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Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field
of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models
of computation.

This work represents a step in this direction: we define a combinatorial property that makes Boolean functions “hard”
to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new
lower bounds on the size complexity of previously unclassified Boolean functions.
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1 Introduction

Any attempt to find connections between mathematical properties of functions and their computational
complexity has a strong relevance to theory of computation. Indeed, there is the hope that developing new
mathematical techniques could lead to discovering properties that might be responsible for lower bounds.
The subject of this paper is related to the above general arguments, and in particular to showing how the
Abstract Harmonic Analysis on the hypercube can provide some insight in our current understanding of
Boolean function complexity. Our main result consists of new lower bounds on the size complexity of
explicit functions, exactly derived by applying the above techniques.

One of the best-known results in Circuit Complexity is that constant depth circuits require exponential
size to compute the parity function (sée 4[5, 11]). Here we generalize this result to a new hierarchy of
functions.

This hierarchy is defined as follows. Lpbe a positive rational number,0p <1, and Ietﬁ?ﬁp) be the
class of functions, depending orvariables, that take the value 1 with probabiltyi.e. on exactly 2p
input strings.

TA preliminary version of this paper was publishedRmoceedings of the 4th International Computing and Combinatorics
Conferenc COCOON’98), Lectures Notes in Computer Science 1449, 1998.
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We then divideBP into levels where thek-th level, which we denote bB(PX), is defined as the subset
of the functionsf ¢ Q;r(,m such that any subfunction df depending otk (k > Iog%) variables, takes the
value 1 again with probabilitp, i.e. on ¥ p input strings (w.l.0.g. let us assume th&ipds an integer).
These definitions are made precise below. o

Our main result is thadC%-circuits cannot compute functions in tkeh level of B;” , whenever
k=n— (logn)®Y
and
p = Q(2-PoWloany
More precisely, we prove that a circuit of constant deptiequire size

(n—k1/d
a(2%" )

to compute any function iB(P-K, for any p and anyk.
We also prove that nontrivial functions exist for each level of this hierarchy if

logp+1 N
logp

and conjecture that this bound is not far from being asymptotically optimal.

The main tool of the lower bound proof is the harmonic analysis on the hypercube, that yields an
interesting spectral characterization of the functions in the above hierarchy, together with a result proved
in [8], stating thatAC® functions have almost all of thefrower spectrunon the low-order coefficients.

Finally, notice that this paper generalizes resultsCin [1], where it has been provesChatrcuits
cannot computstrongly balanced functiondndeed, the class of strongly balanced functions coincides

with the [n— (logn)®® | -th level of the class"?.

k>

)

The results presented in this paper have recently been improvadin [3, 2], where it is shown how this
spectral technique for proving lower bounds on the size-complexity of Boolean functions can be gener-
alized in order to be applied also to functions which present the combinatorial structure described above
only in an “approximate sense”. In this way some new interesting lower bounds have been obtained for
functions related to some arithmetic properties of integers. Precisely it has been shown that deciding if
a given integer is square-free and testing co-primality of two integers by unbounded fan-in circuits of
bounded depth requires superpolynomial size (the number theoretic counterpart of the spectral technique
is a sieve method).

The rest of the paper is organized as follows. In Sediion 2 we provide some of the notation we use, and
recall some basic definitions. In Sectign 3 we give the necessary background on Fourier transform on the
hypercube, and review the results by Linial et &l. [8] about the spectral characterizafi6f fofnctions.
Section 4 is devoted to the definition of the clas#§® and of their level8(PX). In Section b we derive
a spectral characterization of the functions in any Ieveﬁ;&ﬁ)f, and in SectiovE]G we prove our main result
stating thatAC?-circuits cannot compute functions in the le®P-¥, wheneveik = n— (logn)®® and
p = Q(2-Po¥oan) |n Section[[7 we prove that nontrivial functions do exist in any I&@IY such that

k> "’lgggl n. Finally, in SectiorﬂS we provide a framework for future research.
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2 Basic Definitions

First of all, we provide some of the notation we use.

Given a Boolean functiofi on n binary variables, we will use different kinds of notation: tHassical
notation where the input string is given hy binary variables; theset notation based on the corre-
spondence between the §€ 1}" and the power set of1,2,...,n}; the 2-tuple vector representation
f=(fof1...fon_1), wherefi = f(x(i)) andx(i) is the binary expansion @f Unless otherwise specified,
the indexing of vectors and matrices starts from 0 rather than 1.

We will use the notationf| to denote theardinality of f, that is the number of strings acceptedfby

[l =[{we{0,1}" | f(w) =1}|.

Given a binary stringv € {0,1}", we denote withw!) the string obtained frorw by flipping itsi-th
bit (1 < i < n), i.e. wandw() differ only on thei-th bit, and by|w|; the hamming weighof w, i.e. the
number of ones in it. Ifv andv are two binary strings of the same length, tlve® v denotes the string
obtained by computing thexclusive oiof the bits ofw andv. Finally, all the logarithms are to the base 2,
and the notation polylog stands for a function growing like a polynomial in the logarithrmof
We now review some basic definitions.

ACP circuits

An ACP circuit consists of AND, OR and NOT gates, with inpuis. .., x,. Fan-in to the gates is
unbounded. The size of the circuit (i.e. the number of the gates) is bounded by a polynomial in
and its depth is bounded by a constant. Without loss of generality we can assume that negations
occur only as negated input variables. If negations appear higher up in the circuit we can move them
down to the inputs using De Morgan’s laws which at most doubles the size of the circuit. Finally,
observe that we have alternating levels of AND and OR gates, since two adjacent gates of the same
type can be collapsed into one gate (for a more detailed description] see [5]).

Restriction
A restrictionp is a mapping of the input variables to the 611, x}, where

—p(%) =0 means that we substitute the value 0xor

—p(%) =1 means that we substitute the value 1xor

—p(%) =+ means thax; remains a variable.
Given a functionf on n binary variables, we will denote bfj, the function obtained fronf by
applying the restrictiop; f, will be a function of the variables for whichp(x) = *.

The domainof a restrictionp, dom(p), is the set of variables mapped to 0 or 1fayThesizeof
a restrictionp, siz€p), is defined as the number of variables which were given the vgliee.

size(p) = n— |dor(p)|.

3 Abstract Harmonic Analysis and AC® Functions

We give some background on abstract harmonic analysis on the hypercube. We rgfer to [7] for a more
detailed exposition.
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We consider Boolean functions as embedded in the sfpagkall real-valued functions on the domain
{0,1}". On ¥ we consider the standard scalar product

(f.9) =5 F(w)g(w) (1)

with induced norm| f|| = (f, )2,
The functionsQy(x) = (—1)"*(—1)"2Xe (—1)W*n = (—1)""TX are known adrourier transform
kernel functions, and the set
{Qulwe {0,1}"}
is an orthogonal basis foF .
We can now define thébstract Fourier Transformof a Boolean functionf as the rational valued
function f which defines the coordinates bfwith respect to the basiQw(x)|w € {0,1}"}, i.e.,

W) = o ¥ Qui9 F ). @
Then .
(=Y Q) f(w) ©

is the Fourier expansion df

It is interesting to note that the zero-order Fourier coefficient is equal to the probability that the function
takes the value 1, while the other Fourier coefficients measure the correlation between the function and
the parity of subsets of its input bits. This is immediate to see if the Boolean functions are defined as
mapping from{0,1}" to {1, —1}, where—1 stands for “accept” and 1 stands for “reject” (see [8] for more
details), but remains of course true even{orl}-valued functions (the coefficients of order greater than
zero differ in the two cases only by a constant factor).

Using the binary 2-tuple representation for the functiohsand f, and considering the natural ordering
of the n-tuplesx andw, one can derive a convenient matrix formulation for the transform pair. Let us
consider a 2 x 2" matrix H, whose(i, j)-th entryh;; satisfies;; = (—1)0™(0), wherex(i)Tx(j) denotes
the inner product of the binary expansions aind j. If f = [fofy...fonq]" andf = [fofy... fgn,l]T,
then, from the fact thatl; 1 = 2-"H,, we get

f=Hyf (4
and
~ 1
f= o Hn f. (5)
Note that the matrix, is the Hadamard symmetric transform matrix and can be recursively defined as
_ 1 1 _ anj_ Hn71
Hl - ( 1 71 ) ) Hn - ( anl 7Hn71 ) . (6)

We now present an interesting application of harmonic analysis to circuit complexity, due to Linial et
al. [B].
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As we have already mentioned, one of the best known results in circuit complexity isQhatrcuits
require exponential size to compute the parity function. More precis€Rxcircuits cannot even approxi-
mate the parity function. This fact has a direct consequence on the Fourier transform, because, as we have
already mentioned, the Fourier coefficients measure the correlation between the function and the parity
of subsets of its input bits. Consequently, each high order Fourier coefficientAt%&function must
be very small (where “high order” means coefficients corresponding to strings of large cardinality). By
exploiting this fact, Linial et al. were able to prove that not only is each individual high order coefficient
small, but in fact the sum of squares (i.e. gwver spectrumassociated with all high Fourier coefficients
is very small.

Lemma 1 (Spectral lemma [3])
Let f be a Boolean function on n variables computable by a Boolean circuit of depth d and size M, and

let © be any integer. Then
gl

fw2< tma-% 7
‘W%e( (w)) <5 (7)

4 The Classes B\? and their Levels B(P-K.

In this section we define classes of functions which generalize the notioalanced functionstro-
duced in [1]. Letp be a positive rational number,Qp < 1.

Definition 1 (Class3.")
Q%rgp) is the class of Boolean functions depending on n variables that take the value 1 with probability p,
i.e. on exacth2" p input strings.

Making use of the notion afestriction (see SectioE] 2), we organize the functions in each (ﬂ%@sinto
a sequence dévels Letk be a positive integer such that I%gg k < n, and let us assume thdt g takes
an integer value.

Definition 2 (k-th level of B\”)
B(P-K is the subset oB\” consisting of all functions f such that, for any restrictipof size k, § € @ﬁm.
We call BPX the kth levelof 3.

In other wordsB(P-%) consists of all functiong which take the value 1 with probability, such that any
subfunctionf, depending oik variables, takes the value 1 again with probabifity

We now state some basic properties of the hierarchy of I&/&l8. Letk be a positive integer, such that
Iog% <k<n. Then.

° B(pk) g B(pak+l)_
o BN — P,

e The classes df-balanced functions defined i [1] correspond tokkta level ofﬁ?r(]l/ 2),

The parity function and its complement are the only two functions which belong to the first level of
3Y? ie. toB1/21),
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The first two properties follow immediately from the definition of the hierarchy; for the last two, we refer
the reader to1].

In Section[[7 we will prove that, for anp, B(P-K is strictly contained inB(P-**1) and that the levels
B(P-K) are not empty, provided that

K> logp+1 0 ®)
logp
Notice that, in the special cage=1/2, it turns out that
B(l/Z,k) c B(l/Z,k+1) (9)

and that the levelB(*/2%) are not empty, for any value &f 1 < k < n (see [1] for more details).
All these proofs will make use of the spectral characterization of these functions, which we derive in
the following section.

5 Spectral Characterization of the Hierarchy of @,ﬁp) Functions

We now derive a spectral characterization of the functions in any level of theﬁ@ssWe denote byfy
the zero-order Fourier coefficient.

Theorem 2 (Spectral characterization)
A Boolean function f {0,1}" — {0,1} belongs to the k-th level of the clags” if and only if the

following property holds:
(1) fes?;
(2) for any string w such thad < |w|; <n—k, f(w)=0.
Proof
e We start by proving the “only if” side of the theorem. Lete Gir(,p) andp = (W, o, .-, Un) be a

Boolean string such that
O<|HM1=n—-¢<n-k.
Moreover, let
U={i|nw=1}.
For any stringu € {0,1}", let f, denote the subfunction defined by the restriction that assigns to

the variables; such that € U, the(n— ¢) values taken from the string and leaves undetermined
the other/ variables.

Then, we have

flw = 2—];] Z(—l)“TWf(W) =5 Z(_]_)Zieu W £ (w)
" w2 l“””l > fu<v>]
ue{o, 1} ve{0.1}!

N[ =

(1) ]

ue{0,1}n-¢
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For anyu € {0,1}"¢, the subfunctionf, depends orf > k variables and, sincé € B(PX, and
B(P-K C B(P-Y) for any/¢ > k, we havef, € Qié(p) and| fy| = 2‘ p. Thus, we get

fw=2P 5 (-pki—o.
ue{0,1}n-¢

¢ We now prove the “if” side of the theorem, i.e., if properties (1) and (2) hold, therB(P:X).

Let us choosén— k) variables out ofi, and letU be the set of the indices of the@e— k) variables.
For anyu € {0, 1}“‘k, let f, denote the subfunction obtained frdnby assigning to the variables in
the setJ, the(n— k) values taken from the string and leaving undetermined the otharariables.

For anyu, f, depends ork variables. We show that any such subfunction takes the value 1 with
probability p.

Let f4 denote a vector whose entries are given by the cardinality ofthestibfunctionsf,, and
let fy denote a vector whose entries are the Fourier coefficients related td thetdngsw =
(wq,Wo,...,Wy) such thaty; = O for anyi ¢ U. Note that all the Pk coefficients in the vectofu
are of order less than or equalre- k. Because of the recursive definition of Hadamard matrices,

it turns out that 1

fu= on Hnk fg.
From property (2) and from the fact that the zero order Fourier coefficient is equal to the probability
that the function takes the value 1, it then follows

1
R 0
fu=p| . [,
0
from which
1§ 2" y
fg = 20 Hn:k fu = >k Hn—k fu
1 1
0 1
= 2XpHox | . |=2p
0 1

Thus, the theorem follows by repeating the same argument for a{[l}hehoices of the set.
O

6 A Lower Bound on the Size Complexity of Q%r(]p) Functions

We are now able to prove our main result, i.e., th\af-circuits cannot compute functions in tkeh level
of B\, whenevek = n— (logn)®® andp = Q(2-Poioan)
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We first make use of the spectral characterization derived in Thegrem 2, together with Ilemma 1, to
determine a lower bound on the size required by a degiihcuit to compute functions in tHeth level of
fBr(,p). Finally, an easy application of this bound will provide our thesis.

In the following we will assume thgh < % (if p> % we can consider the functionf which has the
same size complexity ag.

Theorem 3 (Size complexity)
Let fe B(PK, p< % be a Boolean function depending on n variables, computable by a circuit of constant
depth d and size M. Then

(n-k)1/d

M>2 20 p. (10)

Proof An application of Lemmg1 yields the following inequality:

gl/d ~
M>272 2 z (f(w))2.
|w[1>6

Let us choos® = n— k. From the fact thaf (w) = 0 for any 0< |w|; < n—k (see Theorerfi 2) it follows
that

(fwpz="3 (fw)>=Y (fw)*~(fo)*,

[wjg>n—k w:|w[1#0 w

wherefy denotes the zero-order Fourier coefficient. Then, by using#nseval’s identity

we get

and the thesis immediately follows:

(n—k)1/d A~ 5
M>2 202 (fw))2=2

|w|1>n—k

(n-k)1/d
o=k

O

Notice how this result establishes a clear connection between complexity and combinatorial properties of
Boolean functions.

Our main result, stating th&C°-circuits cannot compute functions in tkeh level onSr(,p), whenever
k=n— (logn)®d | (11)

and
p= Q(zfpolylog n) , (12)

follows immediately as a corollary of Theordin 3.
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Corollary 4 Any function fe B(Q(2 PY'°9", n-(ogn*™) yequires superpolynomial size to be computed
by a constant depth circuit.

Proof Easily follows from Theorer 3. O
Note how the lower bound to the size can become exponential:

Corollary 5 Constant depth circuits require exponential size to compute functions in le\Pefsvénen-
ever kis s.t. n-k = Q(nf), for any positive constargt< 1, and p= Q(2-Pelylosn),

Proof Immediate from Theoreif 3. O

7 Properties of the Hierarchy B\

In this section we prove that nontrivial functions do exist in the levels of the hierﬁk‘ﬁy
More precisely, we assume thpt= Elr wheret = t(n) is an integer, and, by applying the spectral
characterization derived in Sectifin 5, we prove B8t is strictly contained irB(P-kt1) and that the sets
B(P-X) are not empty, provided that
logp+1

logp

n, (13)

ie.k>%n
Notice that, in the special cage=1/2, i.e.t = 1, it turns out that

B(1/2K) ~ g1/2k+1) (14)

and that the levelB(/2K are not empty, for any value &f 1 < k < n (see [1] for more details).

Theorem 6 t
Let p= 4. Forany n, B2 K £0ifk > T1n.

Proof By induction ort.

Base
B ) . . 2, 1.
For anyn, and fort = 1, the parity function and its complement belongt&/2 % and'z1n=0.

Induction step
Let us suppose that, for amyB2 K =£ 0 if k > =n,
Letgbe a Boolean function, depending on 1 variables, which belongs &2 ¥ for k= =2 (n—
1) + 1 (to simplify the exposition, let us assume thdividesn— 1).
We definef, depending om variables, as follows:

0 ifa=0
f(“@:{ of) ifa=1,

wherea € {0,1} andp € {0,1}"~1. First of all, note thaf € EB{(

t+1

' Indeed] f| = |g| = 2" (t+1),
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From the definition off, and from the structure of Hadamard matrices, it turns out that the spectrum
of f can be defined in terms of the spectrungpin the following way:

N Y. (¢) if a=0
f(“B){i%g(B) if o—1.

If we now use the fact thag € B2 T (-1+1) together with the spectral characterization of
TheoremR, we obtain thdt(w) = 0, whenevertw|; < "=, In particular, we have thaf(w) = 0

wheneverw|; <[], and from TheorerEIZ it follows thatt € B2 “"™:K for k > 7 N, which

completes our induction. O

Notice that, because of its construction, the functiodefined in the proof of the above theorem is
nondegenerated, i.e. it depends on all input variables.

By defining f in a more complicated way it is possible, in some cases, to decrease the barmibn
only by a constant factor. Therefore, we conjecture that the boukdjven in Theorenfi]6 is not far from
being asymptotically optimal.

Theorem[p is an interesting result for the following two reasons. First of all, it allows us to verify
that the classes of functions under investigation are not empty, at least for a significant number of levels.
Moreover, since for constant values of the probabijtitthe functions in the deepest levels of the hierarchy
can be regarded as “generalizations” of the parity function, it is interesting to understand how “deep” we
can go in such a generalization, i.e. how close the combinatorial structure oklawaitions is to the
combinatorial structure of parity.

We now prove that, fop = 2%, B2 ¥ is strictly contained irB2 -¥+1), provided thak > =1n.
—t
In other words, we prove that nontrivial examples of functions do exist for those Ievéi%;2 of where
k>ttn,
Theorem 7 t t
Let p=27t. Ifk > 51 n, then B2 ¥ is strictly contained in & -k+1).

Proof The proof of the theorem is easily derived from that of Theofbm 6.t Fot, B(Y/2X) is strictly
contained irBY/2k+1) for anyk > 1 (see [1]).

Let g be a Boolean function, depending on- 1 variables, which belongs 827K put not to
B2 k1) for k = 11 > 5 (n—1). Then, the induction step can easily be proved by considering a
function f defined as in the proof of Theordin 6. O

8 Conclusion

Any attempt to find connections between mathematical properties and complexity has a strong relevance
to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower
bounds for general models of computation. This work represents a step in this direction: we define
a combinatorial property that makes Boolean functions “hard” to compute in constant depth and show
how the Fourier transform could be used as a mathematical tool for the analysis of Boolean functions
complexity. Further work to be done includes a deeper analysis of the structure of theBé/glsin

order to get an optimal lower bound ¢m and, more in general, a deeper analysis of the connections
between combinatorial properties, spectral properties and complexity of Boolean functions.
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