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On the 3
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In this paper we concern ourself with the question, whether there exists a fix-free code for a given sequence of
codeword lengths. We focus mostly on results which shows the 3

4
-conjecture for special kinds of lengths sequences.
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1 Introduction
A fix-free code is a code, which is prefix-free and suffix-free, i.e. any codeword of a fix-free code is neither
a prefix, nor a suffix of another codeword. Fix-free codes were first introduced by Schützenberg (4) and
Gilbert and Moore (5), where they were called never-self-synchronizing codes. Ahlswede, Balkenhol and
Khachatrian propose in (6) the conjecture that a Kraftsum of a lengths sequence smaller than or equal to
3
4 , imply the existence of a fix-free code with codeword lengths of the sequence. This is known as the
3
4 -conjecture for fix-free codes. Harada and Kobayashi generalized in (7) all results of (6) for the case of
q-ary alphabets and infinite codes.

Over the last years many attempts were done to prove the 3
4 -conjecture either for the general case of a

q-ary alphabet or at least for the special case of a binary alphabet. In this paper we focus mostly on results
which shows the 3

4 -conjecture for special kinds of lengths sequences.
The 3

4 -conjecture holds for finite sequences, if the numbers of codewords on each level is bounded by
a term which depends on q and the smallest codeword length which occurs in the lengths sequence. This
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theorem was first shown by Kukorelly and Zeger in (10) for the binary case. We generalize this theorem
to q-ary alphabets.

If the Kraftsum of the first level which occurs in a lengths sequence together with the Kraftsum of the
following level is bigger than 1

2 , then from Yekanins theorem (8) follows, that the 3
4 -conjecture holds.

Yekanins theorem is only for the binary case. We give a generalization of the theorem. For the proof of
the theorem and its generalization, we introduce π-systems, which are special kinds of fix-free codes with
Kraftsum

⌈
q
2

⌉
q−1. We show, that π-systems with only two neighbouring levels and L ·

⌈
q
2

⌉
codewords

on the first level exist, if and only if there exists a
⌈

q
2

⌉
-regular subgraph of the directed de Bruijn graph

Bq(n) with n edges over a q-ary alphabet with L vertices. Furthermore we show that arbitrary one level π-
systems exist. Since there exist cycles of arbitrary length in B2(n), we obtain Yekhanin’s original theorem
with the π-system extension theorem. However, in the generalization of Yekhanin’s theorem to the q-ary
case, an extra condition for the existence of

⌈
q
2

⌉
-regular subgraph in Bq(n) occurs.

The last part is about the binary version of the 3
4 -conjecture. We obtain some new results for the binary

case of the 3
4 -conjecture with the help of quaternary fix-free codes.

2 The 3
4-conjecture for q-ary fix-free codes

This section is about the cases, where the 3
4 -conjecture can be shown for an arbitrary finite alphabetA. We

give a generalization of a theorem from Kukorelly and Zeger (10), which was shown for the binary case
originally. This theorem shows, that the 3

4 -conjecture holds for finite codes, if the number of codewords
on each level, expect the maximal level, is bounded by a term which depends on the minimal level.

We write a sequence (αl)l∈N of nonnegative integers fits to a code C ⊆ A∗ if |C ∩ Al| = αl for all
l ∈ N.

Theorem 1 Let |A| = q ≥ 2, (αl)l∈N be a sequence of nonnegative integers with
lmax∑

l=lmin

αlq
−l ≤ 3

4 and

lmin := min{l |αl ≥ 0} ,
lmax := sup {l |αl ≥} ≤ ∞. If lmin ≥ 2 , lmax < ∞ and αl ≤ qlmin−2

⌊
q
2

⌋2⌈ q
2

⌉l−lmin for all l 6= lmax,
then there exists a fix-free Code C ⊆ A∗ which fits to (αl)l∈N.

3 Fix-free codes obtained from π-systems
We give a generalization of a theorem of Yekhanin (8), which shows that the 3

4 -conjecture holds for binary
codes if the Kraftsum of the first level which occurs in the code together with it neighboring level is bigger
than 1

2 .
For an arbitrary set C ⊆ A∗ the prefix-, suffix- and bifix-shadow of C on the n-th level are defined as:

∆n
P (C) :=

n⋃
l=0

(C ∩ Al)An−l ⊆ An ,

∆n
S(C) :=

n⋃
l=0

An−l(C ∩ Al) ⊆ An ,

∆n
B(C) := ∆n

P (C) ∪∆n
S(C) ⊆ An .
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For proving the theorem, Yekhanin introduced in (8) a special kind of fix-free codes, which he called
π-systems:

Definition 1 Let |A| = 2, we say D ⊆
n⋃

l=1

Al is a π2-system if D is fix-free with Kraftsum 1
2 and

|∆n
S(D)| = |∆n

P (D)| = |A−1∆n
P (D)| = |∆n

S(D)A−1| (1)

To prove a generalization for arbitrary finite alphabets, we give a more general definition of π-systems.

Definition 2

Let |A| = q ≥ 2, 1 ≤ k ≤ q and n ∈ N. We call a set D ⊆
n⋃

l=1

Al a πq(n; k)-system if D is fix-free,

and there exists a partition ofD into k setsD1, . . . ,Dk for which the following three equivalent properties
holds.

(1): For all 1 ≤ i ≤ k holds:

qn−1 = |∆n
P (Di)| = |A−1∆n

P (Di)|
= |∆n

S(Di)| = |∆n
S(Di)A−1|

(2): S(D) = k
q and for all i with 1 ≤ i ≤ k holds:

|∆n
P (Di)| = |A−1∆n

P (Di)| and |∆n
S(Di)| = |∆n

S(Di)A−1|

(3): For all 1 ≤ i ≤ k the set A−1Di is maximal prefix-free, DiA−1 is maximal suffix-free and
|A−1Di| = |DiA−1| = |Di|.

The sets D1, . . . ,Dk are called a π-partition of D

For α1, . . . , αn ∈ N we call a πq(n; k)-system D a πq(α1, . . . , αn; k)-system if
∣∣D ∩Al

∣∣ = αl for
all 1 ≤ l ≤ n.

(1)-(3) in the definition are all equivalent.
For 1 ≤ k < q let

γk :=


1
2 + k

2q for 1 ≤ k ≤
⌊

q
2

⌋(
q−k

q

)2

+ k
q for

⌊
q
2

⌋
< k < q .

Especially we have γd q
2 e ≥

3
4 . We obtain the following theorem for fix-free extensions of π-systems:

Theorem 2 (π-system extension Theorem) Let |A| = q ≥ 2 , 1 ≤ k < q, (αl)l∈N be a sequence of

nonnegative integers with
∞∑

l=1

αlq
−l ≤ γk and n ∈ N,

1 ≤ β ≤ αn such that βq−n +
n−1∑
l=1

αlq
−l = k

q . Then for every πq(α1, . . . , αn−1, β; k)-system there exists

a fix-free-extension which fits to (αl)l∈N.
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Let A = {0, . . . , q − 1}. The directed de Bruijn graph Bq(n) has An as its vertex set and for every
a, b ∈ A, w ∈ An−1 there is an edge aw → wb in Bq(n) which can be labelled by the word awb ∈ An+1.

By examining the existence of πq(n+1; k)-systems with codewords on the n-th and n+1-th level but no
other codeword lengths, we obtain that such a system exists if and only if there exists a k-regular subgraph
in Bq(n− 1) with the number of edges equal to the number of codewords of length n. Especially for such
a πq(n + 1; k) system the codewords of the n-th level are the edges of a k-regular subgraph of Bq(n− 1)

and the codewords of the n + 1-level are given by
k⋃

i=1

⋃
a∈A

aVcϕi(a) , where Vc is the complement of the

vertex set of the k-regular subgraph of Bq(n− 1) and ϕ1, . . . , ϕk are permutations ofA with the property
ϕi(a) 6= ϕj(a) for i 6= j, a ∈ A. Furthermore the codewords of a one-level πq(n)-system are the edges
of a k-factor of Bq(n− 1) and vice versa. Thus we obtain with Theorem 2 the following generalization
of Yekhanin’s Theorem for arbitrary finite alphabets:

Theorem 3 Let |A| = q ≥ 2, 1 ≤ k < q and (αl)l∈N be a sequence of nonnegative integers with
∞∑

l=1

αlq
−l ≤ γk.

(i) If αn

qn + αn+1
qn+1 ≥ k

q , αn = kL for some 1 ≤ L < qn−1 and there exists a k-regular subgraph in
Bq(n− 1) with L vertices, then there exists a fix-free code which fits to (αl)l∈N.

(ii) If αn

qn ≥ k
q then there exists a fix-free code which fits to (αl)l∈N.

Since Lempel has shown in (11), that there are cycles of arbitrary length in Bq(n), we obtain for the
binary case Yekhanin’s original theorem.

By examining πq-systems with more than two levels, we obtain with Theorem 2.

Theorem 4 Let |A| = q ≥ 2, 1 ≤ d < q, k ≤ min{d, q − d} and (αl)l∈N be a sequence of nonnegative

integers with
∞∑

l=1

αlq
−l ≤ γk.

(i) Let n ≥ 2. If α1 = 0, αl = kd(q− d)l−2 for 2 ≤ l < n and αn ≥ kq(q− d)n−2 then there exists a
fix-free code which fits to (αl)l∈N.

(ii) Let n ≥ 3. If α1 = α2 = 0, αl = kd(q − d)l−2 + k(q − d)dl−2 for 3 ≤ l < n and αn ≥
kq(q − d)n−2 + kqdn−2 then there exists a fix-free code which fits to (αl)l∈N.

4 The 3
4-conjecture for binary fix-free codes

In this section we examine the 3
4 -conjecture for the special case |A| = 2. If we identify quaternary fix-free

codes with binary fix-free codes in the natural way we obtain from the theorems above that the following
statements hold for the binary case:

Theorem 5 Let A := {0, 1} and (αl)l∈N be a sequence of nonnegative integers with
∞∑

l=1

αl

(
1
2

)l ≤ 3
4 .

(i) If there exists an n ≥ 2 such that α2 = α2l+1 = 0 for all l ∈ N0, α2l = 2l for all 2 ≤ l < n,
α2n ≥ 2n+1 and α2l ∈ N0 for all l > n, then there exists a fix-free code C ⊆ A+ which fits to
(αl)l∈N.
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(ii) If there exists an n ≥ 3 such that α2 = α4 = α2l+1 = 0 for all l ∈ N0, α2l = 2l+1 for all
2 ≤ l < n, α2n ≥ 2n+2 and α2l ∈ N0 for all l > n, then there exists a fix-free code C ⊆ A+ which
fits to (αl)l∈N.

(iii) If there exists an n ∈ N such that α2 = α4 = . . . = α2n−2 = α2l+1 = 0 for all l ∈ N0, α2n is
even, α2n

22n + α2n+2
22n+2 ≥ 1

2 and there exists a 2-regular subgraph of B4(n− 1) with α2n

2 vertices, then
there exists a fix-free code C ⊆ A+ which fits to (αl)l∈N.

(iv) Let lmin := min{l |αl 6= 0} and lmax := sup{l |αl 6= 0}. If lmax < ∞, 4 ≤ lmin is even,
α2l+1 = 0 for all l ∈ N0 and α2l ≤ 2

lmin
2 −2+l for all 2l 6= lmax, then there exists a fix-free code

C ⊆ A+ which fits to (αl)l∈N.
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