X9 by conjugation, whereα has typex3
1x3

2.

One further approach to enumeration of the Cayley sets with a specified set of cycle types for the
generators is worthy of note. Let us consider the case of counting the number of Cayley sets inS9 with
three permutations of typex1x4

2. The typex1x4
2 may be identified with an unlabeled graphΓ on 9 points

with 4 disjoint edges. Any permutationα of typex1x4
2 may be identified with a labeling of the graphΓ

with numbers{1,2, . . . ,9}. Equivalence up to relabeling in the graph context corresponds to equivalence
up to conjugation with permutations. The number of unlabeled superpositions ofn differently colored
copies ofΓ gives the number of inequivalent orderedn-tuples of permutations of typex1x4

2. If we regard
the colors as interchangeable then the number of unlabeled superpositions ofn differently colored copies
of Γ gives the number of inequivalentn-multisets of permutations of typex1x4

2. We wish to count the
number of three-sets. The three-multisets which do not have three distinct elements are in one-to-one
correspondence with ordered pairs. Palmer and Robertson [PR73] show how to count superpositions
of colored graphs. Their techniques cover the cases of interchangeable and non-interchangeable colors.
There are 548 superpositions of three differently colored copies ofΓ where the colors are interchangeable,
and 12 superpositions of two copies ofΓ where the colors are not interchangeable. Therefore we obtain
548−12= 536 inequivalent Cayley sets with three permutations of typex1x4

2 in S9. The graph analogy
needs some modification for permutations which are not involutions, however the same technique remains
applicable.
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Table 1: Generating Functions for Number of (k,l)-Subsets of Xn.

F3(x,y) = 1+x+y+xy+y2 +xy2 +y3 +xy3

F4(x,y) = 1+2x+3x2 +5x3 +2y+7xy+15x2y+5y2 +20xy2 +47x2y2 +10y3 +41xy3

+12y4 +56xy4 +12y5 +10y6 +O(y7)
F5(x,y) = 1+4x+26x2 +215x3 +2y+24xy+315x2y+8y2 +173xy2 +3070x2y2 +37y3

+1077xy3 +149y4 +5404xy4 +535y5 +1658y6 +O(y7)
F6(x,y) = 1+7x+166x2 +9090x3 +3y+95xy+6682x2y+20y2 +1781xy2 +211359x2y2

+197y3 +33957xy3 +2245y4 +564974xy4 +26616y5 +290929y6 +O(y7)
F7(x,y) = 1+11x+1011x2 +480924x3 +3y+267xy+143355x2y+29y2 +15316xy2

+15432773x2y2 +676y3 +1004405xy3 +25948y4 +55582020xy4

+1071459y5 +39494992y6 +O(y7)
F8(x,y) = 1+17x+7032x2 +32374554x3 +4y+909xy+3841393x2y+60y2 +163651xy2

+1416913393x2y2 +3094y3 +36907736xy3 +380762y4 +6895794512xy4

+53589180y5 +6683796440y6 +O(y7)
F9(x,y) = 1+25x+54952x2 +2692273145x3 +4y+2641xy+118640929x2y+83y2 +1825707xy2

+153502228335x2y2 +12022y3 +1497261258xy3 +5667310y4

+972152058485xy4 +2840588522y5 +1229693537151y6 +O(y7)
F10(x,y) = 1+36x+505742x2 +272445118869x3 +5y+8969xy+4311730098x2y+151y2

+23565356xy2 +20353301123666x2y2 +55912y3 +71501074475xy3 +96948583y4

+168911533776760xy4 +177992264581y5 +280252256218298y6 +O(y7)

3 Graphs of Small Diameter.
We refer to a Cayley graph with generator set of type(0,3) or type (1,1) in X9 as aG(3,9) graph.
We examined every possible generating set forG(3,9) up to equivalence under conjugation, using the
enumeration results as a check on the correctness of the lists obtained. We performed an exhaustive
examination of these graphs and tabulated below examples of graphs of diameterD such that no larger
G(3,9) graph of diameterD exists. For most values ofD the largestG(3,9) graph of diameterD is
not unique, and for each suchD we have selected one example rather that listing them all. While the
G(3,9) graphs do not yield any new lower bounds forn(3,D) with D≤ 10, it is natural to explore further
with the examples which have relatively low diameter. Given a generator set{σ1,τ1} for a G(3,9) we
may consider generator sets{σ1σ2,τ1τ2} whereσ2 andτ2 are permutations fixing{1,2, . . . ,9}, andτ2

has order at most 2. The resulting graph will be a covering graph of the original graph. Takingσ2 to
be ak-cycle andτ2 to be the identity yields ad-fold cover of the initial graph for somed dividing k.
There are many examples where this leads to a larger graph with little or no corresponding increase in the
diameter. Takingσ2 = τ2 = (n+ 1 n+ 2) yields a bipartite double cover of the initial graph, assuming
it was not bipartite to begin with. The girth calculations were performed by comparing the sequence of
sphere sizes about the identity in the initial graph and comparing it to the corresponding sequence for
the bipartite double cover. We also pursued taking combinations{σ1σ2,τ1τ2} where both{σ1,τ1} and
{σ2,τ2} generated low diameter graphs.

Likewise we investigated covering graphs ofG(3,9) graphs with generating sets{τ1,τ2,τ3} where
eachτi is an involution for 1≤ i ≤ 3 by graphs with generating sets{τ1τ4,τ2τ5,τ3τ6}, where eachτ j is
an involution or the identity for 4≤ j ≤ 6. The best examples obtained are in Table 3 below. We include
only examples which improve over the degree nine results.
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Delorme [Del85] definesb(∆,D) as the largest integer such that a bipartite graph onb(∆,D) vertices
with maximum vertex degree∆ and diameterD exists. The diameter 7 graph on 168 vertices and the
diameter 12 graph on 2160 vertices in Table 3 are bipartite. Other large bipartite graphs found include a
diameter 10 graph on 672 vertices of girth 8 and generator set{(12)(34)(56)(910), (13)(57)(68)(910),
(14)(25)(38)(67)(910)} and a diameter 9 graph on 360 vertices with girth 10 and generator set{(12),
(2678)(345)}. The resulting boundsb(3,9)≥ 360 andb(3,10)≥ 672 match those obtained in [BD88],
and the boundb(3,7)≥ 168 improves the bound given there. However the cubic symmetric graphs F364E
and F720C of the Foster Census [Roy01] improve these bounds tob(3,9)≥ 364 andb(3,10)≥ 720. The
Foster Census includes a complete listing of the cubic symmetric graphs of up to 768 vertices, so all of
our smaller graphs have isomorphic copies on this list. None of the examples supersede the records for
the smallest cubic graphs of given girth. The most notable example for girth was the bipartite graph with
generator set{(12)(34)(56), (13254678)(91011)}, which has 1008 points, diameter 12 and girth 16.
The smallest known graph of girth 16 has 990 points. See [Big98] for a survey of girth results. In Tables
2 and 3 below diameter is denoted byD, the order of the graph byn, and the girth byg. We indicate in
theb column whether or not each graph is bipartite.

The calculations pertaining to this paper were performed usingMathematica[Wol99]. Searches of the
GAP [Gro99] small group and transitive permutation group libraries did not yield any larger cubic graphs
of given diameter. However we emphasize that these searches were not exhaustive.
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Table 2. Largest G(3,9) Graphs of Given Diameter.
D n g b Generators

1 4 3 n {(12), (34), (12)(34)}
2 8 4 n {(13572468), (12)(34)(56)(78)}
3 14 6 y {(12)(34)(56), (13)(25)(47), (14)(36)(57)}
4 24 6 y {(12), (13), (14)}
5 60 9 n {(12)(34), (2348)(567)}
6 72 8 n {(12), (13)(45), (14)(25)(36)}
7 144 8 y {(12345678), (12)(36)(49)}
8 240 12 n {(12), (13)(45), (24)(67)}
9 504 12 n {(12)(34)(56)(78), (12)(35)(47)(69), (14)(38)(57)(69)}

10 720 8 n {(12)(34), (13)(56), (14)(35)(78)}
11 1080 12 n {(12345)(678), (12)(39)}
12 1512 9 n {(123456789), (12)(36)(49)(58)}
13 2880 16 n {(12)(34)(56)(78), (13)(29)(57), (19)(58)}
14 5040 10 n {(12)(34), (13)(25), (14)(26)(37)}
15 10080 12 n {(12)(34)(56)(78), (12)(34)(59), (17)(29)(58)}
16 10080 10 y {(12)(34)(56)(78), (12)(34)(57)(69), (12)(36)(58)}
17 20160 14 n {(12)(34), (156)(23478)}
18 40320 10 n {(12)(34), (35)(24678)}
19 40320 8 y {(12345678), (12)(35)(46)}
20 181440 9 n {(123456789), (13)(26)(49)(58)}
21 362880 14 n {(12)(34)(56)(78), (12)(35)(47)(69), (13)(26)(57)}

Table 3. Large Covers of G(3,9) Graphs with Given Diameter.
D n g b Generators

7 168 12 y {(12)(34)(56)(89), (13)(25)(47)(810), (14)(36)(57)(811)}
10 864 12 n {(12)(34)(56)(78), (23)(468)(57)(91011121314151617)}
11 1344 12 n {(1234567)(89)(1011121314151617), (12)(36)}
12 2160 14 y {(12345678)(1011121314), (12)(35)(89)}
13 4032 12 n {(12)(34)(56)(910), (13)(25)(47)(911),

(16)(27)(35)(48)(910)(1112)}
14 6048 15 n {(123456789)(10111213), (12)(36)(49)(58)}
15 12096 18 n {(12)(34)(56)(78)(1011)(1213), (12)(35)(47)(69)(1012),

(13)(28)(49)(56)(1011)}
16 20160 16 n {(1234)(567)(89)(1011121314151617), (12)(35)}
17 35280 16 n {(12345)(67)(89)(10111213141516), (12)(36)
18 60480 15 n {(12345)(678)(91011), (16)(78)}
19 120960 15 n {(12345)(678)(91011), (12)(36)(48)}
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