EuroComb 2005

Mader Tools

Frank Göring ^{1†}

¹ Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz email: frank.goering@mathematik.tu-chemnitz.de

The deep theorem of Mader concerning the number of internally disjoint H-paths is a very powerfull tool. Nevertheless its use is very difficult, because one has to deal with a very reach family of separators. This paper shows several ways to strengthen Mader's theorem by certain additional restrictions of the appearing separators.

Keywords: graph, H-path, separator

1 Preliminaries and Results

For notations not defined here we refer to (1). Unless otherwise stated, k is an arbitrary integer, G is an arbitrary finite simple graph (loops and multiple edges are forbidden), U is an arbitrary subgraph of G, X and H are arbitrary disjoint subsets of V(G) and Y is an arbitrary subset of E(G - X - H). A path having exactly its endvertices in H is called an H-path. The maximum number of independent H-paths we denote by $p_G(H)$. [Y] denotes the graph with edge set Y whose vertex set is the set of all vertices incident with at least one edge of Y. Let C(G) denote the set of components of G and $\partial_G(U)$ denote the set of vertices of U incident with at least one edge of G - E(U). A pair (X, Y) is called H-separator of G, if each H-path of G contains a vertex of X or an edge of Y. Let S be the set of all H-separators of G - E(G[H]). A vertex x' of G is called big brother of a vertex x of G, if the neighborhood of x' in G contains the neighborhood of x in G - x'.

According to (1) we define the permeability of a pair (X, Y) by:

$$\mathbf{M}_{G}(X,Y) = |X| + \sum_{C \in \mathcal{C}([Y])} \left\lfloor \frac{|\partial_{G-X}(C)|}{2} \right\rfloor$$

Mader's Theorem (cf. (2)) can be rewritten as follows (cf. (1).)

Theorem 1 (Mader, 1978)

 $p_G(H) = |E(G[H])| + \min\{M_G(X, Y) \mid (X, Y) \in \mathcal{S}\}$

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

[†]Research supported by the "Mathematics in Information Society" project carried out by Alfréd Rényi Institute of Mathematics -Hungarian Academy of Sciences, in the framework of the European Community's "Confirming the International Role of Community Research" programme.

Note, that here H is a set of vertices. To get this from the version of Mader's theorem in (1), you have to apply the version of (1) with the graph G[H] instead of H.

Let a subset S' of S be a *Mader-Set*, whenever Theorem 1 remains valid if S is replaced by S'. In other words, a subset S' of S is a Mader-Set, iff for each element (X, Y) of S there is an element (X', Y') of S' with $M_G(X', Y') \leq M_G(X, Y)$. Note that a subset of S containing a Mader-Set is a Mader-Set, too.

The following conditions for elements (X, Y) of S will be discussed:

- Odd Border Condition (OB) For each component C of [Y] the number $|\partial_{G-X}C|$ is odd.
- Big Brother Vertex Condition (BV): If $x \in X$ and x' is a big brother of x, then $x' \in X$.
- Symmetric Edge Condition (SE): If v and v' are two vertices of G H X such that the neighborhood of v' in G v equals the neighborhood of v in G v', then the neighborhood of v' in [Y] v equals the neighborhood of v in [Y] v'.
- Edge Component Condition (EC): For each edge e of G H X Y and each component C of $[Y] \cup (V(G H X), \emptyset)$ there is a path P in G X Y C containing an element of H and an endvertex of e.
- Half Border Condition (HB): For each $C \in [Y]$ and each $B \subseteq \partial_{G-X}C$ with $2|B| \ge |\partial_{G-X}C|$ there are two vertex disjoint HB-paths in G X.

For a subset Q of the set of conditions {OB, BV, BE, EC} let S(Q) be the subset of S satisfying all conditions in Q. Our main results are as follows:

Theorem 2 $S({OB,SE,HB,EC})$ is a Mader-Set.

Theorem 3 $S(\{BV,SE,HB,EC\})$ is a Mader-Set.

Theorem 4 There is a graph G and a subset H of V(G) such that $S({OB,BV})$ is not a Mader-Set.

In other words, Theorem 2 and Theorem 3 state, that for each graph G and each subset H of V(G) the set $S^*(G, H)$ of H-separators of G with minimal permeability has (possibly equal) elements (X_1, Y_1) and (X_2, Y_2) such that (X_1, Y_1) satisfies the Odd Border Condition, the Symmetric Edge Condition, the Half Border Condition and the Edge Component Condition, and (X_2, Y_2) satisfies the Big Brother Vertex Condition, the Symmetric Edge Condition, the Half Border Condition and the Edge Component Condition and the Edge Component Condition.

Theorem 4 states, that there is a graph G and a subset H of V(G), such that none of the elements of $S^*(G, H)$ satisfies the Odd Border Condition and the Big Brother Vertex Condition.

2 Motivation

Why dealing with such mysterious conditions? The Odd Border Condition helps to simplify the formula for the permeability of an H separator:

Theorem 5 Let G be a graph, H be a subset of G, and (X, Y) be an H-separator of G satisfying the Odd Border Condition. Then for the permeability of (X, Y) the following equation holds:

$$M_G(X,Y) = |X| + \frac{|\partial_{G-X}[Y]| - |\mathcal{C}([Y])|}{2}$$

236

Mader Tools

In order to motivate the remaining three conditions, we regard an application of Mader's Theorem: Suppose, a function f mapping H into the set of nonnegative integers is given. We are interested in a 'separator-like' condition for the existence of a set of p independent H-paths such that in the graph U being the union of all this paths $f(h) \ge d_U(h)$ holds for all $h \in H$. Such a problem appears for instance, if one wants to prove the f-factor theorem with help of Mader's Theorem.

Let the graph R(G, f) be obtained from G by the following procedure: Let G' be the graph obtained from G by intersecting each edge e of G[H] by a vertex h_e . In G' sequentially replace each vertex v of H by a complete bypartite graph R_v whose partition classes A_v and B_v satisfy $|A_v| = d_G(v) + 1$ and $|B_v| = f(v)$. In each step each edge incident with v (say (u, v)) of G' has to be replaced by an edge (u, a) with $a \in A_v$ such that in the resulting graph R(G, f) only one vertex a_v of A_v has all its neighbors in B_v . We call R(G, f) the *f*-replacement of G.

The set $H_R(G, f) = \{a_v | v \in H\}$ we call *f*-replacement of *H* in *G*. With this definitions we find the following lemma:

Lemma 6 *G* has a set of *p* independent *H*-paths such that each vertex *v* of *H* is contained in at most f(v) of this paths if and only if R(G, f) has a set of *p* independent $H_R(G, f)$ -paths.

Using Mader's Theorem for R(G, f) instead of G and $H_R(G, f)$ instead of H we get

Lemma 7 *G* has a set of *p* independent *H*-paths such that each vertex *v* of *H* is contained in at most f(v) of this paths if and only if each $H_R(G, f)$ -separator (X, Y) of R(G, f) satisfies p < p(X, Y).

Now, we are nearly done. We have to retranslate this condition to a condition for the graph G, the set H, and the function f only. To reconstruct G from R(G, f), for each $v \in H$ we have to contract the graph R_v to the vertex v, and after that for each $e \in E(G[H])$ we have to delete h_e and to add e. But, without any knowledge about a special structure of $H_R(G, f)$ -separators in R(G, f), we loose too much information by doing the contractions.

The situation changes rapidly, if we first apply Theorem 3 with R(G, f) instead of G and $H_R(G, f)$ instead of H. Using this we prove the following Lemma:

Lemma 8 *G* has a set of *p* independent *H*-paths such that each vertex *v* of *H* is contained in at most f(v) of this paths if and only if each $H_R(G, f)$ -separator (X, Y) of R(G, f) that satisfies the following conditions also satisfies p < p(X, Y).

Here are the conditions:

For each element v of H one of the following statements holds:

- 1. $V(R_v) \cap X = B_v$ and no edge of Y is incident with A_v ,
- 2. $V(R_v) \cap X = \emptyset$ and Y contains each edge of R(G, f) incident with $A_v \setminus \{a_v\}$.

3. $V(R_v) \cap X = \emptyset$ and no edge of Y is incident with A_v .

For each edge e of G[H] we have $h_e \in X$ if and only if for each edge v incident with e the third statement $(V(R_v) \cap X = \emptyset$ and no edge of Y is incident with A_v) holds.

By Lemma 8, it is possible to interpret the resulting structure in G, directly. For this, let a pair (X, Y) be (G, H)-valid, if G - X - Y has no H-path and $\partial_{G-X}[Y]$ is disjoint to H.

We derive the following Theorem:

Theorem 9 Given a graph G, a subset H of its vertex set, and a function f that maps H to the set of non-negative integers.

The maximum number of independent H-paths, for which each vertex v of H is contained in at most f(v) of this paths, equals the minimum of

$$|E(G[H \setminus (X \cup V([Y]))])| + |X \setminus H| + \sum_{x \in H \cap X} f(x) + \sum_{C \in \mathcal{C}([Y])} \left\lfloor \frac{1}{2} \left(|\partial_{G-X}C| + \sum_{v \in H \cap V(C)} f(v) \right) \right\rfloor$$

taken over all (G, H)-valid pairs (X, Y).

References

- [1] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173(2000).
- [2] W. Mader, Ueber die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. 31 (1978), pp 387-402.
- [3] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.