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We review an elementary approach to the construction of all irreducible representations of the finite Heisenberg
group. Determining the number of inequivalent classes of irreducible representations by different methods leads to
an identity of sums involving greatest common divisors. We show how this identity can be generalized and derive an
explicit formula for the sums.
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1 Introduction

In the framework of algebraic quantum mechanics Heisenberg's uncertainty relation is usually stated in
the form of a commutation relation for self-adjoint unbounded operators which represent the observables
positionQ and momentun® (I denoting the identity element):

[Q,P] :=QP—-PQ=il. (1)

Equation (1) can be obtained formally by applicatiorﬁﬁis\(s,t):@o) to the following equation involv-
ing unitary one-parameter groups

exp(itP) exp(isQ) = exp(ist) exp(isQ) exp(itP). 2
Introducing the notatiodx; := exp(itP),Ys := exp(isQ), Z; := exp(ir )| we can bring this into the form
XiYs = ZgtYsXs -

Furthermore, we have the one-parameter group propgry, = X, %, (and similarly forY andz) and
thatZ commutes withX andY. We observe that these relations still make sense when the parameters are
elements of an arbitrary commutative ring.
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Definition 1 Let® be a commutative ring. Thileisenberg groupl (R ) is generated by objects Xs, Z;
with parameters,is,;t € R subject to the relations

Ttthz = Tt1+tz , LTs=TsZ forT=X,Y,Z
X Ys = YeXi Zst v parameters inR_ .

It is convenient to use an isomorphic realization }j&sZ: — (r,s,t) and the following basic conse-
quences of the defining relations (the identity elemeii®;6,0))

(r7 S,t)71 = (_r7 ) —t- rS)
(rst)-(r',st')y=(r+r s+, t+t' —sr). (3)

In this paper we study the case wh&te= Z, the finite ring of remainder classes moduldSoH (Zp)
is a finite group of orden® which is generated by the two elemets= X; andY := Y:

X=X 2, =X*YX*~1 andsoon..

Simple computations show that the cent&H (Zy,)) is the cyclic subgroup of order generated by
Z :=Z; and that the subgroug generated bX andZ is a commutative normal divisor id (Zy).

In section 2 we studiinear representationsf H(Z,), i.e., the ways its elements can act as (invertible)
operators on complex vector spaces. We determine the classesdokible representation§.e., those
having no non-trivial invariant subspace) by elementary methods. In particular, the number of equivalence
classes of irregular representations is derived in two independent ways thereby deriving an identity for
sums of multiple common divisors. In section 3 we give simple and direct proofs of the general identity
and derive an explicit formula. Finally, we show how an application of a classical result by Cesaro on
summatory functions (cf. [Ces]) provides us with still a different interpretation for certain special cases of
the identity.

It is understood that in itself the derivation of the irreducible representations of the Heisenberg group
is of course not a new result. For example, good sources for this in the context of harmonic analysis are
[Sche, Ter, Schu]. In fact, for this part we merely give an explicit solution to the exercise stated in [Ter],
p. 297. However we considered it worth while to expose here an elementary derivation in comparing it
with a discrete version of Kirillov’s orbit theory — originally developed for nilpotent Lie Groups — and,
in particular, to explore its link with Cesaro sums.

2 Representations of H(Zp)

Letp:H(Zp) — GL(V) be a group homomorphism, i.e. a representatid (@) over the complex vector
spaceV. SinceH (Zy) is finite we may assume thétis finite dimensional. Thep|y: N — GL(V) defines
a representation of the commutative graup Thereforep(N) C GL(V) is a set of pairwise commuting
operators. Therefore we can find a basis- {v1, ... ,Vaimyv } Of V consisting of joint eigenvectors.

The complete information abopty is given by the actions of andZ:

X-vi=Ayv;  Z-vj=Wv; j=1,..,dmV.

We can always assume the group elements to act as unitary operators (take the invariant mean of an arbi-
trary Hermitian form; see [Ser], remark in 1.3). Therefore we may asshne- |y;| = 1. Furthermore,
since bothX" andZ" are equal to the neutral elementHi{Z,) we haveA] = i = 1.
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We pick an arbitrary vector in £ — we drop the eigenvector indgxfor the moment since it will be
fixed during the following construction. Then with= e?"/" € C we have

Xv=w'v and Zv=w’v forsomex,ze {0,...,n—1}. (4)

The subspac# C V defined as the linear hull dfv,Y ... ,Y"1v} is H(Z)-invariant and therefore
defines a subrepresentatipg of p.
The vectorér®v are eigenvectors fox with eigenvalueso <z

X(YKV) = (XYK)v = (Y*X Z)v = YK HKay) = wrkayky, (5)

Theorem 2 pw defines an irreducible representation of dimensigged(z, n).
Proof: letd = gcd(z n); we observe thaX andY™d commute as operators & since

XYd (Yky) = YaXZdYKv = @ Yax(Ykv) = YaX(Ykv)
=1

for arbitraryk. Therefore eigenvectors W are joint eigenvectors of andY"¢ and in particular
Yidv=wv  with Wi=wV=1.

Hencej |y and amondv,Yv...,Y""1v} there are at most/d linearly independent eigenvectors. Since
the vectors, Y ... ,Yd v are eigenvectors of corresponding to distinct eigenvalues they are linearly
independent and hence div= n/d.

We can describe an explicit matrix representation with respect to theBasisv, Y v... 7Y3*1v}: the
matrix [Z] z corresponding to the operatdrs simply w?Idy; the matrices corresponding ¥oandY are
immediately seen to be given by

0O 0 . 0
é (,82 8 1 0 .. 0 O
X]p = * : Yjg=|0 1 - 0 0 (6)
(n_1); Do e
00 we 00..1 0

With this explicit form of the representation at hand we can easily determine the correspomaiagter
X: H(Zn) — C of the representation. By definition (cf. [Ser],2)L}s given by

X(r,st) = Tr(X"YsZ') .

To calculate the value of the trace we only have to consider the diagonal of the matrix pXéWazt.
SinceX andZ are diagonal we mainly have to focus 6f1 apart from the factoo in the last columrY
is a cyclic right shift of the base vectors; successive products of this matrix produce a downward cyclic
shift of the rows where each row reentering from the top introduces an additional d¥ciarparticular,
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aftern/d steps we obtainy Idy; for s> 0 arbitrary the nonzero entries of the mati¥g] 3 are organized
as follows

o
Srows

& w
WY where s=

5

with 0<s< —.

|_\
»
[oN ]
0|
o

+

n =
g —Srows

1

For the determination aX"YS we only have to use the simple fact that multiplication with a diagonal
matrix from the left scales the columns by the corresponding diagonal entries. Hence we have

00( §-Srz+y

Srows

b Drzty
. w'd
AN

als

w(gfs?l)rz

Therefore we see that the trace can be nonzero oski9,1.e.,] | s. In this case we seb® = w¥ where
y=y/(n/d) and simply have to evaluate the following geometric progression:

_n/d-1
X(r,st) = @y Z) W
|=

If we observe thah | rz is equivalent tof | r or z= 0 and that the facto™ depends only ox = x
(mod p) wheng | r the trace is found to be

xUsJyz{o arsv(glrnz#0

DY otherwise

Using the Iverson symbol (cf. [GKP], 2.1) as a “generalized Kronecker déRa=(1 if propertyP holds
and 0 otherwise) and noting that 0 impliesd = n we may rewrite this in the more compact form

¢ WSy ifz=0 -
KESUT a1 319 gorae ifzzo” @

Now we are in a position to apply the standard criterion for irreducibility in terms of the character ([Ser],
2.3). The (weighted)’—norm ofy is

51 ifz=0

2—— ’ =
X" = 5 P oitzA0( T
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This implies that the corresponding representation is indeed irreducible. |

Equation (7) shows that the irreducible representations are completely described by the choices of
z€ Zn, X€ Zq, andy'e Zn/ 47 = Zq. Hence after changing notation we may denote the corresponding
characters by*¥* with parametergx,y,z) € Zq x Zq x Zn. The orthogonality relations for irreducible
characters enable us to determine the number of inequivalent irreducible representations.

Corollary 3 The characters satisfy the orthogonality relations

XS T) = [x=x][y=y] [2=7] ®

where d=gcd(z n) (= gcd Z, n) in the nonzero cases) Consequently, the numb@rof distinct (classes
of) irreducible (unitary) representations of(A,) is given by

v = 5 gedzn)?. 9)

Proof: A straightforward insertion of the character formula shows that the corresponding sum over
three indices splits into three factors of sums over one index only; each such sum vanishes unless each
summand in it equals 1 (which produces also the correct factors to cancel the weight factor given by the
group order). O
2.1 Alternative methods from representation theory

Counting conjugacy classes: One of the main theorems in representation theory of finite groups states
that the number of (equivalence classes of) irreducible representations of &3ji®equal to the number
of disjoint conjugacy classes

Cy:={hgh™* | hec G}.

Denote bycy the cardinality of the classy.
A short calculation using the basic relations 3 for the “triple realizatior ¢Z,,) yields the formula

C(a,b7c) = {(a7 b,C+ bx— ay) ‘ X,y € Zn} :

Thus, two element$a,b,c) and (a,b/,c’) belong to the same conjugacy classaf a, b= b and
there exist whole numbebs y andz such thatc = ¢ — ay+ bx+nz This equation is solvable iff =
¢ (mod gcda, b, n)). Therefore every conjugacy class contains exactly one element of the set

L:={(ab,c) €{0,...,n—1}3|c < gcda,b,n)} (10)
and we obtain for the number of irreducible representations

nz::i:gcd(a, b,n). (11)

Corollary 4 For any natural number n

n—-1n-1

v(n)= Y gedzn)®= ;bzogcd(a, b,n). (12)

2E7n
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A miniature of Kirillov’'s orbit theory: ~ The Heisenberg group is one of the first main examples to
which Kirillov applied his method of orbitsn representation theory of Lie groups (cf. [Kir62]). In this
subsection we apply the algebraic machinery of the geometric theory to the finite case.

We give a short sketch of the constructions from differential geometny i§ a Lie group it acts
(differentiable) on itself by conjugation, i.e. we have a n@apG — Aut(G), @) (h) = ghg!. So the
derivative of@g at the identity elemergtis an invertible linear operator on the Lie algehraMoreover,
by the chain rule the map: G — GL(g), g d@g)|e is shown to be a (linear) representation, the so-called
adjoint representationThe corresponding dual representatnG — GL(g"), defined by(pg f,X) :=

(f,p@%x) forxegandf € g*, is rich of geometric structure. It is called thew-adjoint representationf

Kirillov proved in 1962 that for large classes of Lie groups one can obtain all (equivalence classes of)
irreducible representations by further constructions on the orbits of the co-adjoint representgitidn in
particular, the equivalence classes are in one-to-one correspondence with the disjoint orbits. For details
and further references see [Kir62], [Kir76].

We now mimic Kirillov's constructions for our examplé(Zy). In analogy to the continuous case we
model the “Lie algebralj asZ3 with component-wise addition and “scalar multiplication” with elements
of Zn, i.e. asZ,-module. The dualityh,h*) = (Z3,Z3) is defined by((a,B,y), (a,b,c)) := aa+ Bb+yc.

In this setting a short computation leads to the following formula for the “co-adjoint representation”:

Plabc) (:B,Y) = (a+by,B—ayy). (13)

How many disjoint orbits does this action produceZ{? Two points(a, B,y) and(a’,B’,y) belong to
the same orbit iff

y =V
a = a (mod gcdy,n))
B = B (mod gedy,n))

Thus, to every orbit belongs exactly one point of the set

R:={(a,B,y) €{0,...,n—1}3| a,B < gedy,n)}. (14)

Hence the number of disjoint orbits is

/

n-1
gedy,n)? (15)
2
in accordance with the expression in (9).

3 Sums of powers of greatest common divisors

We turn our attention to more general sums of powers of greatest common divisors as they appeared
above. For the sake of conciseness we introduce the following notatiov, gcd= gcd(vs, ... ,Vg,N)
wherev = (vy,...,Vq).



Representations of the finite Heisenberg group and sums of gcds 97

We then define

Vg,r(n) i= Z gedv,n)f (16)

vez

The sumsv(n) examined in the previous section are obviously represented; bfn) and vz 1(n).
Hence the results there imply >(n) = vz 1(n).

3.1 A generalized equation

Before establishing an explicit formula fog, (n), we prove a generalized symmetry property.

Proposition 5 Forall g, r,ninN

Vgr(N) = Vrg(n). (17)

Remark 6 This will also follow independently from the explicit formula given in the next subsection, but
we don’t want to omit the following nice proof which also gives a meaning to the value of the function for
generalgandr.

Proof: We count the elements of the set

S:= {(vw) € Z3 x Zgp|n|gcdv,n) gcdw, n) }

For a giverv, how manyw can we find with(v,w) € S? Forw we have the condition

n
gedv,n)

gedw, n)

Therefore it is necessary and sufficient thatvalbre multiples of the fraction on the left. K, there
are gcdv, n) such numbers, so we get dech)" combinations fow. Hence

Si= 3 gedvn)’ = v (n)

vez

Repeating the same deduction with the roles andw interchanged we arrive at

S = Vra(n)

which completes the proof. a
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3.2 An explicit formula

Fortunately our function is multiplicative, that is:
Proposition 7

Vg,r (MN) = vgr (Mvgr(n) whengedm,n) = 1. (18)

Proof: This follows from the Chinese Remainder Theorem and basic properties of the gcd function:
Every vectow € Zmhn can be written in a unique way &+ Vv'mwith vV € Z andv’ € Z3. Sincemand
n have no divisors in common,

gcdvn+v'mmn) = gedVn+Vv'mm)gedVvn+v'mn)
ged(v'n,m) ged(v'm,n)
gedv',m)gedv'’, n)

Thus

Var(mn =% 5 gedVv,m)gedV’,n)" =vg (Mg, (n)

vezhv'ezd

O
By the multiplicativity ofvq, it is sufficient to find an explicit formula fovq(n) whennis a prime
power pK.
We observe that all gcds in the sum are divisorg'ofHence they are of the forml for somei with
0<i <k. If we definen(i) as the number of times gbd p¥) assumes the valug then obviously

k .
Var () = _;nm p". (19)

We have gcdy, pv) = pX only with v as null vector, s (k) = 1. Now let's assume that< k. There
are p*~' multiples of p' and thereforep*4 vectorsv with gcd(v, p¥) at least p. From this we have to
subtract the number of vectors where the gcatiast pt?:

n(i) = p*ka— pk=-Da  wherei < k

Inserting this into (19) yields a sum over a geometric progression (with factor 1 g#an which can
be evaluated easily. Hence we arrive at the following

Theorem 8
(k+1)p9—kpk-Da forq=r
Var(p) = { (20)

Kriaf 1) nKd(nd_ .



Representations of the finite Heisenberg group and sums of gcds 99

3.3 Applying a result of Cesaro
Cesaro (cf. [Ces]) found the following

Theorem 9
=5 1) B (21)

where F is the summatory function of f.

The summatory function—a kind of number theoretic integral—is defined as sum over all divisors:

F(n) ::de(d)

n

Considering that gdds, ... ,vg,n) = gedged(vy,. .. ,vg),n) we can apply this result to the function
Vg1 by defining

Fn(m) :=gcdm, n) (22)

Then the left-hand side in (21) is identicaltg1(n).

Now we only have to identify the corresponding functifin It is known that in generaf (p*) =
F(pY) — F(p1). If p¢dividesn thenF,(p) = pX andFy(pk 1) = p*~1, hencefy(p¥) = p“L(p—1) =
¢(pX). On the other hand, if¢ does not divider thenF,(p*) = F,(p*~1) and thereforef,(p¥) = 0. Since
bothF, and¢$ are multiplicative, so if, and we have

0 otherwise

fo(m) = {(b(m) if min 23)

This means that the summation on the right-hand side in (21) can be restricted to the divisongyof
ie.,

v = 5 (0 (3)'= s (3) (24)

In this form it becomes apparent that the sum evaluates 4(n) since there are exactly(n/d) num-
bers inZ, which haved as greatest common divisor with
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