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Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field
of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models
of computation.

This work represents a step in this direction: we define a combinatorial property that makes Boolean functions “hard”
to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new
lower bounds on the size complexity of previously unclassified Boolean functions.
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1 Introduction
Any attempt to find connections between mathematical properties of functions and their computational
complexity has a strong relevance to theory of computation. Indeed, there is the hope that developing new
mathematical techniques could lead to discovering properties that might be responsible for lower bounds.
The subject of this paper is related to the above general arguments, and in particular to showing how the
Abstract Harmonic Analysis on the hypercube can provide some insight in our current understanding of
Boolean function complexity. Our main result consists of new lower bounds on the size complexity of
explicit functions, exactly derived by applying the above techniques.

One of the best-known results in Circuit Complexity is that constant depth circuits require exponential
size to compute the parity function (see [4, 5, 11]). Here we generalize this result to a new hierarchy of
functions.

This hierarchy is defined as follows. Letp be a positive rational number, 0< p≤ 1, and letB(p)
n be the

class of functions, depending onn variables, that take the value 1 with probabilityp, i.e. on exactly 2n p
input strings.

†A preliminary version of this paper was published inProceedings of the 4th International Computing and Combinatorics
Conference(COCOON’98), Lectures Notes in Computer Science 1449, 1998.
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We then divideB(p)
n into levels, where thek-th level, which we denote byB(p,k), is defined as the subset

of the functionsf ∈ B(p)
n such that any subfunction off , depending onk (k≥ log 1

p) variables, takes the

value 1 again with probabilityp, i.e. on 2k p input strings (w.l.o.g. let us assume that 2k p is an integer).
These definitions are made precise below.

Our main result is thatAC0-circuits cannot compute functions in thek-th level ofB(p)
n , whenever

k = n− (logn)ω(1)

and
p = Ω(2−polylogn) .

More precisely, we prove that a circuit of constant depthd require size

Ω
(

2
(n−k)1/d

20 p

)
to compute any function inB(p,k), for anyp and anyk.

We also prove that nontrivial functions exist for each level of this hierarchy if

k>
logp+1

logp
n,

and conjecture that this bound is not far from being asymptotically optimal.
The main tool of the lower bound proof is the harmonic analysis on the hypercube, that yields an

interesting spectral characterization of the functions in the above hierarchy, together with a result proved
in [8], stating thatAC0 functions have almost all of theirpower spectrumon the low-order coefficients.

Finally, notice that this paper generalizes results in [1], where it has been proven thatAC0-circuits
cannot computestrongly balanced functions. Indeed, the class of strongly balanced functions coincides

with the
[
n− (logn)ω(1)

]
-th level of the classB(1/2)

n .

The results presented in this paper have recently been improved in [3, 2], where it is shown how this
spectral technique for proving lower bounds on the size-complexity of Boolean functions can be gener-
alized in order to be applied also to functions which present the combinatorial structure described above
only in an “approximate sense”. In this way some new interesting lower bounds have been obtained for
functions related to some arithmetic properties of integers. Precisely it has been shown that deciding if
a given integer is square-free and testing co-primality of two integers by unbounded fan-in circuits of
bounded depth requires superpolynomial size (the number theoretic counterpart of the spectral technique
is a sieve method).

The rest of the paper is organized as follows. In Section 2 we provide some of the notation we use, and
recall some basic definitions. In Section 3 we give the necessary background on Fourier transform on the
hypercube, and review the results by Linial et al. [8] about the spectral characterization ofAC0 functions.

Section 4 is devoted to the definition of the classesB(p)
n and of their levelsB(p,k). In Section 5 we derive

a spectral characterization of the functions in any level ofB(p)
n , and in Section 6 we prove our main result

stating thatAC0-circuits cannot compute functions in the levelB(p,k), wheneverk = n− (logn)ω(1) and
p = Ω(2−polylogn). In Section 7 we prove that nontrivial functions do exist in any levelB(p,k) such that
k> logp+1

logp n. Finally, in Section 8 we provide a framework for future research.
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2 Basic Definitions
First of all, we provide some of the notation we use.

Given a Boolean functionf onn binary variables, we will use different kinds of notation: theclassical
notation, where the input string is given byn binary variables; theset notation, based on the corre-
spondence between the set{0,1}n and the power set of{1,2, . . . ,n}; the 2n-tuple vector representation
f = ( f0 f1 . . . f2n−1 ), wherefi = f (x(i)) andx(i) is the binary expansion ofi. Unless otherwise specified,
the indexing of vectors and matrices starts from 0 rather than 1.

We will use the notation| f | to denote thecardinalityof f , that is the number of strings accepted byf :

| f |= |{w∈ {0,1}n | f (w) = 1}| .

Given a binary stringw ∈ {0,1}n, we denote withw(i) the string obtained fromw by flipping its i-th
bit (1≤ i ≤ n), i.e. w andw(i) differ only on thei-th bit, and by|w|1 thehamming weightof w, i.e. the
number of ones in it. Ifw andv are two binary strings of the same length, thenw⊕ v denotes the string
obtained by computing theexclusive orof the bits ofw andv. Finally, all the logarithms are to the base 2,
and the notation polylogn stands for a function growing like a polynomial in the logarithm ofn.
We now review some basic definitions.

AC0 circuits

An AC0 circuit consists of AND, OR and NOT gates, with inputsx1, . . . ,xn. Fan-in to the gates is
unbounded. The size of the circuit (i.e. the number of the gates) is bounded by a polynomial inn,
and its depth is bounded by a constant. Without loss of generality we can assume that negations
occur only as negated input variables. If negations appear higher up in the circuit we can move them
down to the inputs using De Morgan’s laws which at most doubles the size of the circuit. Finally,
observe that we have alternating levels of AND and OR gates, since two adjacent gates of the same
type can be collapsed into one gate (for a more detailed description, see [5]).

Restriction

A restrictionρ is a mapping of the input variables to the set{0,1,?}, where

– ρ(xi) = 0 means that we substitute the value 0 forxi ;

– ρ(xi) = 1 means that we substitute the value 1 forxi ;

– ρ(xi) = ? means thatxi remains a variable.

Given a functionf on n binary variables, we will denote byfρ the function obtained fromf by
applying the restrictionρ; fρ will be a function of the variablesxi for which ρ(xi) = ?.

Thedomainof a restrictionρ, dom(ρ), is the set of variables mapped to 0 or 1 byρ. Thesizeof
a restrictionρ, size(ρ), is defined as the number of variables which were given the value?, i.e.
size(ρ) = n−|dom(ρ)|.

3 Abstract Harmonic Analysis and AC0 Functions
We give some background on abstract harmonic analysis on the hypercube. We refer to [7] for a more
detailed exposition.
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We consider Boolean functions as embedded in the spaceF of all real-valued functions on the domain
{0,1}n. OnF we consider the standard scalar product

〈 f ,g〉=
1
2n ∑

w∈{0,1}n
f (w)g(w) (1)

with induced norm‖ f‖= 〈 f , f 〉1/2.
The functionsQw(x) = (−1)w1x1(−1)w2x2 . . .(−1)wnxn = (−1)wT x are known asFourier transform

kernel functions, and the set
{Qw |w∈ {0,1}n}

is an orthogonal basis forF .
We can now define theAbstract Fourier Transformof a Boolean functionf as the rational valued

function f̂ which defines the coordinates off with respect to the basis{Qw(x) |w∈ {0,1}n}, i.e.,

f̂ (w) =
1
2n ∑

x
Qw(x) f (x) . (2)

Then
f (x) = ∑

w
Qw(x) f̂ (w) (3)

is the Fourier expansion off .
It is interesting to note that the zero-order Fourier coefficient is equal to the probability that the function

takes the value 1, while the other Fourier coefficients measure the correlation between the function and
the parity of subsets of its input bits. This is immediate to see if the Boolean functions are defined as
mapping from{0,1}n to {1,−1}, where−1 stands for “accept” and 1 stands for “reject” (see [8] for more
details), but remains of course true even for{0,1}-valued functions (the coefficients of order greater than
zero differ in the two cases only by a constant factor).

Using the binary 2n-tuple representation for the functionsf and f̂ , and considering the natural ordering
of the n-tuplesx andw, one can derive a convenient matrix formulation for the transform pair. Let us
consider a 2n×2n matrixHn whose(i, j)-th entryhi j satisfieshi j = (−1)x(i)T x( j), wherex(i)Tx( j) denotes

the inner product of the binary expansions ofi and j. If f = [ f0 f1 . . . f2n−1]T and f̂ =
[

f̂0 f̂1 . . . f̂2n−1
]T

,
then, from the fact thatH−1

n = 2−nHn, we get

f = Hn f̂ (4)

and

f̂ =
1
2n Hn f . (5)

Note that the matrixHn is the Hadamard symmetric transform matrix and can be recursively defined as

H1 =
(

1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
. (6)

We now present an interesting application of harmonic analysis to circuit complexity, due to Linial et
al. [8].
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As we have already mentioned, one of the best known results in circuit complexity is thatAC0 circuits
require exponential size to compute the parity function. More precisely,AC0-circuits cannot even approxi-
mate the parity function. This fact has a direct consequence on the Fourier transform, because, as we have
already mentioned, the Fourier coefficients measure the correlation between the function and the parity
of subsets of its input bits. Consequently, each high order Fourier coefficient of anAC0 function must
be very small (where “high order” means coefficients corresponding to strings of large cardinality). By
exploiting this fact, Linial et al. were able to prove that not only is each individual high order coefficient
small, but in fact the sum of squares (i.e. thepower spectrum) associated with all high Fourier coefficients
is very small.

Lemma 1 (Spectral lemma [8])
Let f be a Boolean function on n variables computable by a Boolean circuit of depth d and size M, and
let θ be any integer. Then

∑
|w|1>θ

( f̂ (w))2≤ 1
2

M 2−
θ1/d

20 . (7)

ut

4 The Classes B(p)
n and their Levels B(p,k).

In this section we define classes of functions which generalize the notion ofk-balanced functionsintro-
duced in [1]. Letp be a positive rational number, 0< p≤ 1.

Definition 1 (ClassB(p)
n )

B(p)
n is the class of Boolean functions depending on n variables that take the value 1 with probability p,

i.e. on exactly2n p input strings.

Making use of the notion ofrestriction (see Section 2), we organize the functions in each classB(p)
n into

a sequence oflevels. Let k be a positive integer such that log1
p ≤ k≤ n, and let us assume that 2k p takes

an integer value.

Definition 2 (k-th level of B(p)
n )

B(p,k) is the subset ofB(p)
n consisting of all functions f such that, for any restrictionρ of size k, fρ ∈ B(p)

k .

We call B(p,k) the k-th levelof B(p)
n .

In other words,B(p,k) consists of all functionsf which take the value 1 with probabilityp, such that any
subfunctionfρ depending onk variables, takes the value 1 again with probabilityp.

We now state some basic properties of the hierarchy of levelsB(p,k). Let k be a positive integer, such that
log 1

p ≤ k≤ n. Then.

• B(p,k) ⊆ B(p,k+1).

• B(p,n) = B(p)
n .

• The classes ofk-balanced functions defined in [1] correspond to thek-th level ofB(1/2)
n .

• The parity function and its complement are the only two functions which belong to the first level of

B(1/2)
n , i.e. toB(1/2,1).



84 Anna Bernasconi

The first two properties follow immediately from the definition of the hierarchy; for the last two, we refer
the reader to [1].

In Section 7 we will prove that, for anyp, B(p,k) is strictly contained inB(p,k+1) and that the levels
B(p,k) are not empty, provided that

k>
logp+1

logp
n. (8)

Notice that, in the special casep = 1/2, it turns out that

B(1/2,k) ⊂ B(1/2,k+1) (9)

and that the levelsB(1/2,k) are not empty, for any value ofk, 1≤ k≤ n (see [1] for more details).
All these proofs will make use of the spectral characterization of these functions, which we derive in

the following section.

5 Spectral Characterization of the Hierarchy of B(p)
n Functions

We now derive a spectral characterization of the functions in any level of the classB(p)
n . We denote byf̂0

the zero-order Fourier coefficient.

Theorem 2 (Spectral characterization)
A Boolean function f: {0,1}n → {0,1} belongs to the k-th level of the classB(p)

n if and only if the
following property holds:

(1) f ∈ B(p)
n ;

(2) for any string w such that0< |w|1≤ n−k, f̂ (w) = 0.

Proof

• We start by proving the “only if” side of the theorem. Letf ∈ B(p)
n andµ≡ (µ1,µ2, . . . ,µn) be a

Boolean string such that
0< |µ|1 = n− `≤ n−k.

Moreover, let
U = {i | µi = 1} .

For any stringu∈ {0,1}n−`, let fu denote the subfunction defined by the restriction that assigns to
the variablesxi such thati ∈U , the(n− `) values taken from the stringu, and leaves undetermined
the other̀ variables.

Then, we have

f̂ (µ) =
1
2n ∑

w
(−1)µT w f (w) =

1
2n ∑

w
(−1)∑i∈U wi f (w)

=
1
2n ∑

u∈{0,1}n−`

(−1)|u|1 ∑
v∈{0,1}`

fu(v)


=

1
2n ∑

u∈{0,1}n−`

[
(−1)|u|1 | fu|

]
.
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For anyu ∈ {0,1}n−`, the subfunctionfu depends oǹ ≥ k variables and, sincef ∈ B(p,k), and

B(p,k) ⊆ B(p, `) for any`≥ k, we havefu ∈ B(p)
` and| fu|= 2` p. Thus, we get

f̂ (µ) =
2` p
2n ∑

u∈{0,1}n−`
(−1)|u|1 = 0.

• We now prove the “if” side of the theorem, i.e., if properties (1) and (2) hold, thenf ∈ B(p,k).

Let us choose(n−k) variables out ofn, and letU be the set of the indices of these(n−k) variables.
For anyu∈ {0,1}n−k, let fu denote the subfunction obtained fromf by assigning to the variables in
the setU , the(n−k) values taken from the stringu, and leaving undetermined the otherk variables.

For anyu, fu depends onk variables. We show that any such subfunction takes the value 1 with
probability p.

Let f# denote a vector whose entries are given by the cardinality of the 2n−k subfunctionsfu, and
let f̂U denote a vector whose entries are the Fourier coefficients related to the 2n−k stringsw≡
(w1,w2, . . . ,wn) such thatwi = 0 for anyi 6∈U . Note that all the 2n−k coefficients in the vector̂fU
are of order less than or equal ton−k. Because of the recursive definition of Hadamard matrices,
it turns out that

f̂U =
1
2n Hn−k f# .

From property (2) and from the fact that the zero order Fourier coefficient is equal to the probability
that the function takes the value 1, it then follows

f̂U = p


1
0
...
0

 ,

from which

f# = 2n H−1
n−k f̂U =

2n

2n−k Hn−k f̂U

= 2k p Hn−k


1
0
...
0

= 2k p


1
1
...
1

 .

Thus, the theorem follows by repeating the same argument for all the
(n

k

)
choices of the setU .

ut

6 A Lower Bound on the Size Complexity of B(p)
n Functions

We are now able to prove our main result, i.e., thatAC0-circuits cannot compute functions in thek-th level

of B(p)
n , wheneverk = n− (logn)ω(1) andp = Ω(2−polylogn) .
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We first make use of the spectral characterization derived in Theorem 2, together with Lemma 1, to
determine a lower bound on the size required by a depthd circuit to compute functions in thek-th level of

B(p)
n . Finally, an easy application of this bound will provide our thesis.
In the following we will assume thatp≤ 1

2 (if p> 1
2 we can consider the function¬ f which has the

same size complexity asf ).

Theorem 3 (Size complexity)
Let f ∈B(p,k), p≤ 1

2, be a Boolean function depending on n variables, computable by a circuit of constant
depth d and size M. Then

M ≥ 2
(n−k)1/d

20 p. (10)

Proof An application of Lemma 1 yields the following inequality:

M ≥ 2
θ1/d

20 2 ∑
|w|1>θ

( f̂ (w))2 .

Let us chooseθ = n−k. From the fact that̂f (w) = 0 for any 0< |w|1≤ n−k (see Theorem 2) it follows
that

∑
|w|1>n−k

( f̂ (w))2 = ∑
w:|w|1 6=0

( f̂ (w))2 = ∑
w

( f̂ (w))2− ( f̂0)2 ,

where f̂0 denotes the zero-order Fourier coefficient. Then, by using theParseval’s identity

∑
v

( f̂ (v))2 = f̂0 = p,

we get

∑
|w|1>n−k

( f̂ (w))2 = p− p2≥ p
2
,

and the thesis immediately follows:

M ≥ 2
(n−k)1/d

20 2 ∑
|w|1>n−k

( f̂ (w))2 = 2
(n−k)1/d

20 p.

ut
Notice how this result establishes a clear connection between complexity and combinatorial properties of
Boolean functions.

Our main result, stating thatAC0-circuits cannot compute functions in thek-th level ofB(p)
n , whenever

k = n− (logn)ω(1) , (11)

and
p = Ω(2−polylogn) , (12)

follows immediately as a corollary of Theorem 3.
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Corollary 4 Any function f∈ B(Ω(2−polylogn), n−(logn)ω(1)) requires superpolynomial size to be computed
by a constant depth circuit.

Proof Easily follows from Theorem 3. ut
Note how the lower bound to the size can become exponential:

Corollary 5 Constant depth circuits require exponential size to compute functions in levels B(p,k) when-
ever k is s.t. n−k = Ω(nε), for any positive constantε< 1, and p= Ω(2−polylogn).

Proof Immediate from Theorem 3. ut

7 Properties of the Hierarchy B(p)
n

In this section we prove that nontrivial functions do exist in the levels of the hierarchyB(p)
n .

More precisely, we assume thatp = 1
2t , wheret = t(n) is an integer, and, by applying the spectral

characterization derived in Section 5, we prove thatB(p,k) is strictly contained inB(p,k+1) and that the sets
B(p,k) are not empty, provided that

k>
logp+1

logp
n, (13)

i.e. k> t−1
t n.

Notice that, in the special casep = 1/2, i.e. t = 1, it turns out that

B(1/2,k) ⊂ B(1/2,k+1) (14)

and that the levelsB(1/2,k) are not empty, for any value ofk, 1≤ k≤ n (see [1] for more details).

Theorem 6
Let p= 1

2t . For any n, B(2−t ,k) 6= /0 if k > t−1
t n.

Proof By induction ont.

Base

For anyn, and fort = 1, the parity function and its complement belong toB(1/2,1) and t−1
t n = 0.

Induction step

Let us suppose that, for anyn, B(2−t ,k) 6= /0 if k> t−1
t n.

Let g be a Boolean function, depending onn−1 variables, which belongs toB(2−t ,k) for k = t−1
t (n−

1)+1 (to simplify the exposition, let us assume thatt dividesn−1).

We definef , depending onn variables, as follows:

f (αβ) =
{

0 if α = 0
g(β) if α = 1,

whereα∈ {0,1} andβ∈ {0,1}n−1. First of all, note thatf ∈B2−(t+1)
n . Indeed,| f |= |g|= 2n−(t+1).
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From the definition off , and from the structure of Hadamard matrices, it turns out that the spectrum
of f can be defined in terms of the spectrum ofg, in the following way:

f̂ (αβ) =
{ 1

2 ĝ(β) if α = 0
−1

2 ĝ(β) if α = 1.

If we now use the fact thatg ∈ B(2−t , t−1
t (n−1)+1), together with the spectral characterization of

Theorem 2, we obtain that̂f (w) = 0, whenever|w|1 < n−1
t . In particular, we have that̂f (w) = 0

whenever|w|1 < b n
t+1c, and from Theorem 2 it follows thatf ∈ B(2−(t+1),k) for k> t

t+1 n, which
completes our induction. ut

Notice that, because of its construction, the functionf defined in the proof of the above theorem is
nondegenerated, i.e. it depends on all input variables.

By defining f in a more complicated way it is possible, in some cases, to decrease the bound onk, but
only by a constant factor. Therefore, we conjecture that the bound onk given in Theorem 6 is not far from
being asymptotically optimal.

Theorem 6 is an interesting result for the following two reasons. First of all, it allows us to verify
that the classes of functions under investigation are not empty, at least for a significant number of levels.
Moreover, since for constant values of the probabilityp, the functions in the deepest levels of the hierarchy
can be regarded as “generalizations” of the parity function, it is interesting to understand how “deep” we
can go in such a generalization, i.e. how close the combinatorial structure of levelk functions is to the
combinatorial structure of parity.

We now prove that, forp = 2−t , B(2−t ,k) is strictly contained inB(2−t ,k+1), provided thatk > t−1
t n.

In other words, we prove that nontrivial examples of functions do exist for those levels ofB(2−t )
n where

k> t−1
t n.

Theorem 7
Let p= 2−t . If k> t−1

t n, then B(2
−t ,k) is strictly contained in B(2

−t ,k+1).

Proof The proof of the theorem is easily derived from that of Theorem 6. Fort = 1, B(1/2,k) is strictly
contained inB(1/2,k+1) for anyk≥ 1 (see [1]).

Let g be a Boolean function, depending onn− 1 variables, which belongs toB(2−t ,k) but not to
B(2−t ,k−1), for k = nt

t+1 >
t−1

t (n− 1). Then, the induction step can easily be proved by considering a
function f defined as in the proof of Theorem 6. ut

8 Conclusion
Any attempt to find connections between mathematical properties and complexity has a strong relevance
to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower
bounds for general models of computation. This work represents a step in this direction: we define
a combinatorial property that makes Boolean functions “hard” to compute in constant depth and show
how the Fourier transform could be used as a mathematical tool for the analysis of Boolean functions
complexity. Further work to be done includes a deeper analysis of the structure of the levelsB(p,k), in
order to get an optimal lower bound onk, and, more in general, a deeper analysis of the connections
between combinatorial properties, spectral properties and complexity of Boolean functions.
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