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We review an elementary approach to the construction of all irreducible representations of the finite Heisenberg
group. Determining the number of inequivalent classes of irreducible representations by different methods leads to
an identity of sums involving greatest common divisors. We show how this identity can be generalized and derive an
explicit formula for the sums.
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1 Introduction
In the framework of algebraic quantum mechanics Heisenberg’s uncertainty relation is usually stated in
the form of a commutation relation for self-adjoint unbounded operators which represent the observables
positionQ and momentumP (I denoting the identity element):

[Q,P] := QP−PQ= iI . (1)

Equation (1) can be obtained formally by application ofd2

dtds|(s,t)=(0,0) to the following equation involv-
ing unitary one-parameter groups

exp(itP)exp(isQ) = exp(ist)exp(isQ)exp(itP) . (2)

Introducing the notationXt := exp(itP),Ys := exp(isQ),Zr := exp(ir )I we can bring this into the form

XtYs = ZstYsXt .

Furthermore, we have the one-parameter group propertyXt1+t2 = Xt1Xt2 (and similarly forY andZ) and
thatZ commutes withX andY. We observe that these relations still make sense when the parameters are
elements of an arbitrary commutative ring.
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Definition 1 LetR be a commutative ring. TheHeisenberg groupH(R ) is generated by objects Xr ,Ys,Zt

with parameters r,s, t ∈ R subject to the relations

Tt1Tt2 = Tt1+t2 , ZtTs = TsZt for T = X,Y,Z

XtYs = YsXtZst ∀ parameters inR .

It is convenient to use an isomorphic realization viaXrYsZt 7→ (r,s, t) and the following basic conse-
quences of the defining relations (the identity element is(0,0,0))

(r,s, t)−1 = (−r,−s,−t− rs)
(r,s, t) · (r ′,s′, t ′) = (r + r ′,s+s′, t + t ′−sr′) . (3)

In this paper we study the case whereR = Zn the finite ring of remainder classes modulon. SoH(Zn)
is a finite group of ordern3 which is generated by the two elementsX := X1 andY := Y1:

Xk = Xk,Zk = XkYX−kY−1 and so on. . .

Simple computations show that the centerZ(H(Zn)) is the cyclic subgroup of ordern generated by
Z := Z1 and that the subgroupN generated byX andZ is a commutative normal divisor inH(Zn).

In section 2 we studylinear representationsof H(Zn), i.e., the ways its elements can act as (invertible)
operators on complex vector spaces. We determine the classes ofirreducible representations(i.e., those
having no non-trivial invariant subspace) by elementary methods. In particular, the number of equivalence
classes of irregular representations is derived in two independent ways thereby deriving an identity for
sums of multiple common divisors. In section 3 we give simple and direct proofs of the general identity
and derive an explicit formula. Finally, we show how an application of a classical result by Cesaro on
summatory functions (cf. [Ces]) provides us with still a different interpretation for certain special cases of
the identity.

It is understood that in itself the derivation of the irreducible representations of the Heisenberg group
is of course not a new result. For example, good sources for this in the context of harmonic analysis are
[Sche, Ter, Schu]. In fact, for this part we merely give an explicit solution to the exercise stated in [Ter],
p. 297. However we considered it worth while to expose here an elementary derivation in comparing it
with a discrete version of Kirillov’s orbit theory — originally developed for nilpotent Lie Groups — and,
in particular, to explore its link with Cesaro sums.

2 Representations of H(Zn)
Let ρ : H(Zn)→GL(V) be a group homomorphism, i.e. a representation ofH(Zn) over the complex vector
spaceV. SinceH(Zn) is finite we may assume thatV is finite dimensional. Thenρ|N: N→GL(V) defines
a representation of the commutative groupN. Thereforeρ(N) ⊆ GL(V) is a set of pairwise commuting
operators. Therefore we can find a basisE = {v1, . . . ,vdimV} of V consisting of joint eigenvectors.

The complete information aboutρ|N is given by the actions ofX andZ:

X ·v j = λ jv j Z ·v j = µjv j j = 1, . . . ,dim V .

We can always assume the group elements to act as unitary operators (take the invariant mean of an arbi-
trary Hermitian form; see [Ser], remark in 1.3). Therefore we may assume|λ j |= |µj |= 1. Furthermore,
since bothXn andZn are equal to the neutral element inH(Zn) we haveλn

j = µn
j = 1.
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We pick an arbitrary vectorv in E — we drop the eigenvector indexj for the moment since it will be
fixed during the following construction. Then withω = e2πi/n ∈ C we have

Xv= ωxv and Zv= ωzv for somex,z∈ {0, . . . ,n−1}. (4)

The subspaceW ⊆V defined as the linear hull of{v,Yv, . . . ,Yn−1v} is H(Zn)–invariant and therefore
defines a subrepresentationρW of ρ.

The vectorsYkv are eigenvectors forX with eigenvaluesωx+kz:

X(Ykv) = (XYk)v = (YkXZk)v = Yk(ωx+kzv) = ωx+kzYkv. (5)

Theorem 2 ρW defines an irreducible representation of dimension n/gcd(z,n).

Proof: letd = gcd(z,n); we observe thatX andYn/d commute as operators onW since

XY
n
d (Ykv) = Y

n
d XZ

n
d Ykv = ω

zn
d︸︷︷︸

=1

Y
n
d X(Ykv) = Y

n
d X(Ykv)

for arbitraryk. Therefore eigenvectors inW are joint eigenvectors ofX andYn/d and in particular

Y
n
d v = ωyv with ωyd = ωny = 1 .

Hencen
d | y and among{v,Yv, . . . ,Yn−1v} there are at mostn/d linearly independent eigenvectors. Since

the vectorsv,Yv, . . . ,Y
n
d−1v are eigenvectors ofX corresponding to distinct eigenvalues they are linearly

independent and hence dimW = n/d.
We can describe an explicit matrix representation with respect to the basisB = {v,Yv, . . . ,Y

n
d−1v}: the

matrix [Z]B corresponding to the operatorZ is simplyωzIdW; the matrices corresponding toX andY are
immediately seen to be given by

[X]B = ωx


1 0 . . . 0
0 ωz . . . 0
...

...
...

...
0 0 . . . ω( n

d−1)z

 [Y]B =


0 0 . . . 0 ωy

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

 (6)

With this explicit form of the representation at hand we can easily determine the correspondingcharacter
χ : H(Zn) 7→ C of the representation. By definition (cf. [Ser],2.1)χ is given by

χ(r,s, t) = Tr(XrYsZt) .

To calculate the value of the trace we only have to consider the diagonal of the matrix productXrYsZt .
SinceX andZ are diagonal we mainly have to focus onYs: apart from the factorωy in the last columnY
is a cyclic right shift of the base vectors; successive products of this matrix produce a downward cyclic
shift of the rows where each row reentering from the top introduces an additional factorωy; in particular,
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aftern/d steps we obtainωy IdW; for s> 0 arbitrary the nonzero entries of the matrix[Ys]B are organized
as follows

ωŝy


s̄ rows


ωy

...
ωy

1
...

1

 n
d − s̄ rows


where s= ŝ

n
d

+ s̄ with 0< s̄<
n
d
.

For the determination ofXrYs we only have to use the simple fact that multiplication with a diagonal
matrix from the left scales the columns by the corresponding diagonal entries. Hence we have

ωrxωŝy


s̄ rows


ω( n

d−s̄)rz+y

...

ω( n
d−1)rz+y

1
...

ω( n
d−s̄−1)rz

 n
d − s̄ rows


Therefore we see that the trace can be nonzero only if ¯s= 0, i.e., n

d | s. In this case we setωŝy = ωsŷ where
ŷ = y/(n/d) and simply have to evaluate the following geometric progression:

χ(r,s, t) = ωtz+rx+sŷ
n/d−1

∑
l=0

ωlrz .

If we observe thatn | rz is equivalent ton
d | r or z = 0 and that the factorωrx depends only on ¯x = x

(mod p) when n
d | r the trace is found to be

χ(r,s, t) =

{
0 n

d |6 s∨ ( n
d |6 r ∧z 6= 0)

n
d ωtz+rx̄+sŷ otherwise

.

Using the Iverson symbol (cf. [GKP], 2.1) as a “generalized Kronecker delta” ([P] = 1 if propertyP holds
and 0 otherwise) and noting thatz= 0 impliesd = n we may rewrite this in the more compact form

χ(r,s, t) =

{
ωrx+sy if z= 0[

n
d | r

][
n
d | s

]
n
d ωrx̄+sŷ+tz if z 6= 0

. (7)

Now we are in a position to apply the standard criterion for irreducibility in terms of the character ([Ser],
2.3). The (weighted)l2–norm ofχ is

||χ||2 =
1
n3


∑

r,s,t
1 if z= 0

∑
t, n

d |s,
n
d |r

n2

d2 if z 6= 0

= 1 .
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This implies that the corresponding representation is indeed irreducible. �
Equation (7) shows that the irreducible representations are completely described by the choices of

z∈ Zn, x̄∈ Zd, andŷ∈ Zn/
n
dZ
∼= Zd. Hence after changing notation we may denote the corresponding

characters byχx,y,z with parameters(x,y,z) ∈ Zd×Zd×Zn. The orthogonality relations for irreducible
characters enable us to determine the number of inequivalent irreducible representations.

Corollary 3 The characters satisfy the orthogonality relations

〈χx,y,z|χx′,y′,z′〉 =
[
x = x′

][
y = y′

][
z= z′

]
(8)

where d= gcd(z,n) (= gcd(z′,n) in the nonzero cases) Consequently, the numberν(n) of distinct (classes
of) irreducible (unitary) representations of H(Zn) is given by

ν(n) = ∑
z∈Zn

gcd(z,n)2 . (9)

Proof: A straightforward insertion of the character formula shows that the corresponding sum over
three indices splits into three factors of sums over one index only; each such sum vanishes unless each
summand in it equals 1 (which produces also the correct factors to cancel the weight factor given by the
group order). �

2.1 Alternative methods from representation theory
Counting conjugacy classes: One of the main theorems in representation theory of finite groups states
that the number of (equivalence classes of) irreducible representations of a groupG is equal to the number
of disjointconjugacy classes

Cg := {hgh−1 | h∈G} .

Denote bycg the cardinality of the classCg.
A short calculation using the basic relations 3 for the “triple realization” ofH(Zn) yields the formula

C(a,b,c) = {(a,b,c+bx−ay) | x,y∈ Zn} .

Thus, two elements(a,b,c) and(a′,b′,c′) belong to the same conjugacy class iffa = a′, b = b′ and
there exist whole numbersx, y andz such thatc = c′− ay+ bx+ nz. This equation is solvable iffc≡
c′ (mod gcd(a,b,n)). Therefore every conjugacy class contains exactly one element of the set

L := {(a,b,c) ∈ {0, . . . ,n−1}3 | c< gcd(a,b,n)} (10)

and we obtain for the number of irreducible representations

n−1

∑
a=0

n−1

∑
b=0

gcd(a,b,n) . (11)

Corollary 4 For any natural number n

ν(n) = ∑
z∈Zn

gcd(z,n)2 =
n−1

∑
a=0

n−1

∑
b=0

gcd(a,b,n) . (12)
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A miniature of Kirillov’s orbit theory: The Heisenberg group is one of the first main examples to
which Kirillov applied his method of orbitsin representation theory of Lie groups (cf. [Kir62]). In this
subsection we apply the algebraic machinery of the geometric theory to the finite case.

We give a short sketch of the constructions from differential geometry. IfG is a Lie group it acts
(differentiable) on itself by conjugation, i.e. we have a mapφ : G→ Aut(G), φ(g)(h) = ghg−1. So the
derivative ofφ(g) at the identity elemente is an invertible linear operator on the Lie algebrag. Moreover,
by the chain rule the mapρ : G→GL(g), g 7→ dφ(g)|e is shown to be a (linear) representation, the so-called
adjoint representation. The corresponding dual representationρ : G→ GL(g∗), defined by〈ρ(g) f ,x〉 :=
〈 f ,ρ−1

(g)x〉 for x∈ g and f ∈ g∗, is rich of geometric structure. It is called theco-adjoint representationof
G.

Kirillov proved in 1962 that for large classes of Lie groups one can obtain all (equivalence classes of)
irreducible representations by further constructions on the orbits of the co-adjoint representation ing∗. In
particular, the equivalence classes are in one-to-one correspondence with the disjoint orbits. For details
and further references see [Kir62], [Kir76].

We now mimic Kirillov’s constructions for our exampleH(Zn). In analogy to the continuous case we
model the “Lie algebra”h asZ3

n with component-wise addition and “scalar multiplication” with elements
of Zn, i.e. asZn-module. The duality(h,h∗)∼= (Z3

n,Z
3
n) is defined by〈(α,β,γ),(a,b,c)〉 := αa+ βb+ γc.

In this setting a short computation leads to the following formula for the “co-adjoint representation”:

ρ∗(a,b,c)(α,β,γ) = (α +bγ,β−aγ,γ) . (13)

How many disjoint orbits does this action produce inZ3
n? Two points(α,β,γ) and(α′,β′,γ′) belong to

the same orbit iff

γ = γ′

α ≡ α′ (mod gcd(γ,n))
β ≡ β′ (mod gcd(γ,n))

Thus, to every orbit belongs exactly one point of the set

R := {(α,β,γ) ∈ {0, . . . ,n−1}3 | α,β< gcd(γ,n)}. (14)

Hence the number of disjoint orbits is

n−1

∑
γ=0

gcd(γ,n)2 (15)

in accordance with the expression in (9).

3 Sums of powers of greatest common divisors
We turn our attention to more general sums of powers of greatest common divisors as they appeared
above. For the sake of conciseness we introduce the following notation: gcd(v,n) := gcd(v1, . . . ,vq,n)
wherev = (v1, . . . ,vq).
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We then define

νq,r(n) := ∑
v∈Zq

n

gcd(v,n)r (16)

The sumsν(n) examined in the previous section are obviously represented byν1,2(n) and ν2,1(n).
Hence the results there implyν1,2(n) = ν2,1(n).

3.1 A generalized equation

Before establishing an explicit formula forνq,r(n), we prove a generalized symmetry property.

Proposition 5 For all q, r, n inN

νq,r(n) = νr,q(n). (17)

Remark 6 This will also follow independently from the explicit formula given in the next subsection, but
we don’t want to omit the following nice proof which also gives a meaning to the value of the function for
general q and r.

Proof: We count the elements of the set

S:=
{

(v,w) ∈ Zq
n×Zr

n

∣∣n|gcd(v,n)gcd(w,n)
}

For a givenv, how manyw can we find with(v,w) ∈ S? Forw we have the condition

n
gcd(v,n)

∣∣∣∣gcd(w,n)

Therefore it is necessary and sufficient that allwi are multiples of the fraction on the left. InZn there
are gcd(v,n) such numbers, so we get gcd(v,n)r combinations forw. Hence

|S|= ∑
v∈Zq

n

gcd(v,n)r = νq,r(n)

Repeating the same deduction with the roles ofv andw interchanged we arrive at

|S|= νr,q(n)

which completes the proof. �
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3.2 An explicit formula
Fortunately our function is multiplicative, that is:

Proposition 7

νq,r(mn) = νq,r(m)νq,r(n) whengcd(m,n) = 1. (18)

Proof: This follows from the Chinese Remainder Theorem and basic properties of the gcd function:
Every vectorv∈ Zq

mn can be written in a unique way asv′n+v′′mwith v′ ∈ Zq
m andv′′ ∈ Zq

n. Sincemand
n have no divisors in common,

gcd(v′n+v′′m,mn) = gcd(v′n+v′′m,m)gcd(v′n+v′′m,n)
= gcd(v′n,m)gcd(v′′m,n)
= gcd(v′,m)gcd(v′′,n)

Thus

νq,r(mn) = ∑
v′∈Zq

m

∑
v′′∈Zq

n

gcd(v′,m)r gcd(v′′,n)r = νq,r(m)νq,r(n)

�
By the multiplicativity of νq,r it is sufficient to find an explicit formula forνq,r(n) whenn is a prime

powerpk.
We observe that all gcds in the sum are divisors ofpk. Hence they are of the formpi for somei with

0≤ i ≤ k. If we defineη(i) as the number of times gcd(v, pk) assumes the valuepi then obviously

νq,r(pk) =
k

∑
i=0

η(i)pir . (19)

We have gcd(v, pk) = pk only with v as null vector, soη(k) = 1. Now let’s assume thati < k. There
are pk−i multiples of pi and thereforep(k−i)q vectorsv with gcd(v, pk) at least pi . From this we have to
subtract the number of vectors where the gcd isat least pi+1:

η(i) = p(k−i)q− p(k−i−1)q wherei < k

Inserting this into (19) yields a sum over a geometric progression (with factor 1 whenq = r) which can
be evaluated easily. Hence we arrive at the following

Theorem 8

νq,r(pk) =

{
(k+1)pkq−kp(k−1)q for q = r
pkr(pr−1)−pkq(pq−1)

pr−pq for q 6= r
. (20)
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3.3 Applying a result of Cesaro
Cesaro (cf. [Ces]) found the following

Theorem 9

n

∑
v1=1

n

∑
v2=1
· · ·

n

∑
vq=1

F(gcd(v1, . . . ,vq)) =
n

∑
d=1

f (d)
⌊n

d

⌋r
(21)

where F is the summatory function of f .

The summatory function—a kind of number theoretic integral—is defined as sum over all divisors:

F(n) := ∑
d|n

f (d)

Considering that gcd(v1, . . . ,vq,n) = gcd(gcd(v1, . . . ,vq),n) we can apply this result to the function
νq,1 by defining

Fn(m) := gcd(m,n) (22)

Then the left-hand side in (21) is identical toνq,1(n).
Now we only have to identify the corresponding functionfn. It is known that in generalf (pk) =

F(pk)−F(pk−1). If pk dividesn thenFn(pk) = pk andFn(pk−1) = pk−1, hencefn(pk) = pk−1(p−1) =
ϕ(pk). On the other hand, ifpk does not dividen thenFn(pk) = Fn(pk−1) and thereforefn(pk) = 0. Since
bothFn andϕ are multiplicative, so isfn and we have

fn(m) =

{
ϕ(m) if m|n
0 otherwise

(23)

This means that the summation on the right-hand side in (21) can be restricted to the divisors ofn only,
i.e.,

νq,1(n) = ∑
d|n

ϕ(d)
(n

d

)q
= ∑

d|n
ϕ
(n

d

)
dq (24)

In this form it becomes apparent that the sum evaluates toν1,q(n) since there are exactlyϕ(n/d) num-
bers inZn which haved as greatest common divisor withn.
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